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Abstract

As part of the AVeriTeC shared task, we de-
veloped a pipelined system comprising robust
and finely tuned models. Our system integrates
advanced techniques for evidence retrieval and
question generation, leveraging cross-encoders
and large language models (LLMs) for opti-
mal performance. With multi-stage process-
ing, the pipeline demonstrates improvements
over baseline models, particularly in handling
complex claims that require nuanced reason-
ing, by improved evidence extraction, question
generation and veracity prediction. Through
detailed experiments and ablation studies, we
provide insights into the strengths and weak-
nesses of our approach, highlighting the critical
role of evidence sufficiency and context depen-
dency in automated fact-checking systems. Our
system secured a competitive rank, 7th on the
development and 12th on the test data, in the
shared task, underscoring the effectiveness of
our methods in addressing the challenges of
real-world claim verification.

1 Introduction

Fact-checking has become an essential tool in the
fight against misinformation, which can have far-
reaching impacts on public opinion and policy.
Manual fact-checking is a resource-intensive pro-
cess, requiring skilled analysts to meticulously
scrutinise claims and verify their authenticity. This
necessity has driven the development of automated
fact-checking (AFC) systems designed to assist hu-
man fact-checkers by efficiently processing large
volumes of information and detecting false claims.
(Nakov et al., 2021; Guo et al., 2022). The effec-
tiveness of AFC systems depends significantly on
the quality of the datasets used to train and evaluate
them. Common datasets, such as FEVER (Thorne
et al., 2018), FEVEROUS (Aly et al., 2021) and
MultiFC (Augenstein et al., 2019), have been in-
strumental in advancing AFC research, but come
with limitations, including the reliance on artifi-

cially constructed claims and inadequate evidence
annotations (Schlichtkrull et al., 2023).

In response to these limitations, the 2024
AVeriTeC (Automated VERIfication of TExtual
Claims) task was specifically designed to address
the challenges of real-world claim verification
(Schlichtkrull et al., 2023). AVeriTeC comprises
5,783 claims sourced from 50 fact-checking or-
ganisations, collected via the Google FactCheck
Claim Search API. Each claim in the dataset is
meticulously annotated with question-answer pairs,
supported by online evidence, and accompanied by
textual justifications explaining how the evidence
leads to a verdict. This structured annotation ap-
proach ensures that the dataset supports robust AFC
model training and evaluation (Schlichtkrull et al.,
2023). This advancement aligns the dataset more
closely with real-world scenarios, potentially en-
hancing the generalisation ability of the developed
models and facilitating the creation of more ro-
bust approaches. The diversity of the data presents
unique challenges, necessitating a deeper under-
standing of the data and the development of effec-
tive reasoning strategies. Our method (SK_DU)
achieved the 12th Rank in the AVeriTeC shared
task during the testing phase1, providing valuable
insights into the strengths and weaknesses of our
pipeline and highlighting areas for further improve-
ment.

In this paper, we aim to describe the design
of our proposed fact verification pipeline and to
share the insights we gained on the AVeriTeC
dataset (Schlichtkrull et al., 2023) during the work-
shop competition. The paper introduces a com-
prehensive approach to real-world claim verifi-
cation, leveraging the AVeriTeC dataset to de-
velop and evaluate a sophisticated pipeline for
automated fact-checking. The proposed system
incorporates cutting-edge models and techniques,

1https://eval.ai/web/challenges/challenge-
page/2285/leaderboard/5655
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including cross-encoders for precise evidence re-
trieval/reranking (Humeau et al., 2019) and large
language models (LLMs) for effective question
generation (Schlichtkrull et al., 2023), and Cross-
Encoder based natural language inference (NLI) for
veracity prediction (Li et al., 2022). By focusing
on multi-stage processing—ranging from the se-
lection of evidence to nuanced reasoning for claim
validation, the work addresses the complexities of
real-world data, emphasising the importance of
context and evidence sufficiency in fact-checking
processes. Our code is released to the public for
further exploration2.

In short, the contributions of this paper are the
following:

• The paper presents a detailed pipeline that in-
tegrates cross-encoders for evidence retrieval
and LLMs for question generation, improving
the overall accuracy of claim verification.

• Showing a pretrained Cross-Encoder model
performs better than a fine-tuned BERT model
on evidence extraction and reranking tasks.

• The paper provides in-depth ablation studies
and performance analysis, offering insights
into the strengths and weaknesses of the pro-
posed approach.

• The model’s competitive performance in the
AVeriTeC shared task highlights its practical
applicability and potential for real-world de-
ployment in automated fact-checking systems.

2 Dataset Insights

AVeriTeC consists of 5,783 claims sourced from 50
reputable fact-checking organisations, where 4,568
claims’ data were released earlier, while 1,215 were
released during the testing phase of the AVeriTeC
Shared Task3. Each claim is annotated with de-
tailed question-answer (QA) pairs as evidence, a
veracity label, and a textual justification, ensur-
ing a robust foundation for training and evaluating
AFC systems (Schlichtkrull et al., 2023). Addition-
ally, the meta-data information, e.g., speaker, date,
URL, location, etc., provides contextual details to
the claim to support questions, answers, and justifi-
cations. This structured and meticulous approach
aims to bridge the gap between academic research

2https://github.com/skmalviya/AVeriTeC_SKDU
3https://fever.ai/task.html

Property Stats

Avg questions per claim 2.60
Avg answers per question 1.07
Questions with extractive answer 53%
Questions with abstractive answer 26%
Questions with boolean answer 17%
Questions with no answer 4%

Table 1: Dataset statistics.

and practical application in building systems for
misinformation detection.

As the claims in AVeriTeC are also annotated
with date, the dataset is split temporally (ordered
by date) into training, validation, and test sets, hav-
ing 500, 3,068, and 2,215 claims data, respectively.
Table 1 illustrates some properties of the AVeriTeC
dataset. Claims contain an average of 2.60 ques-
tions each, with questions averaging 1.07 answers
each. Most answers are extractive (53%), followed
by abstractive (26%), and boolean (17%), with 4%
being unanswerable. The dataset is somewhat un-
balanced, with the majority of claims being refuted,
reflecting the focus of journalists on false or mis-
leading claims.

Reasoning about evidence is structured through a
question-and-answer format, allowing for multiple
answers to reflect potential disagreements. Multi-
hop reasoning is also allowed by referring to pre-
vious questions, and all answers must be backed
by source URLs. In the AVeriTeC dataset, the ve-
racity of claims is predicted into typical classes:
Supported, Refuted, and Not Enough Evidence.
AVeriTeC also introduces a fourth class: Conflict-
ing evidence/Cherry-picking, which includes con-
flicting evidence and technically true claims that
mislead by omitting crucial context. This addition
addresses real-world scenarios where sources may
legitimately disagree on interpretations.

One of the primary challenges is context depen-
dence. Many claims cannot be accurately verified
without additional context that is not always avail-
able in the fact-checking articles. This lack of con-
text can lead to incorrect or incomplete verification
outcomes. Another major challenge is evidence
sufficiency. Ensuring that the evidence provided is
comprehensive enough to support or refute claims
is crucial, as incomplete evidence can skew the
verification results. Temporal leakage is another
critical challenge, where evidence published af-
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ter the claim date may inadvertently influence the
verification process. This can result in biased or
inaccurate conclusions, undermining the integrity
of the dataset. Additionally, the diverse nature of
the data from various sources and the wide range
of claim types introduce complexity in data annota-
tion and processing, making it difficult to maintain
consistency and accuracy across the dataset.

3 System Description

3.1 AVeriTeC Baseline

The baseline model for AVeriTeC employs a so-
phisticated approach to automate the fact-checking
process, leveraging state-of-the-art natural lan-
guage processing (NLP) techniques. Specifically,
it utilises transformer-based models, such as BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) and its variants,
which have proven highly effective in understand-
ing and processing natural language. These mod-
els are fine-tuned on the AVeriTeC dataset to op-
timise their performance in various stages of the
fact-checking pipeline, including claim representa-
tion, evidence retrieval, and veracity prediction.

The evidence retrieval component of the baseline
model is designed to efficiently retrieve relevant ev-
idence from a vast pool of sentences scrapped from
Google Search API. The baseline applies BM25
(Robertson and Zaragoza, 2009) as a coarse filter
to select the top 100 sentences to keep relevant ev-
idence pinpointed and presented for evaluation in
further stages in the pipeline.

Further, during the question generation stage,
each evidence is paired with a question gener-
ated by an LLM based on few-shot prompting,
where the QA pairs as few-shot examples are ex-
tracted from the training data using BM25. Base-
line utilises BLOOM (Workshop et al., 2023) for
this task. It is empirically shown that a 10-shot set-
ting consistently outperforms other configurations,
such as 1, 3, or 5-shot prompting, in generating
accurate and contextually appropriate questions.
To further refine the generated QA pairs, a fine-
tuned BERT-large model (Devlin et al., 2019) is
employed to rerank the outputs, ultimately select-
ing the top N = 3 evidence sets that best support
or refute the claim.

The final stage of the baseline model is veracity
prediction, where the selected evidence as QA pairs
are used to determine the truthfulness of the claim.
This step involves integrating the claim-evidence

pairs into a coherent representation and feeding it
into a classification model that assigns a veracity la-
bel. The labels typically include categories such as
“supported” or “refuted”, “not enough evidence” or
“conflicting evidence/cherry-picking”. The baseline
uses a fine-tuned BERT-large model, fine-tuned
on annotated examples from the AVeriTeC dataset,
learning to weigh the evidence and make informed
decisions about the claim’s veracity (Schlichtkrull
et al., 2023).

3.2 Our Pipeline
Similar to AVeriTeC, our pipeline consists of sev-
eral models integrated into a multi-stage process,
offering a comprehensive solution framework for
real-world claim verification. Figure 1 depicts our
pipeline, showing various components for a spe-
cific task. Each pipeline stage is crucial for ac-
curate claim verification, from retrieving relevant
evidence to predicting the claim’s veracity. Below,
we outline the models utilised in our pipeline. We
make use of the evidence collection (knowledge
store) retrieved through the Google Search API, as
provided in the AVeriTeC shared task.

3.2.1 Evidence Selection
For evidence retrieval, we employ a Cross-Encoder
to extract evidence sentences from the knowledge
store. (Humeau et al., 2019) has shown that
cross-encoders typically outperform bi-encoders
on sentence-scoring tasks by enabling rich inter-
actions between the claim and candidate evidence.
We also compared the retrieval results with those
of BM25, TF-IDF, and Bi-Encoder to evaluate their
effectiveness. Similar to the baseline, we keep only
the top 100 sentences based on the score predicted
by the Cross-Encoder. The Cross-Encoder takes
the pair of claim c and evidence e and processes it
through a transformer model, e.g. RoBERTa (Liu
et al., 2019):

h[CLS] = RoBERTa([c; e]) (1)

where h[CLS] is the final hidden state correspond-
ing to the special [CLS] token. The score s(c, e)
for the (claim, evidence) pair is then computed
by applying a linear layer followed by a sigmoid
activation function as:

s(c, e) = σ(W · h[CLS] + b) (2)

where W and b are the linear layer’s weight matrix
and bias term, and σ is the sigmoid function.
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Select top-100 sentences
from the knowledge store Collect 100 QA pairs Rerank and Pick 

Top-3 QA pairs
Predict Veracity label
based on (claim, QA)
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supported
refuted
not enough evidence
conflicting evidence/cherry-picking

Figure 1: Overview of the pipelined Evidence-Retrieval and Verdict Prediction for a given claim.

Evidence:...
Question answered:...

Evidence:...
Question answered:...

...

Evidence:...
Question answered:

(a) Prompt1

Outrageously, example[‘speaker’] Claim:...
with Evidence:...
as an answer to the Question:...

Outrageously, example[‘speaker’] Claim:...
with Evidence:...
as an answer to the Question:...

...

Outrageously, example[‘speaker’] Claim:...
with Evidence:...
as an answer to the Question:...

(b) Prompt2

Figure 2: Prompts used by an LLM for question generation task.

This strategy ensures that the most pertinent evi-
dence is identified (relevance) and made computa-
tionally feasible (top-100) for further stages in the
verification pipeline.

3.2.2 Question Generation

To generate questions for the extracted evidence
sentences from the previous step, we conducted
experiments on two fronts: 1) Prompt Engineer-
ing, and 2) Utilisation of Various Large Language
Models (LLMs).

Prompt Engineering We experimented with
two prompt configurations for few-shot learning:
Prompt1: A straightforward pair of evidence and

questions.
Prompt2: A more descriptive prompt that in-

cludes a triplet of claim, answer, and
question.

Figure 2 illustrates the prompt configurations
employed in our study. In “Prompt2", if a sample
lacks a ‘speaker’ field or is set to NULL, we sub-
stitute it with “Speaker" to maintain consistency
across the prompts.

In line with baseline criteria for question gen-
eration, we adopt a 10-shot approach for prompt
construction. Additionally, we explored using the
Bi-Encoder model to identify the 10 most relevant

examples from the training set for prompting. The
Bi-Encoder, based on a transformer architecture,
is effective in retrieving in-context examples, en-
hancing the quality of few-shot prompting. An
ablation study in the results section compares the
effectiveness of these approaches.

Utilisation of Various Large Language Mod-
els (LLMs) With the GPU resources at our dis-
posal, we conducted question-generation experi-
ments using LLMs with up to 8 billion parame-
ters. We evaluated leading open-source models
such as BLOOM (Workshop et al., 2023) and Meta-
Llama-3-8B (Dubey et al., 2024). Additionally, we
tested the recently released Meta-Llama-3.1-8B
for the generation task. For comparison, we also
utilised the ChatGPT API4 with the ‘OpenAI-GPT-
4o’ model.

3.2.3 Question-Answer Reranking
After retrieving the initial set of evidence, we apply
a reranking process to ensure that the most relevant
pieces are selected for the claim verification task.
This reranking is essential for identifying specific
question-answer (QA) pairs that directly support
or refute the claim, thereby sharpening the focus

4https://platform.openai.com/docs/api-
reference/introduction
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on the most pertinent information. To achieve this,
we again utilise a Cross-Encoder model, which
is particularly effective in capturing nuanced re-
lationships between the claim and the evidence.
At this stage, the input format changes to (claim,
QA), allowing the model to evaluate the alignment
between the claim and the concatenated question-
answer (QA) pairs as:

h[CLS] = RoBERTa([c;q · a]) (3)

the final hidden state h[CLS] is then processed
through a linear layer followed by a sigmoid acti-
vation function (as in Equation 2) to obtain a score
s(c,qa) for the (claim, QA) pair.

By carefully selecting the most relevant evi-
dence, the system significantly reduces noise and
enhances the precision of the information used
in the final verification step. This meticulous ap-
proach ensures that the verification process is not
only accurate but also efficient, ultimately lead-
ing to more reliable outcomes in automated fact-
checking.

3.2.4 Veracity Prediction
Veracity prediction is the final and most criti-
cal stage in the automated fact-checking pipeline.
In this stage, the model classifies a claim based
on the evidence retrieved (e.g., Top 3 QA pairs)
and selected in previous stages to predict its ve-
racity into four classes. Unlike the baseline ap-
proach using a BERT-Large model, we fine-tune
a Cross-Encoder—a smaller, transformer-based
model—through supervised natural language infer-
ence (NLI) training. This approach is computation-
ally less expensive and well-suited for entailment
tasks, where it infers the relationship between pairs
of sentences (premise and hypothesis) (Li et al.,
2022)

We use the Cross-Encoder with a text classifica-
tion head for the task. Similar to Equation 3, the
claim c and evidence pair q · a are inputted to the
model to obtain an encoded input representation
h[CLS] = RoBERTa([c;q · a]). The hidden state
h[CLS] is then passed through a linear layer (clas-
sification head) followed by a softmax activation
function to produce a probability distribution p
over the possible veracity labels (e.g., supported,
refuted, insufficient evidence, conflicting/cherry-
picking) as:

p = softmax(W · h[CLS] + b) (4)

where W is the weight matrix and b is the bias
term of the linear layer. The output p is a vector of
probabilities corresponding to each veracity class.

The model is trained using a cross-entropy loss
function, which measures the difference between
the predicted probability distribution and the true
distribution. If y is the true label (encoded as a
one-hot vector) and p is the predicted probability
distribution, the loss function L is given by:

L = −
K∑

k=1

yk log(pk) (5)

where K is the number of veracity classes, yk is
the true label for class k, and pk is the predicted
probability for class k. The model parameters are
optimised to minimise this loss, thereby improving
the accuracy of veracity prediction.

4 Experiments

4.1 Evaluation Metrics
In the evaluation of the AVeriTeC dataset and the
associated automated fact-checking (AFC) systems,
several metrics are employed to assess the perfor-
mance at various stages of the pipeline. These
stages consist of evidence retrieval, evidence se-
lection, and veracity prediction. The metrics are
designed to comprehensively measure the effective-
ness and accuracy of each component, ensuring
robust evaluation and comparison.

Unlike the FEVER dataset and others that
use a closed source of evidence like Wikipedia,
AVeriTeC is designed to retrieve evidence from
the open web. This approach can result in finding
the same evidence across multiple sources, making
exact matching impractical for scoring purposes.
Therefore, a Hungarian algorithm-based pairwise
scoring function f : S × S → R is utilised to
evaluate how well a set of generated sequences,
such as questions or answers, aligns with the ref-
erence sequences of tokens. The Hungarian algo-
rithm provides the solution as a boolean function
X : Ŷ × Y → {0, 1}, maximising the assignment
problem between the generated sequences Ŷ and
the reference sequences Y (Crouse, 2016). This
metric, referred to as the Hungarian METEOR (Hu-
METEOR) score sf and is then calculated between
Ŷ and Y as:

sf (Ŷ , Y ) =
1

|Y | max
∑

ŷ∈Ŷ

∑

y∈Y
f(ŷ, y)X(ŷ, y)

(6)
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where f denotes METEOR, a pointwise scoring
function, and X is a boolean function optimised
as a linear sum assignment problem. The Final
Hu-METEOR score is estimated as the mean of
scores between all pairs of generated and reference
sequences. The Hu-METEOR is used twice to eval-
uate questions-only sequences and concatenated
question-answer (QA) pairs.

AVeriTeC Score is an accuracy metric utilised
to compare the overall performance of the system.
The metric considers veracity prediction True for
a given claim if the Hu-METEOR score between
generated and reference evidence is above a certain
threshold (λ > 0.25):

AVeriTeC_Score =
1

|C|
∑

c∈C

(
cpred_label == ctrue_label,

f(cŷ, cy) > (λ = 0.25)
) (7)

where, cpred_label, ctrue_label denotes predicted and
true labels, respectively, and cŷ and cy are the gen-
erated and reference evidence sets of the claim.

4.2 Implementation Details

Table 2 provides a comprehensive overview of the
models used within the various components of our
pipeline, including specific details and the corre-
sponding checkpoints.

In the evidence retrieval step, we extracted sen-
tences from the provided knowledge store using
three models: 1) BM25 (AVeriTeC baseline), 2)
Bi-Encoder, and 3) Cross-Encoder, for compari-
son. For the Bi-Encoder, we employed the standard
BERT model with a hidden size of 768. For the
Cross-Encoder, we utilised a smaller transformer
model with a hidden size of 384, fine-tuned specif-
ically for reranking tasks such as MS-Marco Pas-
sage reranking (Nguyen et al., 2016). We set the
batch size to 32 for both Bi-Encoder and Cross-
Encoder. The average time in scoring 1,000 sen-
tences by BM25, Cross-Encoder, and Bi-Encoder
are 10.9, 31.9, and 80.3 milliseconds, respectively.

For the question generation task, we leverage
several large language models (LLMs), including
BLOOM, Meta-Llama-3-8B, and Meta-Llama-3.1-
8B. For comparison, ChatGPT’s GPT-4o model is
accessed through its API. Due to financial restric-
tions, the questions are generated only for the top
25 evidence with ChatGPT. The average time to
generate a single question varies across the models,
with BLOOM taking 8.9 seconds, Meta-Llama-3-
8B taking 3.1 seconds, and Meta-Llama-3.1-8B

taking 3.6 seconds. This performance data high-
lights the efficiency of the Meta-Llama models,
particularly in resource-constrained environments.
For prompting, BM25 and Bi-Encoder are consid-
ered for selecting the 10 most relevant examples
from the training set for prompting.

For the Question-Answer reranking, Cross-
Encoder with ‘ms-marco-MiniLM-L-12-v2’ check-
point is utilised instead of the baseline’s BERT-
large model. It requires no training and is com-
putationally less expensive due to its smaller size,
leading to 5 times faster performance. For each
claim, it takes approx 40 ms to reorder the QA
pairs.

The final stage verdict prediction involves train-
ing a supervised NLI model as an entailment task.
The model takes a pair of a claim and concatenated
QA as input and predicts a veracity label. With
a cross-encoder setting, we fine-tune a DeBERTa-
NLI model on examples from train/development
data using Adam (Kingma and Ba, 2017) with a
learning rate of 2e-5 and a batch size of 16 for four
epochs.

All the experiments were conducted on an
NVIDIA RTX 6000 Ada 48GB type GPUs.

5 Results

The proposed pipeline’s evaluation involved a com-
prehensive analysis of performance across various
stages, including evidence retrieval, evidence se-
lection, and veracity prediction. The results high-
light the effectiveness of the proposed approach
in handling the complexities of real-world claim
verification and the challenges encountered during
the process.

5.1 Evidence Selection

In the evidence retrieval step, we extract the top-
100 evidence sentences for each claim from a vast
pool of a knowledge store. Table 3 shows the Hu-
METEOR based retrieval score by various meth-
ods, i.e. BM25, TF-IDF, Bi-Encoder and Cross-
Encoder. The Cross-Encoder model demonstrated
strong performance in identifying pieces of evi-
dence that were most relevant to the claims. The
model’s ability to consider both the claim and the
evidence sentence jointly allowed it to capture nu-
anced relationships, leading to improved evidence
selection effectively. Additionally, its lightweight
architecture makes it comparable to Bi-Encoder.
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Models Checkpoint Hidden Size #Parameters Task

Cross-Encoder ms-marco-MiniLM-L-12-v25 384 22.7M Evidence-Retr, QA Reranking
Bi-Encoder bert-base-uncased6 768 109.5M Evidence-Retr, 10-Shot Prompt
BLOOM bloom-7b17 4096 7B Q-Generation
Meta-3 Meta-Llama-3-8B8 4096 8B Q-Generation
Meta-3.1 Meta-Llama-3.1-8B9 4096 8B Q-Generation
ChatGPT Openai-GPT-4o10 – – Q-Generation
DeBERTa-NLI deberta-v3-base11 768 82M Veracity Prediction

Table 2: The details for models used for various tasks in the pipeline.

Models A only @ (3 / 5 / 10 / 50 / 100)

BM25 (baseline) 0.1027 0.1207 0.1452 0.2049 0.2338
TF-IDF 0.1062 0.1237 0.1474 0.2077 0.2382
Bi-Encoder 0.1311 0.1521 0.1787 0.2474 0.2753
Cross-Encoder 0.1413 0.1624 0.1913 0.2614 0.2907

Table 3: Results of evidence selection in terms of Hu-
METEOR on the development set.

Prompt Few-Shot Q only QA only
Setting Selection @ (3 / 5 / 10 / 100) @ (3 / 5 / 10 / 100)

Prompt1 Bi-Encoder 0.21 0.25 0.30 0.43 0.22 0.25 0.28 0.36
Prompt1 BM25 0.23 0.27 0.33 0.46 0.22 0.25 0.28 0.36
Prompt2 Bi-Encoder 0.24 0.29 0.34 0.48 0.23 0.26 0.29 0.37
Prompt2 BM25 0.26 0.30 0.36 0.49 0.23 0.26 0.29 0.38

Table 4: Influence of Prompt setting on question gen-
eration. bigscience/bloom-7b1 is used as LLM for
generation.

5.2 Question Generation

We consider various LLMs for the question gen-
eration task based on the extracted evidence, i.e.
bloom-7b1, Meta-Llama-3-8B, Meta-Llama-3.1-
8B, and Openai-GPT-4o. We also experimented
with sparse, e.g. BM25, and dense, e.g. Bi-
Encoder, methods for selecting few-shot exam-
ples during prompt construction. The result on
prompt construction is shown in Table 4 with both
few-shot selection methods under prompt-setting
Prompt1 and Prompt2. We found that a descriptive
prompt can generate relevant questions in the con-
text of given claims and evidence pairs. This shows
BM25’s superiority to Bi-Encoders for few-shot
example selection in prompting due to its emphasis
on exact term matching and robustness in low data
scenarios.

5https://huggingface.co/cross-encoder/ms-marco-
MiniLM-L-12-v2

6https://huggingface.co/google-bert/bert-base-uncased
7https://huggingface.co/bigscience/bloom-7b1/tree/main
8https://huggingface.co/meta-llama/Meta-Llama-3-8B
9https://huggingface.co/meta-llama/Meta-Llama-3.1-8B

10https://platform.openai.com/docs/models/gpt-4o
11https://huggingface.co/microsoft/deberta-v3-base

LLM
Q only QA only

@ (3 / 5 / 10 / 100) @ (3 / 5 / 10 / 100)

bloom-7b1 0.26 0.30 0.36 0.49 0.23 0.26 0.29 0.38
Meta-Llama-3-8B 0.28 0.32 0.37 0.49 0.23 0.26 0.29 0.38
Meta-Llama-3.1-8B 0.28 0.32 0.37 0.49 0.23 0.26 0.30 0.38
Openai-GPT-4o 0.41 0.45 0.49 – 0.25 0.29 0.32 –

Table 5: Influence of using various LLMs on question
generation task. Few-shot selection is done by BM25.
Openai-GPT-4o has been used to generate questions for
only the first 25 sentences.

Reranking
LLM

Q only A only QA
Models @3 @3 @3

BERT-Dual
Encoder
(baseline)

Meta-Llama-3-8B 0.2799 0.1173 0.2032
Meta-Llama-3.1-8B 0.2832 0.1199 0.2069
Openai-GPT-4o 0.4023 0.1392 0.2464

Cross-
Encoder

Meta-Llama-3-8B 0.2991 0.1360 0.2341
Meta-Llama-3.1-8B 0.3018 0.1323 0.2334
Openai-GPT-4o 0.4122 0.1374 0.2584

Table 6: Results of post-QA reranking Hu-METEOR
score @3 through BERT-Dual Encoder (baseline) and
Cross-Encoder.

Table 5 depicts the influence of using various
LLMs for question generation. It shows Meta mod-
els are better than BLOOM due to their bigger
architecture and being trained on more diverse and
high-quality data (Dubey et al., 2024). ChatGPT-
based Openai-GPT-4o model has shown a 0.13
jump in Hu-METEOR score on Q only @3, achiev-
ing an overall high performance on AVeriTeC task.

5.3 QA Reranking

In the question-answer reranking stage, a pre-
trained Cross-Encoder is utilised to select top QA
pairs achieving higher Hu-METEOR scores than
the baseline’s BERT-large, which requires explicit
fine-tuning on the training data. Table 6 presents
the Hu-METEOR scores for questions only (Q),
answers only (A), and combined question-answer
(QA) across various LLMs, including Meta-Llama-
3-8B, Meta-Llama-3.1-8B, and OpenAI-GPT-4o.
The Cross-Encoder based reranking consistently
outperforms the baseline in question generation.
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LLM
Development set Test set

Q Only A Only QA A.S Q Only A Only QA A.S

Official Baseline 0.24 – 0.19 0.09 0.24 – 0.20 0.11

Meta-Llama-3-8B 0.2992 0.1360 0.2342 0.1780 0.2976 – 0.2409 0.1986
Meta-Llama-3.1-8B 0.3018 0.1323 0.2334 0.1900 0.2978 – 0.2405 0.1937
Openai-GPT-4o 0.4122 0.1374 0.2584 0.2240 0.3961 – 0.2613 0.2239

Table 7: Performance on the development set and test set. A.S is the AVeriTeC score, and Q Only, A Only, and QA
are the Hu-METEOR scores of question, answer and question-answer, respectively.

5.4 Overall results: Veracity Prediction

The veracity prediction stage was crucial for deter-
mining the final classification of the claims. We
fine-tuned a transformer-based classification model,
DeBERTa-NLI, on the AVeriTeC dataset, achiev-
ing strong results in classifying claims into the
predefined categories: supported, refuted, insuffi-
cient evidence, and conflicting/cherry-picking. The
model’s performance was evaluated using metrics
Q Only, A Only, QA, and A.S (AVeriTeC Score),
where the Q Only, A Only, QA scores are Hu-
METEOR scores of the retrieved evidence and A.S
is a special metric that considers veracity prediction
true for a given claim if the Hu-METEOR is above
a certain threshold (λ = 0.25) as shown in Table 7.
We observe that under the same pipeline models,
Meta LLMs outperform the baseline by 0.9 to 0.10
AVeriTeC score through obtaining improved QA
evidence. Openai-GPT-4o shows a remarkable im-
provement in question generation, which leads to
achieving a higher overall AVeriTec score on both
development and test data.

6 Conclusion

In this paper, we presented a comprehensive
pipeline for real-world claim verification tailored
to the AVeriTeC dataset. Our approach, which in-
tegrates cross-encoders for evidence retrieval and
LLMs for question generation, has shown to be ef-
fective in improving the accuracy of automated fact-
checking systems. We show that the cross-encoder
performs better than the baseline on both evidence
extraction and reranking. The results of our ex-
periments highlight the importance of multi-stage
processing and the careful selection of evidence to
support or refute claims. Our model’s performance
in the AVeriTeC shared task demonstrated its po-
tential in real-world applications, particularly in
scenarios requiring detailed reasoning and context
understanding. Although our system has made sig-

nificant strides in addressing the complexities of
real-world claim verification, further improvements
are necessary, particularly in handling ambiguous
claims and ensuring the completeness of evidence.

7 Limitations

Despite the promising results, our approach has
several limitations. First, we rely on the knowl-
edge store provided by the shared task; therefore,
retrieving evidence from scratch from Google with
better scrapping and parsing methods may provide
a better knowledge space. Secondly, the reliance on
cross-encoders, while effective, is computationally
expensive, which may hinder scalability in real-
time applications. Additionally, advanced rerank-
ing models, such as HLATR (Zhang et al., 2023),
HybRank (Zhang et al., 2022), and M-ReRank
(Malviya and Katsigiannis, 2024) can further en-
hance evidence retrieval. Thirdly, "the performance
of our question generation model, though robust,
can be affected by the quality and diversity of few-
shot examples used for prompting.

Additionally, our system’s ability to handle
claims with insufficient or conflicting evidence re-
mains a challenge, often leading to less accurate
veracity predictions. Finally, the dataset’s tempo-
ral dependency introduces potential biases, as evi-
dence published after the claim date could influence
the verification process. Addressing these limita-
tions will be crucial for enhancing our system’s
robustness and generalisability in future work.
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