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Abstract

Explanation constitutes an archetypal feature of
human rationality, underpinning learning, and
generalisation, and representing one of the me-
dia supporting scientific discovery and commu-
nication. Due to the importance of explanations
in human reasoning, an increasing amount of
research in Natural Language Inference (NLI)
has started reconsidering the role that explana-
tions play in learning and inference, attempting
to build explanation-based NLI models that can
effectively encode and use natural language ex-
planations on downstream tasks. Research in
explanation-based NLI, however, presents spe-
cific challenges and opportunities, as explana-
tory reasoning reflect aspects of both material
and formal inference, making it a particularly
rich setting to model and deliver complex rea-
soning. In this tutorial, we provide a compre-
hensive introduction to the field of explanation-
based NLI, grounding this discussion on the
epistemological-linguistic foundations of ex-
planations, systematically describing the main
architectural trends and evaluation methodolo-
gies which can be used to build systems which
are capable of explanatory reasoning1.

1 Introduction

Building systems that can understand and explain
the world is a long-standing goal for Artificial In-
telligence (AI) (Miller, 2019; Mitchell et al., 1986;
Thagard and Litt, 2008). The ability to explain,
in fact, constitutes an archetypal feature of human
rationality, underpinning communication, learning,
and generalisation, as well as one of the medi-
ums enabling scientific discovery and progress
through the formulation of explanatory theories
(Lombrozo, 2012; Salmon, 2006; Kitcher, 1989;
Deutsch, 2011).

Due to the importance of explanation in hu-
man reasoning, an increasing amount of work has

1Tutorial website: https://sites.google.com/
view/reasoning-with-explanations

started reconsidering the role that explanation plays
in learning and inference with natural language
(Camburu et al., 2018; Yang et al., 2018; Rajani
et al., 2019; Jansen et al., 2018). In contrast to
the existing end-to-end paradigm based on Deep
Learning, explanation-based NLI focuses on de-
veloping and evaluating models that can address
downstream tasks through the explicit construc-
tion of a natural language explanation (Dalvi et al.,
2021; Jansen et al., 2016; Wiegreffe and Marasović,
2021; Stacey et al., 2022). In this context, explana-
tion is seen as a potential solution to mitigate some
of the well-known limitations in neural-based NLI
architectures (Thayaparan et al., 2020), including
the susceptibility to learning via shortcuts, the in-
ability to generalise out-of-distribution, and the
lack of interpretability (Guidotti et al., 2018; Biran
and Cotton, 2017; Geirhos et al., 2020; Lewis et al.,
2021; Sinha et al., 2021; Schlegel et al., 2020).

Research in explanation-based NLI, however,
presents several fundamental challenges (Valentino
and Freitas, 2024). First, the applied methodologies
are still poorly informed by theories and accounts
of explanations (Salmon, 2006; Woodward and
Ross, 2021). This gap between theory and practice
poses the risk of slowing down progress, missing
the opportunity to formulate clearer hypotheses on
the inferential properties of natural language expla-
nations and define systematic evaluation method-
ologies (Camburu et al., 2020; Jansen et al., 2021;
Atanasova, 2024). Second, explanation-based NLI
models still lack robustness, control, and scalability
for real-world applications. In particular, existing
approaches suffer from several limitations when
composing explanatory reasoning chains and per-
forming abstraction for NLI in complex domains
(Khashabi et al., 2019; Valentino et al., 2022a).

In this tutorial, we will provide a comprehen-
sive introduction to explanatory reasoning in the
context of NLI, by systematically categorising and
surveying explanation-supporting benchmarks, ar-

https://sites.google.com/view/reasoning-with-explanations
https://sites.google.com/view/reasoning-with-explanations
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chitectures, and research trends. Specifically, we
will present how the understanding of explanatory
inference have evolved in recent years, together
with the emerging methodological and modelling
strategies. In parallel, we will attempt to provide
an epistemological-linguistic characterisation of
natural language explanations reviewing the main
theoretical accounts (Valentino and Freitas, 2024;
Salmon, 2006) to derive a fresh perspective for
future work in the field.

2 Description

This section outlines the content of the tutorial.

2.1 Epistemological-Linguistic Foundations

One of the main objectives of the tutorial is to
provide a theoretically grounded foundation for
explanation-based NLI, investigating the notion of
explanation as a language and inference scientific
object of interest, from both an epistemological
and linguistic perspectives (Valentino and Freitas,
2024; Salmon, 2006; Jansen et al., 2016).

To this end, we will present a systematic sur-
vey of the contemporary discussion in Philoso-
phy of Science around the notion of a scientific
explanation, attempting to shed light on the na-
ture and function of explanatory arguments and
their constituting elements. Here, we will criti-
cally review the main accounts of explanations,
including the deductive-nomological and inductive-
statistical account (Hempel and Oppenheim, 1948),
the notion of statistical relevance and the causal-
mechanical model (Salmon, 1984), and the unifi-
cationist account (Kitcher, 1989), aiming to elicit
what it means to perform explanatory reasoning.
Following the survey, we will focus on grounding
the theoretical accounts for explanation-based NLI,
attempting to identify the main feature of explana-
tory arguments in existing corpora of natural lan-
guage explanations (Jansen et al., 2016; Xie et al.,
2020; Jansen et al., 2018).

2.2 Resources & Evaluation Methods for
Explanation-Based NLI

In order to build NLI models that can reason
through the generation of natural language expla-
nations it is necessary to develop systematic eval-
uation methodologies. To this end, The tutorial
will review the main resources, benchmarks and
metrics in the field (Wiegreffe and Marasovic).

Depending on the nature of the NLI problem, an

explanation can include pieces of evidence at differ-
ent levels of abstraction (Thayaparan et al., 2020).
Traditionally, the field has been divided into extrac-
tive and abstractive tasks. In extractive NLI, the
reasoning required for the explanations is derivable
from the original problem formulation, where the
correct decomposition of the problem contains all
the necessary inference steps for the answer (Yang
et al., 2018). On the other hand, abstractive NLI
tasks require going beyond the surface form of the
problem, where an explanation needs to account for
and cohere definitions, abstract relations, which are
not immediately available from the original context
(Jansen et al., 2021; Thayaparan et al., 2021b).

In addition, the tutorial will review the main eval-
uation metrics adopted to assess the quality of nat-
ural language explanations. Evaluating the quality
of explanations, in fact, is a challenging problem
as it requires accounting for multiple concurrent
properties. Different metrics have been proposed
in the field, ranging from reference-based metrics
designed to assess the alignment between automati-
cally generated explanations and human-annotated
explanations (Camburu et al., 2018; Jansen et al.,
2021), and reference-free metrics designed to evalu-
ate additional dimensions such as faithfulness (Par-
calabescu and Frank, 2024; Atanasova et al., 2023),
robustness (Camburu et al., 2020), logical validity
(Quan et al., 2024b; Valentino et al., 2021a), and
plausibility (Dalal et al., 2024).

2.3 Explanation-Based Learning & Inference

We review the key architectural patterns and mod-
elling strategies for reasoning and learning over
natural language explanations. In particular, we
focus on the following paradigms:

Multi-Hop Reasoning & Retrieval-Based Mod-
els. The construction of explanations typically
requires multi-hop reasoning – i.e., the ability to
compose multiple pieces of evidence to support the
final answer (Dalvi et al., 2021; Xie et al., 2020).
Multi-hop reasoning has been largely studied in a
retrieval settings, where, given an external knowl-
edge base, the model is required to select, collect
and link the relevant knowledge required to arrive
at a final answer (Valentino et al., 2022a, 2021b,
2022b). Here, we will review the main retrieval-
based architectures for multi-hop reasoning and
explanation, highlighting some of the inherent lim-
itations of such paradigm, including the tension
between semantic drift and efficiency (Khashabi
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et al., 2019).

Natural Language Explanation Generation. In
parallel with retrieval approaches, NLI using gen-
erative models have been used for supporting ex-
planatory inference (Camburu et al., 2018; Rajani
et al., 2019). In this setting, early approaches
leverage human-annotated natural language expla-
nations for training generative models (Dalvi et al.,
2021). Subsequently, the advent of Large Lan-
guage Models (LLMs) has made it possible to
elicit explanatory reasoning via specific prompt-
ing techniques and in-context learning (Wei et al.,
2022; Yao et al., 2024; Zheng et al., 2023; He et al.,
2024). Here, we review the main trends in the LLM-
based generative paradigms, highlighting persisting
limitations such as hallucinations and faithfulness
(Turpin et al., 2024).

2.4 Semantic Control for Explanatory
Reasoning

Controlling the explanation generation process in
neural-based models is particularly critical while
modelling complex reasoning tasks. In this tutorial,
we will review emerging trends which combine
neural and symbolic approaches to improve seman-
tic control in the explanatory reasoning process,
which can provide formal guarantees on the quality
of the explanations. These methods aim to integrate
the content flexibility of language models (instru-
mental for supporting material inferences) and a
formal inference properties.

In particular, we focus on the following key
methods:

Leveraging Explanatory Inference Patterns for
Explanation-Based NLI. Inference patterns in
explanation corpora can be leveraged to improve
the efficiency and robustness of neural represen-
tations (Valentino and Freitas, 2024; Zhang et al.,
2023). In particular, we will review approaches
that attempt to leverage the notion of unification
power in corpora of natural language explanations
to improve multi-hop reasoning in a retrieval set-
ting and alleviate semantic drift (Valentino et al.,
2022a, 2021b, 2022b).

Constraint-Based Optimisation for Explanation-
Based NLI. We will focus on describing neuro-
symbolic methods which target encoding explicit
assumptions about the structure of natural language
explanations (Thayaparan et al., 2021a). Here,
we will review methods performing multi-hop in-

ference via constrained optimisation, integrating
neural representations with explicit constraints via
end-to-end differentiable optimisation approaches
(Thayaparan et al., 2022, 2024).

Formal-Geometric Inference Controls over La-
tent Spaces. Covers emerging methodologies
which focus on learning latent spaces with better
representational properties for explanatory NLI, us-
ing language Variational Autoencoders (VAEs) for
delivering better disentanglement and separability
of language and inference properties (Zhang et al.,
2024a,c,b,a) which support better inference control.
These methods deliver an additional geometrical
structure to latent spaces, aiming to deliver the vi-
sion of ’inference as latent geometry’.

LLM-Symbolic Architectures Finally, we will
focus on hybrid neuro-symbolic architectures that
attempt to leverage the material/content-based in-
ference properties of LLMs for explanation genera-
tion with external symbolic approaches, which ac-
counts for formal/logical validity refinement prop-
erties. In particular, we will review approaches that
perform explanation refinement via the integration
of LLMs and Theorem Provers to verify logical
validity (Quan et al., 2024b,a) and additional exter-
nal tools to evaluate explanation properties such as
uncertainty, plausibility and coherence (Dalal et al.,
2024).

3 Schedule

The tutorial will be organised according to the fol-
lowing timeline:

1. Introduction & Motivation (20 min.)

2. Epistemological-Linguistic Foundations (20
min.)

3. Resources & Evaluation for Explanation-
Based NLI (40 min.)

4. Explanation-Based Learning & Inference (40
min.)

5. Semantic Control for Explanatory Reasoning
(40 min.)

6. Synthesis, Discussion, and Q&A (20 min)

4 Breadth & Diversity

The tutorial will cover a wide spectrum of top-
ics in different fields, ranging from Philosophy,
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Machine Learning, Natural Language Processing,
Knowledge Representation and Automated Rea-
soning. This diversity of topics will help create a
rich environment in which academics from differ-
ent backgrounds and cultural contexts can integrate
different perspectives. The tutorial plan includes
integrated open Q&A sessions and practical demon-
strations.

5 Prerequisites

We do not expect attendees to be familiar with pre-
vious research on NLI and Explanatory inference.
On the opposite, we intent this tutorial to be an effi-
cient and deep onboarding into the state-of-the-art
in those areas. Participants should have a general
background knowledge in deep learning, includ-
ing recent trends and architectures such as Large
Language Models. Participants are expected to be
familiar with some of the broader NLI tasks, such
as Textual Entailment and Question Answering.

6 Reading List

Epistemological-Linguistic Foundations

Valentino and Freitas (2024) On the Nature of
Explanation: An Epistemological-Linguistic Per-
spective for Explanation-Based Natural Language
Inference.

Salmon (2006) Four Decades of Scientific Expla-
nation.

Jansen et al. (2016) What’s in an Explanation?
Characterizing Knowledge and Inference Require-
ments for Elementary Science Exam.

Resources, Models and Evaluation

Wiegreffe and Marasović (2021) Teach me to
Explain: A Review of Datasets for Explainable
Natural Language Processing.

Thayaparan et al. (2020) A Survey on Explain-
ability in Machine Reading Comprehension.

Zhao et al. (2024) Explainability for Large Lan-
guage Models: A Survey.

Related Tutorials

Zhu et al. (2024) Explanation in the Era of Large
Language Models.

Camburu and Akata (2021) Natural-XAI: Ex-
plainable AI with Natural Language Explanation.

Zhao et al. (2023) Complex Reasoning in Natu-
ral Language.

Boyd-Graber et al. (2022) Human-Centered
Evaluation of Explanations.
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