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Abstract

Large Vision-Language Models (LVLMs) may
produce outputs that are unfaithful to real-
ity, also known as visual hallucinations (VH),
which hinders their application in multimodal
understanding and decision-making. In this
work, we introduce a novel plug-and-play train-
free decoding algorithm named Game and Tree
based Hallucination Mitigation (GTHM), de-
signed for mitigating VH. GTHM is inspired
by empirical observations that the fuzziness of
multi-granularity view perception exacerbates
VH. Based on this, GTHM leverages visual in-
formation to construct a coarse-to-fine visual
view tree (CFTree) that organizes visual ob-
jects, attributes, and relationships in a hierar-
chical manner. Additionally, we innovatively
model the optimal visual-token matching pro-
cess on the CFTree as the cooperative game.
Specifically, we define the Tree-based Shap-
ley Value (TSV) for each visual view on the
CFTree to assess its significant contribution to
the overall visual understanding, thereby deter-
mining the optimal visual granularity. Subse-
quently, we utilize the TSV as guidance to im-
plement adaptive weight contrastive decoding
to achieve vision-aware decoding. Extensive
experiments on four popular benchmarks con-
firm the effectiveness of our GTHM in alleviat-
ing VH across different LVLM families with-
out additional training or post-processing. Our
code is published at https://github.com/
mengchuang123/GTHM.

1 Introduction

With the development of large language models
(LLMs), large vision-language models (LVLMs)
have made significant progress in model architec-
ture, training methods, and data diversity (Liu et al.,
2023c; Gong et al., 2023; Li et al., 2023a; Maaz
et al., 2023; Zhang et al., 2023a; Zhu et al., 2023).
LVLMs excel at converting complex visual pat-
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terns into coherent linguistic representations, lead-
ing to significant performance improvements in
visual question answering (Bai et al., 2023; Dai
et al., 2023; Liu et al., 2023b) and cross-modal un-
derstanding tasks (Xie et al., 2024; Zhuang et al.,
2024e; Xin and Zou, 2023). However, LVLMs
may produce outputs that are not faithful to real-
ity, known as visual hallucinations (VH) (Gunjal
et al., 2023; Li et al., 2023c; Liu et al., 2023a;
Lovenia et al., 2023), which can impact their re-
liability and applicability across various domains.
Recent research indicates that even more complex
and powerful LVLMs cannot avoid VH (Dai et al.,
2022; Li et al., 2023c; Guan et al., 2023).

In the context of LVLMs, extensive efforts have
been dedicated to mitigating VH and enhance the
reliability and fidelity of LVLM outputs. Cur-
rent methods for alleviating VH generally can fall
into three categories: post-processing (Zhou et al.,
2023; Huang et al., 2023) and self-correction (Yin
et al., 2023) techniques, fine-tuning based on in-
struction (Liu et al., 2023a; Yu et al., 2023), and
decoding strategy approaches (Chuang et al., 2023;
Leng et al., 2023; Chen et al., 2024). Despite some
progress, these approaches still exhibit several lim-
itations, including: (1) the potential requirement
for additional datasets and training, or the incorpo-
ration of extra post-processing pipelines or more
powerful external LVLMs (Zhou et al., 2023; Liu
et al., 2023a; Yu et al., 2023); (2) a predominant
focus on object hallucinations, often neglecting
other visual elements such as relationships and at-
tributes (Leng et al., 2023); (3) the necessity for
time-consuming sampling processes for visual lo-
calization (Chen et al., 2024). Therefore, there
remains an urgent need for more efficient methods
to mitigate VH and achieve trustworthy LVLMs.

Empirically, as shown in Figure 1, we observe
that providing misaligned or improperly granu-
lar views in the decoding of LVLMs can lead the
model to focus more on language priors, thus ex-
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Prompt:
Please describe this 
image in detail
Ongoing Response:
On the beach, a man 
holding a ...

Inputed Image:

Figure 1: Experiment using LLaVa-1.5 shows that the
inability to perceive the optimal view during decoding
can exacerbate VH and produce incorrect tokens, i.e.,
‘Surfboard’ and ‘Book’, where the lower proposed tree-
based Shapley values represent poorer view perception.

acerbating VH. We provide more analysis in Sec-
tion 2. Consequently, we derive a critical insight:
assisting LVLMs in dynamically perceiving visual
views at different granularities during autoregres-
sive decoding will help LVLMs understand specific
visual objects and relationships, thereby alleviating
VH. Based on the above observations, we inno-
vatively propose a framework for VH mitigation
termed GTHM. Specifically, GTHM facilitates VH
mitigation through several novel strategies:

First, we organize VH trigger words, including
entities, attributes and relations, into a coarse-to-
fine visual view tree (CFTree), which serves as
structured data for optimal token querying to as-
sist LVLMs in paying attention to visual context in
autoregressive decoding. Our CFTree comprises
three coarse-to-fine hierarchical levels: event, re-
lation, and entity, which enhance the efficiency
of perceiving optimal visual regions without the
need for time-consuming sampling. Second, we
adopt a game-theoretic perspective to achieve the
perception of optimal visual views. Specifically,
the search for optimal visual views is modeled as
a cooperative game, where we innovatively define
the tree-based Shapley values (TSV) to assess the
contribution of each visual view from CFTree in
achieving the overall visual-token match. Third,
we implement adaptive contrastive encoding based
on game scores to reduce unfaithful tokens. We per-
form contrastive decoding guided by TSV values
for tokens with different significance scores.

In experiments, our GTHM achieves superior
performance compared to existing methods on four
popular VH benchmarks and across three LVLM
families. In summary, the contributions of this pa-
per are three-fold: (1) We propose a training-free,

plug-and-play framework called GTHM, based
on our CFTree, for efficient VH mitigation. Our
GTHM is inspired by empirical observations that
the fuzziness of multi-granularity view perception
exacerbates VH. (2) We innovatively model view
search for decoding optimal tokens as a coopera-
tive game, and achieve adaptive game-augmented
contrastive decoding via the proposed TSV for ef-
fectively mitigating VH. (3) Extensive experiments
and comprehensive evaluations confirm that our
GTHM significantly outperforms existing methods.

2 Preliminaries and Motivation

Problem Formulation. We consider a general
LVLM, symbolized as θ, which is designed with
an architecture that integrates a vision encoder, a
vision-text interface, and a text decoder. Initially,
visual information v undergoes processing through
the vision encoder to produce a visual embedding,
which is then modified by the vision-text interface
to align with the textual query x. The combined
data serves as input to the text decoder, which au-
toregressively generates a textual output y as:

yt ∼ pθ(yt|v, x, y<t), (1)

pθ(yt|v, x, y<t) ∝ exp (fθ(yt|v, x, y<t)) , (2)

where, yt represents the t-th token of y, while y<t

refers to the sequence of tokens generated prior to
t-th step. The function fθ is the logit distribution
function. When the generated token yt does not
align with the input image v, VH occurs, which
can distort the actual visual content.

Hallucination Analysis. As demonstrated by
the empirical results in Figure 2, we utilize the
proposed TSV (Def. in 2)to measure visual per-
ception and analyze the generation of VH from
the perspective of multi-granularity visual views.
Based on the results, we have made the following
observations: (1) Captions without VH have higher
TSV values. Inaccurate visual perception (lower
TSV) corresponds to higher VH. (2) The longer
the degree of sentence generation, the lower the
TSV value, and the higher the likelihood of VH oc-
curring. This is consistent with the discovery that
excessive reliance on long-history tokens may also
lead to the direction of VH (Zhou et al., 2023). (3)
Similar to Favero et al. (2024), we use the prompt
dependency measure (PDM) (Def. in Favero et al.
(2024)) to measure the degree of VH. We observe
that outputs with higher TSV values correspond to
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Figure 2: Analysis of the outputs of different LVLMs on sampled 500 images in the MSCOCO validation set,
consisting of (1) TSV distribution for different outputs of LLaVA-1.5, (2) the relationship between sentence length
and TSV, and (3) the relationship between prompt dependency measure (PDM) (Favero et al., 2024) and TSV.

higher PDM, indicating that higher TSV values pro-
vide greater visual benefits, thereby reducing VH.
These analyses suggest that if LVLM fails to accu-
rately focus on the visual view related to the token
yt, it tends to maximize the likelihood based on the
textual prompts x and historical tokens y<t. This
results in the generation of tokens that align with
the statistical probability of the language model
but contradict the actual visual information. These
motivated us to assist LVLM in dynamically per-
ceiving visual views under different granularities
and understanding specific visual objects and rela-
tionships during autoregressive decoding.

3 Methodology

3.1 Coarse-to-Fine Visual View Tree (CFTree)

Construction of our CFTree. As shown in Fig-
ure 3, we organize the CFTree T into a three-level
hierarchical structure comprising event, relation,
and entity layers to facilitate the structuring of
multi-granularity views, which unify all visual ele-
ments prone to VH. The event layer serves as the
root of the CFTree and represents the global visual
scene, i.e., the inputted entire image. The entity
layer consists of all leaf nodes of the CFTree, where
each node represents the finest granularity of view.
The relation layer represents the combinations of
views depicted by each pair of leaf nodes. Initially,
we adopt RAM (Zhang et al., 2023b) and Ground-
ingDINO (Liu et al., 2023d) to extract all entity tags
and their bounding boxes from the image, forming
the leaf nodes of the CFTree. Subsequently, we
pair the entities and expand their bounding boxes
to form relation nodes (parent nodes). Finally, we
connect the three layers to complete the CFTree,
which presents a structured view from coarse to
fine granularity.

Definition 1 (View Paths): Given a CFTree T , the
visual view path P(vi) of a node vi ∈ T is defined

as the set of nodes within the path from the root
node v0 to vi.

Nodes on the view path P(vi) (see Def. 1) repre-
sent a range of perspectives from coarse to fine
for the same view vi. Intuitively, the views that
optimally match the token yt are most likely to be
found within the same view path P .

3.2 CFTree-based Game Modeling
We employ cooperative game theory to search for
the optimal visual context for decoding on the
CFTree, which offers a hierarchical and meaning-
ful reference derived from the original input image
vi. We start by introducing notation about the game
theory, and then propose our modeling method.

Preliminaries. Cooperative game theory funda-
mentally explores how agents set of players U with
a set function f(·) collaborate to maximize shared
outcomes and allocate rewards based on individual
contributions(Grabisch and Roubens, 1999; Sun
et al., 2020). The Shapley value (Kuhn et al., 1953;
Shapley, 1988) is a classical game solution with
underlying axiom systems for the unbiased estima-
tion of the contribution of each player. Formally,
given a player groups U , a subset coalition S ⊆ U
and a set function f(·) used to evaluate coalition
game scores, the Shapley value ϕ(i|U) of the player
i ∈ U is defined as:

ϕ(i | U) =
∑

S⊆U\{i}
p(S)[f(S ∪ {i})− f(S)],

p(S) = |S|!(|U| − |S| − 1)!

|U|! ,

(3)

where, p(S) is the likelihood of S being sampled.
In our work, we estimate the saliency of visual
understanding for each CFTree node based on the
modified Shapley value to obtain the optimal view.

Game Modeling. Our objective is to quanti-
tatively assess the contribution of view vi to the
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Figure 3: The illustration of the proposed GTHM framework, consisting of (1) the coarse-to-fine view tree designed
to organize visual elements of different granularities, (2) game modeling with the proposed TSV to evaluate visual
perception level, and (3) the adaptive game-augmented contrastive decoding focuses on more faithful decoding.

LVLM’s understanding of visual scenes. Conse-
quently, we model the view node vi within T as
players and the node set T as whole coalitions in a
cooperative game. Inspired by (Deng et al., 2024),
which uses CLIP to evaluate the matching scores
between tokens and visual information, we employ
BLIP (Li et al., 2022b) to compute the similarity
scores between views and textual tokens. Thus, we
define the set function for the game as

f(S) = 1

|S|
∑

vi∈S
BLIP(vi, p⊕ yit),

yit ∼ pθ(y
i
t|vi, x, y<t),

(4)

where S is a player coalition, p⊕ yit denotes merg-
ing prompts and the token generated by LVLM.

Definition 2 (Tree-based Shapley value): Given
a CFTree T and a player vi ∈ T , we we consider
[P(vi)] as a single hypothetical player, which is
the union of the players in P(vi) (Def. in 1), the
tree-based Shapley value is defined as:

ϕτ (vi) = ϕ([P(vi)] | T \P(vi) ∪ {[P(vi)]})
−

∑

vj∈P(vi)

ϕ(vj | T \P(vi) ∪ {vj}), (5)

where ϕ is vanilla Shapley value in Eq. 3.

Intuitively, our TSV is equivalent to the total benefit
of including the entire visual path of view vi minus
the benefits of the views within P(vi). We utilize
our TSV to measure the significance of coarse-to-
fine visual information within vi on the LVLM’s
perception of visual semantics, i.e.„ assessing the
consistency between the next token and the actual
view vi. Formally, our TSV are akin to Shapley

interactions, but we incorporate constraints based
on the tree structure. Additional properties and
theoretical analysis are provided in the appendix.

Optimal Visual View-aware Context Candi-
dates. Based on the proposed TSV, we calcu-
late the salience scores for all nodes (views) in
the CFTree. A higher salience score for a view
indicates a superior visual-token alignment when
tokens are generated guided by that granularity of
view. We select the top-m views as candidates
for the optimal visual context. Following prior
work (Chen et al., 2024), we obtain the part-of-
speech (POS) tags (Honnibal and Montani, 2017)
for the currently generated tokens and calculate the
TSV only for those tokens corresponding to objects,
attributes, and relations to optimize time efficiency.
In practice, we adopt the depth-first search algo-
rithm to traverse CFTree to obtain the TSV of all
views, detailed in Alg. 1.

3.3 Vision-aware Contrastive Decoding

Following the approach described in Section 3.2,
we calculate the TSV for all views within the
CFTree. We then compute the difference in
TSVs between each pair of views as d(vi, vj) =
|ϕτ (vi) − ϕτ (vj)|, and identify the top-m pairs
of visual contexts with the most TSVs discrep-
ancies. Subsequently, we amplify the informa-
tional contrast between the visual contexts by con-
trasting decoding probability distributions of each
pair (vi, vj) and redistributing the output in log
space (Li et al., 2022c). Unlike vanilla contrastive
decoding strategies that employ a constant factor,
our proposed adaptive visual contrastive decoding
strategy utilizes the ratio of TSVs as a contrast
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factor to redistribute probabilities:

p (· | vi, vj , x, y<t) ∝ exp[(1 + λϕ)·
fθ (· | vi, x, y<t)− λϕ · fθ (· | vj , x, y<t)],

(6)

where, λϕ = λ
ϕτ (vj)
ϕτ (vi)

It is an adaptive scaling fac-
tor and λ is a trade-off hyperparameter, ϕτ (vi) >
ϕτ (vj) and fθ is the logit function. Through game-
augmented contrastive decoding in Eq. 6, we iden-
tify m candidates for optimal visual view contexts.
Ultimately, we employ the BLIP to compare the
global visual-text similarity between the current
text sequence y≤t and the original image v. and
integrate with beam search following (Chen et al.,
2024) to obtain the optimal token.

3.4 Theoretical Analysis of our GTHM
Theorem 1 (Game Theory) Our tree-base Shapley
value (Def. in Eq. 5) satisfies the following axioms:
Linearity, Symmetry, Dummy, and Recursivity.

Intuition: This result indicates that the visual
perception scores derived from our TSV possess
properties not found in conventional visual-text
contrastive methods. In summary, our TSV intro-
duces an appealing aspect: Coarse-to-fine recep-
tive field: TSV measures the fair contribution of
a set of view paths to total benefits (i.e., the visual
perception of LVLMs), rather than operating on a
single view. This also enhances the robustness to
biases in view elements during decoding.

Theorem 2 (Information Theory) The CFTree con-
sists of coarse-to-fine three hierarchical levels:
event Xe, relationship Xr, and entity Xa. The level
Xr depends on Xe, and the level Xa depends on
Xr. By using our GTHM, additional information
I(Xe, Xr) + I(Xr, Xa) is introduced compared
to vanilla decodings. This also reduces the overall
decoding prediction error Pϕ of Xr and Xa under
the constraints of the given tree hierarchy:

Pϕ ≈
H(Xr, Xa | Xe)

log(|X | − 1) + log e
, (7)

where I(·) denotes mutual information,H(·) rep-
resents the calculation of information entropy, and
X is the value space of all random variables.

Intuition: According to Theorem 2, we can ana-
lyze that GTHM inherently introduces additional
hierarchical and structural constraints. By perform-
ing decoding in our CFTree, it reduces the decoding
prediction error of Xr and Xa, thereby reducing
the VH of relationships, attributes, and entities.

4 Experiments

Benchmarks. Following common settings (Leng
et al., 2023; Chen et al., 2024; Yin et al., 2023),
We evaluate the effectiveness of our GTHM in
VH mitigation on four popular benchmarks: (1)
quantitative metrics CHAIR (Rohrbach et al.,
2018) on MSCOCO dataset (Lin et al., 2014);
(2) the Polling-based Object Probing Evaluation
(POPE) (Li et al., 2023c) on the MSCOCO dataset;
(3) general-purposed Multimodal Large Lan-
guage Model Evaluation (MME) benchmark (Fu
et al., 2023); (4) qualitative evaluation benchmark
LLaVABench (Liu et al., 2023b).

CHAIR evaluates how frequently objects men-
tioned in a caption do not actually appear in the
provided labels, thereby quantifying OH (Rohrbach
et al., 2018). CHAIR quantifies hallucination at the
sentence and instance levels through CHAIRs and
CHAIRi metrics respectively, where higher values
indicate more severe VH. POPE (Li et al., 2023c)
employs a streamlined methodology to measure
VH, which provides three distinct sampling meth-
ods: random, popular, and adversarial options.
The MME benchmark (Fu et al., 2023) is a versatile
tool crafted to evaluate and compare multimodal
LLMs quantitatively.

Baselines. We adopt regular greedy decod-
ing and beam search decoding methods, and vari-
ous state-of-the-art (SOTA) decoding methods as
baselines, including DoLa (Chuang et al., 2023),
OPERA (Huang et al., 2023), VCD (Leng et al.,
2023), Woodpecker (Yin et al., 2023), LURE (Zhou
et al., 2023), and HALC (Chen et al., 2024). We
implement these baselines based on HALC and
compare them with our GTHM under the same
benchmarks and environment settings.

Backbones. Following previous settings (Leng
et al., 2023; Chen et al., 2024), we select popular
LVLMs LLaVA-1.5 (Liu et al., 2023c), MiniGPT-
4 (Chen et al., 2023) and mPLUG-Owl2 (Ye et al.,
2023) as the backbones for all baselines except
Woodpecker and LURE, where, Woodpecker and
LURE utilize extra LLMs, i.e., ChatGPT (Brown
et al., 2020) and GPT-4 (Achiam and Steven Adler,
2023), for self-correction and distillation. We in-
vestigate the hallucinations of these LVLMs under
different decoding and post-processing strategies
to evaluate the effectiveness of our GTHM.

Settings. In the experiment, we adopt
Grounded-SAM (Ren et al., 2024)1 with

1https://github.com/IDEA-Research/

17988

https://github.com/IDEA-Research/Grounded-Segment-Anything


Methods
LLaVA-1.5 MiniGPT-4 mPLUG-Owl2

CHAIRs ↓ CHAIRi ↓ BLEU↑ CHAIRs ↓ CHAIRi ↓ BLEU↑ CHAIRs ↓ CHAIRi ↓ BLEU↑
Greedy 22.17 7.23 16.24 29.36 11.80 14.57 26.10 8.27 15.48

Beam Search 19.45 6.25 16.44 27.94 11.20 14.88 22.33 7.79 15.86
DoLA 21.82 7.79 15.77 30.15 12.04 14.90 25.76 8.10 15.36

OPERA 22.48 8.32 15.60 29.64 11.98 14.83 22.49 7.57 15.57
VCD 21.24 7.68 16.20 30.24 12.25 14.51 26.41 9.35 14.81

Woodpecker 20.33 7.30 17.20 27.93 10.80 15.62 26.97 9.19 16.57
LURE 19.65 6.71 16.56 27.41 10.60 15.16 21.45 7.79 15.66
HALC 14.33 6.17 15.92 19.43 8.66 14.73 19.67 7.74 15.89

GTHM 12.67 5.10 16.72 16.53 8.07 14.98 17.20 7.23 16.06

Table 1: Comparison of the mean of five CHAIR evaluation results with different SOTA decoding baselines and our
GTHM on MSCOCO datasets, with whole statistical results in Appendix.

RAM (Zhang et al., 2023b) to construct our
three-layer CFTree. We utilize HALC (Chen et al.,
2024) baseline code 2 based on HuggingFace
TransformersRepository (Wolf et al., 2019) to
implement our algorithm. The hyperparameter of
top-m in Section 3.3 can be set to 2 to achieve a
trade-off between efficiency and performance. The
decoding process of LVLM and all experiments
are performed on 8 A100 GPUs. More details and
results are provided in the appendix.

4.1 Main Results on CHAIR and POPE

Following established evaluation protocols (Huang
et al., 2023; Yin et al., 2023; Chen et al., 2024), we
conduct the CHAIR (Rohrbach et al., 2018) and
POPE (Li et al., 2023c) evaluations on a randomly
selected subset of 500 images from the MSCOCO
validation set. We perform five experimental runs
with different random seeds and report the statisti-
cal mean and standard deviation (more statistical
results are provided in the Appendix).

CHAIR Evaluation. Following HALC (Chen
et al., 2024), we set ‘Please describe this image in
detail.’ as the input prompt and utilize BLEU to
evaluate the quality of text generation, as results
are shown in Table 1. And we have more detailed
observations: (1) Our GTHM significantly reduces
VH at both the sentence and instance levels across
different families of LVLMs. It can be observed
that GTHM markedly outperforms existing decod-
ing and post-processing baselines. For instance,
using LLaVA-1.5 as the backbone, GTHM reduces
sentence-level and instance-level VH by 13.1% and
21.0%, respectively, compared to the SOTA HALC.
This demonstrates the efficacy and generalizabil-

Grounded-Segment-Anything
2https://github.com/BillChan226/HALC

ity of our GTHM in alleviating VH. (2) GTHM
maintains high-quality sentence generation with-
out reorganization or reprocessing via extra LLMs.
Compared to other decoding methods, our GTHM
not only achieves optimal VH mitigation but also
maintains a high BLEU score. Woodpecker (Yin
et al., 2023) exhibits the highest sentence genera-
tion quality, attributed to its use of ChatGPT for
post-processing.

POPE Evaluation. Following HALC (Chen
et al., 2024), we utilize offline POPE (OPOPE)
benchmark with accuracy, precision and Fβ = 0.2
as metrics to evaluate VH, which replaces the live
interactions of POPE with offline checks. As
results shown in Table 2, we have several ob-
servations: (1) Our GTHM outperforms other
SOTA baselines across most metrics. Averaging
results over five random runs, GTHM consistently
achieves optimal results in the majority of settings,
which further demonstrates the effectiveness of
GTHM in mitigating VH. (2) Our approach effec-
tively mitigates VH across three different LVLM
architectures, which illustrates the versatility and
plug-and-play nature of our GTHM.

4.2 Main Results on the MME Benchmark

Following (Yin et al., 2023; Leng et al., 2023; Chen
et al., 2024), we utilize object-level subsets (i.e.,
“existence” and “count”) and attribute-level sub-
sets (i.e., “position” and “color”) to evaluate VH,
with results shown in Table 3 and the whole re-
sults shown in Appendix. We can observe that: (1)
GTHM significantly reduces object and attribute
hallucination across a range of subsets of MME.
Our GTHM consistently achieves optimal VH mit-
igation performance on each MME subset. This,
consistent with Section 4.1, demonstrates that our
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Methods
LLaVA-1.5 MiniGPT-4 mPLUG-Owl2

Acc.↑ Prec.↑ Fβ=0.2↑ Acc.↑ Prec.↑ Fβ=0.2↑ Acc.↑ Prec.↑ Fβ=0.2↑↑
Greedy 74.24 97.48 92.45 69.43 96.96 91.09 73.06 96.50 92.18

Beam Search 72.35 97.79 91.80 69.32 97.09 90.39 72.35 97.10 92.34
DoLA 74.47 97.01 93.17 70.50 97.18 91.20 73.26 96.77 92.26

OPERA 72.42 96.82 91.14 69.88 96.60 91.43 71.56 97.27 92.10
VCD 73.75 96.92 92.78 69.02 96.66 90.79 71.60 97.53 93.10

Woodpecker 71.10 94.82 91.06 70.17 97.40 91.67 72.69 97.71 93.25
LURE 71.98 97.34 92.16 70.68 97.15 91.21 72.41 96.85 93.05
HALC 72.19 97.44 93.01 69.83 97.88 91.76 72.65 97.13 93.20

GTHM (Ours) 74.01 98.30 93.78 70.30 97.90 92.15 73.48 97.80 93.49

Table 2: Comparison of the mean of five OPOPE results on MSCOCO dataset with different decoding baselines under
the ‘random’ setting. Higher accuracy (Acc.), precision (Prec.), and F-score (Fβ=0.2) indicate better performance.
Bold indicates the best results. More results including Popular and adversarial settings are provided in Appendix.

Decoding

LLaVA-1.5 MiniGPT-4

Object-level↑ Attribute-level↑ Object-level↑ Attribute-level↑
Existence Count Position Color Existence Count Position Color

Greedy 170.00 121.33 115.00 152.33 140.00 91.67 72.00 121.00
DoLa 172.33 120.00 106.67 150.00 135.00 92.33 68.33 121.00

OPERA 165.00 116.00 104.00 149.00 142.67 90.00 70.00 120.00
VCD 180.33 131.67 125.00 155.00 145.00 96.67 73.33 129.00

LURE 167.67 118.00 108.00 138.67 145.00 82.00 70.00 114.67
HALC 185.00 138.00 126.67 158.33 150.00 102.00 75.00 135.00

GTHM (Ours) 191.67 147.67 135.00 165.00 160.00 110.00 82.00 138.67

Table 3: Results on the hallucination subset of MME. The best performances within each setting are bolded. The
whole results, including those on the mPLUG-Owl2, are presented in Appendix.

method can achieve comprehensive performance
gains while ensuring efficient text generation qual-
ity. (2) LVLMs exhibit relatively lower evaluation
scores on positional and counting hallucinations,
indicating potential limitations in their ability to
understand visual positions and perform counting
reasoning.

4.3 More Analysis and Ablation Experiments

We conduct ablation experiments on our CFTree
and game strategy using CHAIR on MSCOCO to
evaluate the effectiveness of the components of our
proposed method in detail. Specifically, we evalu-
ate the effectiveness of the components by remov-
ing or modifying the specific settings of CFTree
and game strategies, as results shown in Table 4.

Effect of the CFTree. As shown in Groups 1
and 4 in Table 4, removing any layer of CFTree
(relation and entity layers) will result in a signif-
icant decrease in performance. We observe that
removing the entity layer results in a greater per-
formance decline than removing the relation layer.
This may be because LVLMs exhibit a higher de-

gree of hallucination at the entity level than at the
relation level. Moreover, by replacing our CFTree
with a randomly selected view approach, a signif-
icant performance drop can be seen, even falling
below most baselines. This further illustrates that
incorrect perception of visual views during autore-
gressive decoding exacerbates VH.

Effect of our Proposed TSV. As shown in
Groups 2 and 4 in Table 4, we replace our TSV
with BLIP similarity scores for views and tokens,
as well as with standard Shapley values, to conduct
ablation studies. We observe that our TSV achieves
better view-aware evaluation than the other two
methods, resulting in optimal VH mitigation per-
formance. This is because our TSV leverages the
hierarchical organization of views in our CFTree,
facilitating the comprehensive evaluation of token
and view path correlations and thus yielding supe-
rior view evaluation outcomes.

Effect of our Game-augmented Contrastive
Decoding. To assess the effectiveness of our game-
augmented adaptive contrastive decoding, we con-
duct ablation studies by removing Eq. 6 and re-
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Group Settings
LLaVA-1.5 MiniGPT-4

CHAIRs ↓ CHAIRi ↓ BLEU↑ CHAIRs ↓ CHAIRi ↓ BLEU↑

1
Random Sample Views w/o CFTree 22.30 7.81 16.06 31.68 12.89 14.60
Our CFTree w/o Relation Layer 15.31 6.59 15.83 20.46 9.22 14.35
Our CFTree w/o Entity Layer 17.35 7.11 16.62 25.15 10.24 14.52

2
BLIP Similarity Score Replaces TSV 16.28 6.44 16.30 23.42 9.70 15.10
Vanilla Shapley value Replaces TSV 15.20 6.06 16.13 21.74 8.56 15.69

3
w/o Game-augmented Contrastive Decoding 19.24 6.86 15.99 26.51 11.02 15.03
Fix Factor 0.05 Replace ϕτ (vj)/ϕ

τ (vi) in Eq.6 14.18 5.85 16.37 19.45 8.89 15.21

4 Our Full GTHM 12.67 5.10 16.72 16.53 8.07 14.98

Table 4: Ablation experiments on the CHAIR benchmark with the best results highlighted in bold.

placing the adaptive factor with a fixed factor. The
results are shown in Table 4. We observe that re-
moving game-augmented contrastive decoding sig-
nificantly increases VH. We observe that when the
adaptive factor is replaced with a fixed amplifica-
tion factor of α = 0.05, the ability to alleviate VH
experiences a slight decrease. The ablation study
results further validate the rationality and effective-
ness of our game-augmented contrastive decoding.

4.4 Decoding efficiency analysis on CHAIR

We measure the throughput of LLaVA-1.5-7b using
different strategies on the CHAIR benchmark, with
the results presented in Table 5. Our analysis does
not include the throughput of methods requiring
post-processing, which involve calling additional
tools to process the output. Our GTHM demon-
strates superior decoding speed and enhances the
performance of VH mitigation compared to the
baseline HALC, which relies on extensive random
sampling for retrieving the optimal visual view.
This is attributed to our CFTree’s early organization
of visual views, which greatly reduces the search
space and thus has higher decoding efficiency. We
further calculate that the average number of CFTree
nodes corresponding to each image in our method
on the CHAIR benchmark is 9.21. Although the
calculation of the Shapley value based on game
theory is computationally intensive, our limited
number of game players (i.e., the number of the
nodes in CFTree) keeps the overall decoding time
cost at a low level.

5 Related Work

VH and its Evaluation. The multi-modal large
language model shows powerful performance in
a large number of cross-modal understanding
tasks (Bai et al., 2023; Zhuang et al., 2024a; Dai

Methods Avg. Latency (ms/token)

Greedy 51.53 1.00×
DoLa 54.86 1.06×
VCD 102.43 1.99×
HALC 479.28 9.30×
GTHM 192.91 3.74×

Table 5: Decoding latency on CHAIR.

et al., 2023; Zhuang et al., 2024b,d,c; Xin et al.,
2024), but cannot avoid VH. VH refers specifically
to outputs that include inaccurate object represen-
tations or unfaithful content. This phenomenon
has been observed in both early BERT-based mod-
els (Li et al., 2019) and recent LVLMs (Maaz et al.,
2023; Zhang et al., 2023a; Zhu et al., 2023). In
the realm of LVLMs, extensive studies have delved
into the evaluation and detection of VH (Li et al.,
2023c; Wang et al., 2023; Lovenia et al., 2023).
One of the most widely adopted benchmarks for
assessing VH is CHAIR (Rohrbach et al., 2018),
motivated by observations that existing metrics like
CIDEr (Vedantam et al., 2014) may misrepresent
the presence of VH. POPE (Li et al., 2023c) evalu-
ates VH through a binary classification framework,
using precision, recall, and accuracy. Furthermore,
the HALC (Chen et al., 2024) proposes offline
POPE (OPOPE) to improve the evaluation of VH.
We incorporate these metrics along with the BLEU
score (Papineni et al., 2002) to comprehensively
assess the effectiveness of our GTHM.

VH Mitigation. Various strategies have been
developed to mitigate VH. Current methods for alle-
viating VH generally can fall into three categories:
post-processing (Zhou et al., 2023; Huang et al.,
2023) and self-correction (Yin et al., 2023) tech-
niques, human feedback and fine-tuning based on
instruction (Liu et al., 2023a; Yu et al., 2023), and
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decoding strategy approaches (Chuang et al., 2023;
Leng et al., 2023; Chen et al., 2024). However, the
first two strategies may require additional datasets
and training, or may require merging additional
post-processing pipelines or more powerful exter-
nal LVLMs (Zhou et al., 2023; Liu et al., 2023a;
Yu et al., 2023). Existing decoding-based strategies
may only focus on the VH of object (Chuang et al.,
2023; Leng et al., 2023), ignoring elements that are
prone to VH such as attributes or relationships, or
require time-consuming visual region localization
sampling (Chen et al., 2024). Our work focuses
on designing training-free, plug-and-play efficient
decoding methods to achieve VH mitigation of ob-
jects, relationships, and attributes.

Game Theory. The fundamental principle of
game theory is to distribute different payoffs to
game participants fairly and reasonably (Grabisch
and Roubens, 1999; Sun et al., 2020). The Shap-
ley value (Kuhn et al., 1953; Shapley, 1988) is
a classical game theory solution for the unbiased
estimation of the contribution of each player in a
cooperation game. The game theory has been exten-
sively applied to model interpretability (Datta et al.,
2016; Yang et al., 2022; Zhang et al., 2021), ex-
plicit credit assignment (Li et al., 2021) and cross-
modal feature interactions (Jin et al., 2023; Li et al.,
2023b, 2022a). Considering the theoretical com-
pleteness and interpretability of the Shapley value,
we innovatively model the optimal view search as a
cooperative game and propose a tree-based Shapley
value to estimate the optimal view.

6 Conclusions

This work proposes a training-free, plug-and-play
decoding strategy to mitigate VH in LVLMs. Our
method was inspired by practical observations that
ambiguity in multi-granularity view perception ex-
acerbates VH. Based on these, we construct the
CFTree to organize multi-granularity views. We
innovatively model the retrieving optimal multi-
granularity views as a cooperative game. Subse-
quently, we perform adaptive contrastive decoding
based on game scores to achieve bias-free distribu-
tion. Comprehensive experiments demonstrate the
effectiveness of our GTHM in reducing VH across
different benchmarks and LVLM families.

Limitations

Our work focuses on dynamically providing opti-
mal visual views during the decoding process of

LVLMs to enhance decoding accuracy and mitigate
VH. Our visual views and CFTree are primarily
constructed based on existing tools such as object
detection. However, when hallucinated tokens can-
not be detected or recognized by these tools, our
method fails to provide suitable visual granularity
for decoding, resulting in hallucinations. In fu-
ture work, we will explore more effective visual
dynamic perception methods to overcome these
limitations.

Ethics Statement

The main research objects of this work are LVLMs,
which may have uncontrollable or disloyal outputs.
However, our work aims to help these LVLMs
avoid these disloyal outputs and eliminate VH,
which is completely in line with the ethical review.
Moreover, we conduct all experiments on the pub-
lic datasets, which do not contain any offensive
content or information with negative social impact.
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A Appendix

A.1 Methods Details
We follow our baseline, i.e., HALC (Chen et al.,
2024), and adopt a similar LVLM family, where
the parameter size of the LVLM model is also con-
sistent with that of HALC. λ in Eq. 6 is set to 0.02.
For other experimental hyperparameters, we fol-
low all the settings in the HALC benchmark 3. We
describe the details of calculating TSV values and
the overall algorithm in our CFTree in Algorithm 1
and Algorithm 2, respectively.

A.2 Proofs of Theorem 1
Proof of Theorem 1 Our tree-base Shapley value
(Def. in Eq. 5) satisfies the following axioms:

(1) Linearity. For a new game w(i) = u(i) +
v(i), ϕτ

w(i) = ϕτ
u(i) + ϕτ

v(i);
(2) Symmetry. If ∀S ⊆ U \{i, j}, f(S∪{i}) =

f(S ∪ {j}), ϕτ (i) = ϕτ (j);
(3) Dummy. If i is dummy, ∀S ⊆ U \ {i},

f(S ∪ {i}) = f(S), f({i}) = ϕτ (i);
(4) Recursivity. If S = {i, j}, ϕ(i | U \ S ∪
{[S]}) = ϕ(i | U \ {i}) + ϕ(j | U \ {j}) + ϕτ (i).

Proof. Our Tree-based Shapley value is the met-
ric that satisfies the following axioms: Linearity,
Symmetry, Dummy, and Recursivity:

Linearity Axiom. To prove this, we first apply
the linearity property of Shapley values to the com-
bined game w. We know from the properties of
Shapley values that: ϕτ

w(i) = ϕτ
u(i) +ϕτ

v(i) Apply
this property directly to each term in the interaction
formula:

ϕτ
w(i) = ϕw([P(i)] | T \P(i) ∪ {[P(i)]})
−

∑

j∈P(i)

ϕw(j | T \P(i) ∪ {j}), (8)

Using the linearity of Shapley values, we can ob-
tain:

ϕτ
w(i) =ϕu([P(i)] | T \P(i) ∪ {[P(i)]})

−
∑

j∈P(i)

ϕu(j | T \P(i) ∪ {j})

+ ϕv([P(i)] | T \P(i) ∪ {[P(i)]})
−

∑

j∈P(i)

ϕv(j | T \P(i) ∪ {j})

= ϕτ
u(i) + ϕτ

v(i)

(9)

Symmetry Axiom. Assume two players, i and
j, and we need to show that if for all subsets S ⊆

3https://github.com/BillChan226/HALC
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Algorithm 1 Depth-First Search (DFS) for Game Contribution Allocation on CFTree

Require: The node vi in CFTree T , the path of the current node P , the set O used to store TSVs of all
nodes, which is initialized to {∅}.

1: Add the current node to the path P = P ∪ {vi}
2: Compute the TSV ϕτ (vi) of node vi {§3.2, Eq. (5)}
3: Add current TSV to the results O = O ∪ {ϕτ (vi)}
4: for each child node v of the current node vi do
5: Recursive call DFS(v, P)
6: end for
7: Remove the current node from the path P = P\{vi}

Algorithm 2 Complete GTHM Decoding Algorithm

Require: LVLM θ, question query x, image query v, the sequence of tokens generated prior to t-th step
y<t. Constructed CFTree T by v, beam size k, top-m candidate pool m.

1: repeat
2: for b = 1 to beam size k do
3: Autoregressive decoding by θ, obtain current token wb

i ∼ pθ(yt|v, x, y<t)
4: if POS tags wb

i ∈ {entity, attribute, relationship} then
5: Obtain game contributions of all view nodes O = DFS(v0, {∅}) {§A, Alg. (1)}
6: else
7: O = {∅}
8: end if
9: Calculate pair-wise d(vi, vj) = |ϕτ (vi)− ϕτ (vj)| {§3.3}

10: Select top-m candidate pairs {§3.3}
11: for i = 1 to m do
12: Apply game-augmented contrast p (· | vi, vj , x, y<t)
13: get a redistributed logits {§3.3, Eq. (6)}
14: end for{ybnew with m candidates obtained}
15: end for
16: Select top k candidate responses by BLIP and beam search {§3.3}
17: if O ≠ {∅} and ybnew = wb

i then
18: ybnew← [IDK] {wb

i is hallucinating, but no correct token was found}
19: end if
20: wb

i ← ybnew {Hallucinating token wb
i corrected}

21: until each beam has terminated

U \ {i, j}, we have f(S ∪ {i}) = f(S ∪ {j}),
then their interaction scores should also be equal,
i.e., ϕτ

w(i) = ϕτ
w(j). Under the assumption of

symmetry, since i and j contribute equally to all
possible coalition subsets, it implies that:

For all S ⊆ U \ {i, j}, within the Shapley value
formula for each combination, ϕ should be equal
for i and j. Specifically, for subsets S = {i} and
S = {j}, we have:

ϕ({i} ∪ (N \ {i})) = ϕ({j} ∪ (N \ {j})) (10)

For
∑

j∈P(i) ϕw(j | T \P(i) ∪ {j}), since S
contains only one player, this term will also be
equal, as each player individually has the same
impact on all other coalition subsets.

Thus, the interaction scores: f({i}) = ϕτ (i).
This satisfies the Symmetry Axiom.

Dummy Axiom. Let i be a dummy player,
∀S ⊆ U\{i}, f(S∪{i}) = f(S). This means that
joining a player i does not change the value of any
subset of collaborators. Since ∀S, f(S ∪ {i}) =
f(S), f(S ∪ {i}) − f(S) = 0. Thus, we have
ϕ(i) = 0.

When i is a dummy player and S includes i,

ϕ({S}∪N\S) = ϕ({S\{i}}∪U\(S\{i})) (11)

because adding i does not change the value of the
set. Similarly, for each i ∈ S, we have

ϕ({i} ∪ U \ {i}) = 0 (12)
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Therefore,

ϕτ (S) = ϕ({S \ {i}} ∪ U \ (S \ {i}))
−

∑

j∈S\{i}
ϕ({j} ∪ U \ {j}) = ϕτ (S{i}).

(13)
When S contains only the dummy player i, since
ϕ(i) = 0, it follows that ϕτ (i) = 0

Recursivity Axiom. By performing a simple
numerical transformation on our TSV, we can ob-
tain the form of the recursivity axiom:

ϕ(i | U \ S ∪ {[S]}) = ϕ(i | U \ {i})
+ ϕ(j | U \ {j}) + ϕτ (i).

(14)

□

A.3 Proofs of Theorem 2
Proof of Theorem 2 Consider the CFTree, which
consists of coarse-to-fine three hierarchical levels:
event Xe, relationship Xr, and entity Xa. The level
Xr depends on Xe, and the level Xa depends on
Xr. By using our GTHM, additional information
I(Xe, Xr) + I(Xr, Xa) is introduced compared
to vanilla decodings. This also reduces the overall
decoding prediction error Pϕ under the constraints
of the given tree hierarchy:

Pϕ ≈
H(Xr, Xa | Xe)

log(|X | − 1) + log e
, (15)

where I(·) denotes mutual information,H(·) rep-
resents the calculation of information entropy, and
X is the value space of all random variables.

Proof. Based on the hierarchical nature of
CFTree, we can determine that each layer repre-
sents a random variable that conforms to Markov
property, i.e Xe → Xr → Xa. For Markov chains
Xe → Xr → Xa, we have Xa ⊥ Xe | Xr, i.e.,
given Xr, Xa and Xe are conditionally indepen-
dent. H(Xr, Xa | Xe) represents the joint uncer-
tainty of Xr and Xa given the known Xe. Ac-
cording to the definition of information entropy,
we can deduce that the reduction in uncertainty of
the relationship layer and entity layer after adding
structured constraints is:

H (Xr)−H (Xr | Xe) = I (Xr;Xe) .

H (Xa)−H (Xa | Xr) = I (Xr;Xa) .
(16)

Therefore, when using our GTHM for decoding
on CFTree, the additional amount of information

introduced is:

H (Xr)−H (Xr | Xe) +H (Xa)−H (Xa | Xr)

= I (Xr;Xe) + I (Xr;Xa) .

(17)

Using the definition of conditional entropy and
the chain rule, we can obtain:

H(Xr, Xa | Xe) = H(Xr | Xe)+H(Xa | Xr, Xe).
(18)

Since Xa ⊥ Xe | Xr, we haveH(Xa | Xr, Xe) =
H(Xa | Xr). Thus, we can finally obtain:

H(Xr, Xa | Xe) = H(Xr | Xe) +H(Xa | Xr).
(19)

Following the Fano’s inequality, we can obtain:

H(Xr | Xe) ≤ H(Pr) + Pr log(|X | − 1),

H(Xa | Xr) ≤ H(Pa) + Pa log(|X | − 1)
(20)

Following Eq. 19 and 20, we can obtain the over-
all decoding prediction error Pϕ as:

Pϕ = Pr + Pa ≈
H(Xr, Xa | Xe)

log(|X | − 1) + log e
. (21)

Due to the reduction of uncertainty, we essentially
reduced the decoding error Pϕ of the relationship
layer and instance layer. □

A.4 More experimental results on POPE
We present the complete comparison results of our
method and baselines on the POPE benchmark in
Tables 6 and 7, and it can be seen that our GTHM
outperforms the baselines in most of the metrics.

A.5 Statistical results on CHAIR
We perform five experimental runs with different
random seeds and reported the statistical mean and
standard deviation. The mean values are reported
in Table 1 and the standard deviations are reported
in Table 8.

A.6 LLaVA-Bench Qualitative Study
The LLaVA-Bench (Liu et al., 2023b) is a bench-
mark comprising 24 images, each associated with a
detailed, manually crafted description and a set of
carefully selected questions. Following (Yin et al.,
2023; Leng et al., 2023; Chen et al., 2024), we
utilize LLaVA-Bench as a benchmark to evaluate
the intuitive effect of our method on specific VH
mitigation. We use ‘Please describe this image in
detail.’ as the prompt to query LVLM for captions,
as the results are shown in Figure 4, 5, 6 and 7.
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Settings Model Decoding Accuracy Precision Recall F_0.2Score

Random

LLaVA-1.5

Greedy 74.24 97.48 48.91 92.45
Beam Search 72.35 97.79 46.52 91.80

DoLA 74.47 97.01 48.90 93.17
OPERA 72.42 96.82 46.33 91.14

VCD 73.75 96.92 47.69 92.78
Woodpecker 71.10 94.82 45.15 91.06

LURE 71.98 97.34 45.89 92.16
HALC 72.19 97.44 48.73 93.01

GTHM (Ours) 74.01 98.30 49.03 93.78

MiniGPT-4

Greedy 69.43 96.96 36.35 91.09
Beam Search 69.32 97.09 38.10 90.39

DoLA 70.50 97.18 38.04 91.20
OPERA 69.88 96.60 38.10 91.43

VCD 69.02 96.66 37.04 90.79
Woodpecker 70.17 97.40 40.20 91.67

LURE 70.68 97.15 40.69 91.21
HALC 69.83 97.88 40.80 91.76

GTHM (Ours) 70.30 97.90 41.03 92.15

mPLUG-Owl2

Greedy 73.06 96.50 44.29 92.18
Beam Search 72.35 97.10 43.87 92.34

DoLA 73.26 96.77 44.54 92.26
OPERA 71.56 97.27 42.83 92.10

VCD 71.60 97.53 43.79 93.10
Woodpecker 72.69 97.71 42.16 93.25

LURE 72.41 96.85 43.06 93.05
HALC 72.65 97.13 44.18 93.20

GTHM (Ours) 73.48 97.80 44.27 93.49

Popular

LLaVA-1.5

Greedy 72.13 90.97 46.33 88.68
Beam Search 71.49 91.62 44.95 87.39

DoLA 72.56 90.55 46.21 88.94
OPERA 71.53 90.47 45.84 87.46

VCD 72.70 91.06 46.72 88.63
Woodpecker 71.38 91.46 45.21 87.20

LURE 70.53 90.90 45.63 87.08
HALC 72.05 91.34 45.80 87.78

GTHM (Ours) 72.68 91.81 46.20 88.36

MiniGPT-4

Greedy 67.89 89.16 39.27 84.92
Beam Search 68.58 90.59 39.84 85.77

DoLA 68.53 90.92 39.41 85.28
OPERA 68.04 89.48 39.66 84.81

VCD 67.60 89.41 38.48 84.07
Woodpecker 68.70 90.01 40.22 85.92

LURE 68.62 90.24 40.59 86.18
HALC 68.04 90.31 39.48 86.00

GTHM (Ours) 68.93 90.98 40.19 86.26

mPLUG-Owl2

Greedy 70.34 89.63 43.87 86.10
Beam Search 69.26 89.79 43.12 86.55

DoLA 70.57 89.41 44.02 85.84
OPERA 69.84 91.43 42.35 86.99

VCD 70.05 90.49 43.41 87.12
Woodpecker 69.48 90.10 42.59 86.44

LURE 70.40 90.44 43.74 86.46
HALC 70.18 90.20 43.97 87.11

GTHM (Ours) 70.33 91.85 44.27 87.73

Table 6: Comparison of the mean of five OPOPE results on MSCOCO dataset with different decoding baselines
under the ‘random’ and ‘popular’ settings. Higher accuracy (Acc.), precision (Prec.), and F-score (Fβ=0.2) indicate
better performance.
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Settings Model Decoding Accuracy Precision Recall F_0.2Score

Adversarial

LLaVA-1.5

Greedy 68.72 87.48 45.66 82.68
Beam Search 67.35 86.98 44.01 82.23

DoLA 68.43 86.13 45.27 82.43
OPERA 67.61 85.88 44.30 83.18

VCD 69.05 86.43 45.83 83.60
Woodpecker 68.60 88.42 44.34 84.18

LURE 68.27 87.40 44.69 83.42
HALC 69.33 88.81 43.24 84.96

GTHM (Ours) 69.86 89.47 44.88 85.30

MiniGPT-4

Greedy 64.35 84.84 38.38 80.94
Beam Search 65.49 86.22 39.42 82.60

DoLA 66.37 85.24 38.65 81.11
OPERA 65.10 85.83 39.59 82.04

VCD 63.70 85.82 36.49 81.27
Woodpecker 66.10 86.75 39.92 83.24

LURE 66.82 86.33 40.37 83.38
HALC 66.53 87.00 37.35 82.38

GTHM (Ours) 66.34 87.66 39.99 83.46

mPLUG-Owl2

Greedy 67.89 86.16 43.50 82.70
Beam Search 67.31 87.24 43.53 83.19

DoLA 67.68 87.60 43.38 82.95
OPERA 68.06 88.98 42.06 85.30

VCD 68.90 88.32 43.99 85.29
Woodpecker 66.73 88.84 42.73 84.09

LURE 67.83 86.38 43.00 82.48
HALC 68.97 88.43 43.55 84.60

GTHM (Ours) 69.64 88.83 43.52 85.03

Table 7: Comparison of the mean of five OPOPE results on MSCOCO dataset with different decoding baselines
under the ‘adversarial’ setting. Higher accuracy (Acc.), precision (Prec.), and F-score (Fβ=0.2) indicate better
performance.

Methods
LLaVA-1.5 MiniGPT-4 mPLUG-Owl2

CHAIR_s CHAIR_I BLEU CHAIR_s CHAIR_I BLEU CHAIR_s CHAIR_I BLEU

Greedy 0.51 0.38 0.00 3.97 3.95 0.00 1.11 1.47 0.00
Beam Search 1.24 0.66 0.00 3.84 2.39 0.00 0.74 0.17 0.00
DoLA 0.95 0.96 0.00 1.58 0.46 0.00 1.50 0.75 0.00
OPERA 2.42 1.19 0.00 0.78 0.93 0.00 1.87 1.73 0.00
VCD 1.71 1.19 0.00 3.49 1.58 0.00 3.52 2.64 0.00
Woodpecker 3.24 2.60 0.03 1.14 0.81 0.01 2.65 1.49 0.00
LURE 1.66 1.31 0.04 1.23 1.60 0.01 1.80 1.24 0.06
HALC 0.15 0.64 0.00 0.16 0.50 0.00 0.92 0.32 0.00

GTHM 0.19 0.15 0.00 0.30 0.87 0.00 1.33 0.61 0.00

Table 8: Comparison of the standard deviations of five CHAIR evaluation results with different SOTA decoding
baselines and our GTHM on MSCOCO datasets.
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GTHM (Ours): The painting features a
brown dog with a bandana over its eyes
and ears, dressed in Renaissance garb.
The dog is sitting on a bed, giving off an
amusing yet artistic appearance.The
background showcases mountains,
creating a picturesque scene.  

Greedy: The image features a dog
wearing a large, flowing dress and a hat.
The dog appears to be looking at
something beyond the frame, possibly
even focusing on the viewer. The dress is
blue and envelops the dog, giving it a
majestic appearance.

HALC: The image is a painting featuring
a dog wearing a t-shirt and a veil. The
dog's eyes are curiously inspecting the
viewer. The painting is an interesting
combination of an artwork and a portrait
of a dog. 

VCD: The image features a painting of a
dog, dressed in Renaissance garb. In the
foreground, a person can be seen sitting
on a chair, with a potted plant located
nearby, providing a sense of realism to
the scene. 

Figure 4: LLaVA-Bench results comparing our GTHM and other methods with LLaVA-1.5 backbone.
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GTHM (Ours): The image features a
group of three mugs, each one displaying
a image of Mario, the iconic video game
character. The mugs are placed side by
side, varying in position, giving it an
appealing and fun appearance.

Greedy: The image showcases a
collection of coffee cups featuring the
popular Mario character. There are four
cups in total, each displaying Mario in
different sizes, colors, and orientation.
The cups are arranged in a row,
showcasing their unique designs.

HALC: The image features a shelf with
three white coffee mugs sitting side by
side. The mugs are adorned with images
of the same popular video game
character, Mario. The mugs display close-
ups of Mario, showcasing his iconic
features. 

VCD: The image features a display of
four coffee cups designed with the
popular Nintendo character, Mario. The
cups are placed side by side and appear
to be stacked. The Mario images are
unique to each mug, creating a visually
appealing display of the popular gaming
character.

Figure 5: LLaVA-Bench results comparing our GTHM and other methods with LLaVA-1.5 backbone.
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GTHM (Ours): The image features a man
wearing a blue suit with a red bow tie. He
appears to be posing and smiling for the
camera. The man seems to be an anime
character. He is wearing glasses, which
emphasizes his distinct appearance. 

Greedy: The image features a character
with long hair, resembling a young boy or
possibly a shaggy-haired man, wearing
glasses and a bow tie. The character
appears to be the protagonist of a cartoon
or anime series, possibly "Ponch." The
character's glasses are prominent,
enhancing their unique style.

HALC: The image portrays a cartoon
character, likely from the anime series
"One Piece," dressed in an outfit featuring
a red bow tie and eyeglasses. The
character's appearance can be described
as similar to a young boy. The character
seems to be looking at the viewer in a
smiling manner. 

VCD: The scene features a cartoon
character, likely Dracula or Johnny
Sokko, with a red bow tie and glasses.
The character appears to be smiling. In
the background, there is a clock visible at
the top-left corner, and a suitcase is
placed in the lower-right corner of the
image. 

Figure 6: LLaVA-Bench results comparing our GTHM and other methods with MiniGPT-4 backbone.
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GTHM (Ours): The scene features an
artistic interpretation of a group of
animals gathered around a dining table,
enjoying a meal together. The animals
include a rabbit, a cat, and a bear, all
sitting on the grass by the table. A variety
of food items can be seen on the table.

Greedy: The image features a painting of
three animals, likely rabbits, sitting at a
dining table together. The table is
adorned with a cup, a spoon, and a bowl,
giving the impression of a shared meal.
In addition to the animals, there are two
teddy bears seated at the table.

HALC: The image depicts an adorable
scene of a bear, a cat, and a rabbit sitting
around a small wooden dining
table. There is a cup placed on the table,
possibly containing a beverage for the
group.  

VCD: The image features a scene
involving three animals sitting around a
dining table. A large brown bear is sitting
on one side, while a small kitten is sitting
on the other side. A white rabbit is also
present in the scene. The animals are
enjoying a meal together, with a bowl and
a spoon placed on the table.

Figure 7: LLaVA-Bench results comparing our GTHM and other methods with mPLUG-Owl2 backbone.
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