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Abstract
As Tibetan is traditionally not written with word delimiters, various means of word segmentation are necessary to
prepare data for downstream tasks. Neural word segmentation has proven a successful means of parsing Tibetan
text, but current performance lags behind that of neural word segmenters in other languages, such as Chinese or
Japanese, and even behind languages with relatively similar orthographic structures, such as Vietnamese or Thai.
We apply methods that have proven useful for these latter two languages toward the development of a neural word
segmenter with the goal of raising the peak performance of Tibetan neural word segmentation to a level comparable
to that reached for orthographically similar languages.
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1. Introduction

Tibetan is a language—or rather, a number of
languages and dialects of varying degrees of
mutual-intelligibility—spoken in Tibet, a region
overlapping a number of provinces in modern-day
China including the Tibetan Autonomous Region,
Sichuan, and Qinghai. Diaspora communities re-
side also in India, Nepal, and Bhutan; and a sub-
stantial, if smaller, number live also in Switzer-
land, Canada, the United Kingdom, and the United
States (among many other countries).

Tibetan belongs to the Sino-Tibetan language
family and is traditionally placed in the Tibeto-
Burman branch, though the phylogeny of the fam-
ily remains hotly contested. The Tibetan family
can be further divided into various dialect and lan-
guage groups, including Central (or Ü-Tsang) with
approximately 1.2 million speakers, Amdo with 2.5
million, and Khams with 2 million, among others
(Eberhard et al., 2024). However, Standard Ti-
betan generally serves as a lingua franca among
them; thus, expanding the resources available to
the language provides benefits not only to native
speakers but also to the broader Tibetan com-
munity, whatever their regional or dialectal back-
ground. By improving word segmentation for Ti-
betan, we hope to facilitate the creation of fur-
ther tools—word prediction, sentiment analysis,
etc—which might make the language easier for
its speakers to use in the digital domain, easing
linguistic pressures that motivate them to switch
to languages with more support, such as English,
Mandarin Chinese, or Hindi.

Many Asian scripts are not written with spaces
between words, and this obviously presents cer-
tain problems when one wishes to engage in most
computational tasks, the models for which tend to
operate on words rather than characters. Stan-
dard Chinese, another such space-less language,

Figure 1: The Tibetic family appears here in
shades of purple in the northwest quadrant.
GalaxMaps, CC BY-SA 4.0, via Wikimedia Com-
mons.

has the benefit of using characters, each of which
are semantically heavy; character-embeddings al-
low for the training of highly accurate models.
While some languages, such as Korean, have
broadly adopted the practice of placing spaces
between words, many orthographies descended
from either the Indic or Sinitic traditions continue
to go without them. Furthermore, some languages
make use of orthographic features that make word
segmentation an easier task; Japanese in partic-
ular uses multiple different scripts, and the tran-
sitions between these often serve as strong indi-
cators of word boundaries. However, we do not
have such luxuries with Tibetan which only ex-
plicitly marks syllable and sentence boundaries.
While researchers have reached an accuracy of
upwards of 98% for Japanese texts (Kitagawa and
Komachi, 2018) and 97% for Chinese (Cai et al.,
2017), Tibetan lags behind. Duanzhu et al (2020)
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report a binary accuracy of 93.4% with an f1-score
of 94.11% and a recall of 94.2%; Wang & Yang
(2018), a f1-score of 94.1% and a recall of 93.89%;
and Li et al (2022) an f1-score of 92.31% (Duanzhu
et al., 2021; Wang and Yang, 2018; Li et al., 2022).

While the success of Chinese and Japanese
can to some degree be attributed to the vast re-
sources available for these two languages, neural
word segmentation research for smaller (though by
no means, small) languages such as Vietnamese
and Thai have reached an accuracy of around 96%
or higher (Zheng and Zheng, 2022).

2. Background

Phonetically, the Tibetan syllable is of only mod-
erate complexity, but the language’s standard or-
thography preserves the highly complex syllable
structures of the ninth and tenth centuries. While
spoken syllables in Lhasa Tibetan may begin and
end with at most a single consonant respectively,
they may be written with upwards of four initial con-
sonants and two final consonants. Furthermore,
vowels are not written as distinct letters but instead
added as diacritics above the “head” letter, or the
letter whose phonetic value serves as the basis for
the onset of the syllable.

The maximally complex Tibetan syllable is com-
posed of a prescript letter, a head letter, a
postscript and a post-postscript letter. All but the
head letter are (usually) composed of a single, sim-
ple letter, but the head letter can itself be com-
posed of a superscript, a root, upwards of two sub-
scripts, and a vowel diacritic.

བ (b), ས (s), ག (g), ར (r), ◌ུ (u), བ (b), and ས (s)

Figure 2: A maximally complex Tibetan syllable.
The past tense form of the word, སུྲྒབ (sgrub),

meaning ”to complete”.

As can be seen in figure 2, the unique complex-
ity of Tibetan syllables allows them to carry a rel-
atively high degree of semantic value; thus, they
can serve as stronger indicators of word bound-
aries than syllables in more orthographically shal-
low languages.

There are thirty standard letters that may serve
as the root of the head of a syllable. Onto these,
four subscripts may be attached—◌ྱ (y), ◌ྲ (r), ◌ླ

(l), ◌ྭ (w)—but only certain head-subscript combi-
nations are allowed. In addition, ◌ྲ (r) and ◌ྭ (w)
may appear together on the same root, meaning
that the total number of root-subscript combina-
tions comes out to fifty-five unique arrangements.
Onto these, one may attach three superscripts—ར
(r),ལ (l),ས (s)—and again these are only allowed
in particular arrangements, meaning that the to-
tal number of head letters which feature a unique
superscript, root, and subscript is only thirteen.
Adding these, as well as the unique superscript-
root combinations, to our running total gives us
one-hundred-and-one unique head letters. Each
of these may take up to one vowel diacritic, of
which there are four, yielding six-hundred-and-six

unique head letters. These diacritics are ◌ི (i), ◌ུ
(u), ◌ེ (e), and ◌ོ (o).

Onto these, one may add some combination
of prescript and postscript letters. There are ten
postscript letters and two post-postscript letters
(though really only one, as the other has been
dropped in most writing). The post-postscript let-
ter may only appear after four of the postscript let-
ters, meaning there are a total of fourteen possi-
ble postscript combinations. Confusingly, one of
these postscript letters, འ may also carry a vowel

diacritic, though it is usually limited toའི (i) orའུ (u);

however, འེ (e) and འོ (o) do appear, albeit rarely.
Thus, we have eighteen possible postscript combi-
nations.

Despite there being a maximum of one prescript
letter, calculating the number of possible combina-
tions is less straightforward given that there are
more restrictions on which letters may appear in
certain positions. There are five prefixes—ག (g),
ད (d), བ (b), མ (m), and འ (a)—and calculat-
ing the total number of unique prescript-head let-
ter combinations created by them is quite difficult
given their distribution. Disregarding super- and
sub-scripts, as well as vowels, there are a total
of fifty-three unique prescript-head letter combi-
nations. If we are liberal with our estimates, we
would say that the number of unique prescript-
head letter combinations (including all our super-
script, subscript, and vowel combinations) comes
out to around three thousand unique combinations.
Assuming that many of these do not appear in the
actual written language, we might lower this down
to only a couple thousand unique combinations,
onto which we would then necessarily add our var-
ious postscript letters, bringing out estimated total
number of unique syllables into the tens of thou-
sands.

This number is highly misleading, as we find
out when we compile a dictionary of all the sylla-
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bles that appear in any particular Tibetan corpus.
The true number of unique syllables to be found
in actual texts is considerably lower, usually in the
sub-ten-thousand range, and if we filter out those
that appear less than five times—as we do in our
model—we arrive at much more modest numbers,
usually between two and five thousand unique syl-
lables, depending on the size and variety of the
corpus.

In any case, the semantic load of the Tibetan
syllable, as well as the fact that the vast majority
of word boundaries are also syllable boundaries,
allows us to use syllable embeddings as a heuristic
by which to train our model.

In standard, written text, all syllables are de-
limited by a unique punctuation mark known as
the tseg, written ’་’. This allows us to eas-
ily parse through a text and separate out each
syllable, whereas many other languages that
make use of syllable embeddings for neural word
segmentation—such as Thai or Khmer—must en-
gage in more complex syllable-identifying meth-
ods beforehand. While certain questions do arise
about what constitutes a word-boundary in Ti-
betan, for our purposes we may treat word bound-
aries as a subset of syllable boundaries. Specifi-
cally, the genitive and agentive cases sometimes
take the form of postscripts on the final syllable of
words ending in vowels; in the spoken language,
they are realized via umlaut or lengthening of this
final vowel, and so we will treat them as part of the
word rather than separate particles.

3. Corpus

While the most extensive corpora available for Ti-
betan are limited to Classical Tibetan, we were
able to make use of the UVA Tibetan Spoken Cor-
pus (Germano et al., 2017) which, while a cou-
ple decades old, represents the most easily ac-
cessible corpus of pre-segmented text available.
This corpus was compiled by the Tibetan and Hi-
malayan Digital Library project which is affiliated
with the University of Virginia and reflects the collo-
quial language of people living in Tibet rather than
the highly formal, literary language often found in
religious and official texts. As we intend to apply
this word segmentation model towards the devel-
opment of tools aimed at making Tibetan more ac-
cessible in the digital realm, it was important that
the corpus reflect the kinds of language used by
everyday people.

The corpus indicates word boundaries with a
space, meaning that with minimal processing we
can clean the corpus of non-Tibetan text, and di-
vide it into syllables, storing each with some indi-
cation as to whether or not it is word-final. With
807,033 total syllables, we can take those which

appear with a frequency of at least 5, resulting in
2584 embeddings. In total, about 18.52% of the
syllables in this corpus are non-word-final (mean-
ing they don’t mark a word boundary). This is quite
a bit smaller than the corpus used to train the At-
taCut model, from Chormai et al (Chormai et al.,
2019), which featured 2.56 million syllables. Simi-
larly, whereas Duanzhu et al (2020) employ a cor-
pus with 160,000 sentences, ours features only
70,000 (Duanzhu et al., 2021).

Unsurprisingly, the most common syllables
found in the corpus include པ, an incredibly com-
mon nominalizer and derivational suffix; ལ, the
oblique case particle;དང, a conjunction and comi-

tative / associative particle; དེ , the medial demon-
strative; and the various case and TAM endings
and particles that compose Tibetan’s robust nomi-
nal and verbal systems.

4. Methods

A somewhat recent and effective method for neural
segmentation of Thai words is the use of syllable
embeddings as input features. Training a neural
network to identify word boundaries based on sylla-
ble embeddings rather than characters has proven
quite effective, as evidenced by the AttaCut model
developed by Chormai et al (Chormai et al., 2019).
Because Tibetan explicitly marks syllable bound-
aries, and because of the orthographic depth of the
language—with a spelling system that preserves
pronunciations from antiquity—we determined that
it might be particularly useful in improving perfor-
mance.

In a manner similar to the AttaCut model,
Nguyen 2019 makes use of BiLSTM to generate
embeddings for the syllables present in a Viet-
namese corpus and uses these to train a model
to determine word-boundaries with a 98% accu-
racy. However, this model’s success comes in
part due to its use of a rule-based word seg-
menter, RDRsegmenter, as outlined in (Nguyen
et al., 2018), in conjunction with its neural method.
RDRsegmenter produces a set of word-boundary
tags whose embeddings are concatenated with
each syllable’s embedding to produce those that
are used to train the final model (Nguyen, 2019;
Nguyen et al., 2018). Similar methods have proven
effective for Chinese since each character corre-
sponds, with some exceptions, to one syllable and
one morpheme (Qian and Liu, 2012). It should be
the case that Tibetan, which adheres less strictly
to this one-syllable-one-morpheme structure, can
still benefit from the application of this method.

Some combination of syllable embeddings,
character embeddings, and word-boundary em-
beddings generated by a rule-based model have
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proven useful for word segmentation in many of
the languages of East and Southeast Asia, includ-
ing Khmer, Chinese, and even Classical Tibetan,
for which there exists more readily available cor-
pora owing to the digitization of many Buddhists
texts (Buoy et al., 2020). Given the intense con-
servatism of Tibetan orthography it may be possi-
ble to supplement a corpus of modern, standard
Tibetan with texts from Classical Tibetan; however,
initial tests yielded no benefits. More research is
required to determine if this is a viable route for im-
provement.

A last note worth considering is the presence of
non-standard text within the corpus. Certain se-
quences, especially in older texts, lack the syllable
delimiter, complicating the pre-processing neces-
sary for our model. In future research, it may be
worth considering the implementation of a syllable
segmenter which would insert syllable boundaries
where they are stylistically omitted from text (or left
out in error). Furthermore, it would be necessary
to operate on a sub-syllable basis if one wished to
separate certain instances of various cases which
modify words at such a level. For example, when
a noun’s final syllable lacks any post-script letter,

the genitive case takes the form, -འི (-i), which is
given no special treatment here but which may, in
other applications, necessitate further delimiting.

5. Implementation

By generating syllable embeddings via a
Word2Vec model, we are able to train a model to
predict the probability that a given syllable—the
center of our context window—is non-word-final.
Word2Vec is used in order to ensure manageable
model size. We limited our syllable embeddings
to only those syllables which appeared at least
five times in the corpus; this may present an
issue when our model is faced with a much larger
corpus with many more unique syllables, some
of which may appear semi-frequently, as well
as when presented with regional or alternative
spellings. To help with this and to push our
performance past 96% accuracy, it may prove
useful to implement a rule-based segmenter as
done in Nguyen 2019, whose predictions should
improve the accuracy of our neural segmenter
when coupled—or rather concatenated—with our
syllable embeddings. Furthermore, we hope to
find a larger corpus on which to train our model in
order to reduce the number of out-of-vocabulary
syllables our model must cope with.

Early attempts at Tibetan word segmentation
drew on MaxMatch algorithms and rudimentary
statistical models, but with the proliferation of neu-
ral networks throughout natural language process-
ing, the task has largely adopted such methods.

Hyperparameters
Embedding Size 400
Learning Rate 1e-5
No. Layers 5
Window Size 3
Batch Size 64
Epochs 20
Accuracy: 96.87%

Table 1: The above hyperparameters are shown to
approach those optimal for the model.

Drawing on a similar method to Liu et al (2015), an-
other implementation of neural Tibetan word seg-
mentation, we implement our model as a binary
decision task, with the model labelling each sylla-
ble as either word-final or non-word-final (Liu et al.,
2015). Syllable delimiters and any word delimiters
are removed. Unlike Duanzhu et al (2021), we
treat each syllable as an irreducible unit; they im-
plement character embeddings in addition to syl-
lable embeddings, which proves useful for certain
purposes such as morphological analysis but intro-
duces more opportunities for error (Duanzhu et al.,
2021). We opt for a more straightforward model,
considering only discrete syllables within a context
window, and maintain a simple binary output rather
than the more complex tag sets used in some im-
plementations, such as Liu et al (2015) and Wang
& Yang (2018) (Liu et al., 2015; Wang and Yang,
2018).

Currently, the vast majority of corpora are avail-
able not in Modern Tibetan but instead in Classical
Tibetan, due to the many Buddhist texts that have
been digitized from that period. Compiling a larger
corpus in Modern Tibetan would provide our model
with more data and reduce the instances of out-of-
dictionary syllables. Initial tests involving the train-
ing of a model on The Annotated Corpus of Classi-
cal Tibetan (ACTib) (Meleen and Roux, 2020), fol-
lowed by fine-tuning on a Standard Tibetan corpus,
proved unsuccessful in yielding benefits compared
to training solely on Standard Tibetan.

As we can see from figure 3, binary accuracy is
not improved by expansion of the window size be-
yond one syllable on either side of the target. We
might have assumed that a broader window would
allow the model to differentiate between the occur-
rence of certain common syllables in various con-
texts, especially in words with more than two or
three syllables, but this does not seem to be the
case. Rather, as figure 4 reveals, performance is
much more contingent on embedding size. This is
somewhat unsurprising; in a language such as Ti-
betan where such units often correspond with mor-
phemes, much meaning may be packed in.
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Figure 3: The window size of the model yields the
best performance when only accounting for one
syllable on either side of the target. Greater widths
yield worse results overall, indicating that a local,
relatively simplistic system can account for most
word boundaries.

Figure 4: Larger vector sizes yields greater perfor-
mance, but this diminishes above a value of 300.
With model size in mind, we determine that values
above 400 do not yield sufficient returns.

Figure 5: By changing the window we use when
training our embeddings, we find a similar, albeit
less pronounced, effect as with the model’s win-
dow. Here, a 3-syllable window is considered opti-
mal.

6. Results

While unable to achieve a level of performance
found in more resource-rich languages, we are
able to match that of languages with similar ortho-

graphic traditions. Furthermore, our findings indi-
cate a great margin for improvement via the appli-
cation of rule-based heuristics and larger corpus
sizes.

If it were the case that the model primarily con-
sidered the target syllable, we would expect a 1-
syllable window to outperform the 3-syllable win-
dow; however, this 3-syllable window outperforms
both the 1- and 5-syllable window (and any greater
number), indicating that it is the immediate, local
context (and not any more-distant relation) that can
account for most word boundaries. Augmenting
this local window with more information (such as a
rule-based heuristic) may yield further benefits.

The relatively great impact of embedding size
does reflect the semantic weight of Tibetan sylla-
bles; their complexity provides information about
word boundaries not contained in the orthographic
units of even structurally similar languages. This is
undoubtedly influenced as well by the syllable-to-
morpheme ratio of Tibetan which (like many neigh-
boring languages) tends to approach 1.0.

7. Conclusion

By implementing methods that have proven suc-
cessful for neural word segmentation in ortho-
graphically similar languages, such as Thai and
Vietnamese, we have been able to achieve a level
of performance approaching the most performant
word segmenters for Standard Tibetan, though fur-
ther exploration may yield enough improvements
so as to surpass the current peak performance and
bring Tibetan word segmentation up to a compa-
rable level as has been achieved for these other
languages. Currently, we are limited by the avail-
ability of large corpora in Standard Tibetan; the ac-
quisition of more data in addition to the refinement
of existing methods and their augmentation with
novel heuristics would, in benefitting neural word
segmentation, provide downstream benefits for all
varieties of natural language processing tasks.
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