
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 113–117
November 15, 2024 ©2024 Association for Computational Linguistics

Exploring Retrieval Augmented Generation For Real-world Claim
Verification

Omar Adjali
Université Paris-Saclay
Gif-sur-Yvette, France

Abstract

Automated Fact-Checking (AFC) has recently
gained considerable attention to address the in-
creasing misinformation spreading in the web
and social media. The recently introduced
AVeriTeC dataset alleviates some limitations
of existing AFC benchmarks. In this paper,
we propose to explore Retrieval Augmented
Generation (RAG) and describe the system
(UPS participant) we implemented to solve the
AVeriTeC shared task. Our end-to-end system
integrates retrieval and generation in a joint
training setup to enhance evidence retrieval and
question generation. Our system operates as
follows: First, we conduct dense retrieval of
evidence by encoding candidate evidence sen-
tences from the provided knowledge store doc-
uments. Next, we perform a secondary retrieval
of question-answer pairs from the training set,
encoding these into dense vectors to support
question generation with relevant in-context
examples. During training, the question gener-
ator is optimized to generate questions based
on retrieved or gold evidence. In preliminary
automatic evaluation, our system achieved re-
spectively 0.198 and 0.210 AVeriTeC scores on
the dev and test sets.

1 Introduction

With the unprecedented growing of fake news in
the web and on social media, several research ef-
forts have been supported in the recent years to
combat online misinformation. While manual fact-
checking is the most reliable method for verify-
ing information, the large-scale amount of daily
published and shared content has made the devel-
opment of automated fact-checking solutions cru-
cial to assist in the manual fact checking process.
Following such initiatives, the recently introduced
AVeriTeC (Automated VERIfication of TExtual
Claims) dataset (Schlichtkrull et al., 2024) con-
tributes to address the aforementioned challenges,
and serves as a benchmark for the AVeriTeC shared

task. In this paper, we report our findings in ad-
dressing the AVeriTeC shared task and describe the
proposed system which is evaluated on its ability
of verifying real-world claims with evidence from
the Web. In contrast to other fact-checking datasets
such as FEVER (Thorne et al., 2018), VITAM-
INC (Schuster et al., 2021) and FEVEROUS (Aly
et al., 2021), AVeriTeC focuses on realistic scenar-
ios where real-world claims are derived from the
web rather than Wikipedia. In this context, systems
are required to retrieve evidence that either supports
or refutes a given claim, using sources from either
the Web or a document collection scrapped from
the web and provided by the organizers. Based on
this evidence, systems must categorize the claim as
Supported, Refuted, Not Enough Evidence (when
there is insufficient evidence to make a determi-
nation), or Conflicting Evidence/Cherry-picking
(when both supporting and refuting evidence are
present). A response is considered correct only
if it includes both the accurate label and sufficient
supporting evidence. Due to the complexity of eval-
uating evidence retrieval automatically, a manual
evaluation process will be conducted to ensure a
fair assessment of the participant systems.

2 AVeriTeC baseline

The AVeriTeC shared task organizers proposed a
pipeline system which comprises the following
steps: 1) Given a claim c, it is used as a query input
of a search engine (Google API) to obtain relevant
URLs which are parsed into sentences. The col-
lection of sentences serves for evidence retrieval.
2) For each claim c, only the top 100 sentences
{si}100i=1 are kept based on the BM25 similarity be-
tween each si and c. 3) For each of the top 100
sentence si, BLOOM (Le Scao et al., 2023) allows
to generate QA pairs which are used as evidence
for veracity prediction. To allow more in-context
examples for QA pairs generation, the 10 closest

113

claim-QA pairs are retrieved from the training set
using the BM25 similarity between si and each
answer included in a claim-QA pair of the training
set. 4) The top 3 generated QA pairs are kept as
evidence using a pre-trained BERT-based re-ranker
(Devlin et al., 2019). 5) Finally, a claim c and its 3
generated QA evidence pairs are input in another
pre-trained BERT model to predict the veracity la-
bel.

3 Proposed system

Following the baseline pipeline, we propose a sim-
pler end-to-end integrated system (see Figure 1)
which relies on the Retrieval Augmented Genera-
tion (RAG) framework to solve the AVeriTeC chal-
lenge where retrieval and generation complement
each other using joint training. At the first stage,
we perform evidence dense retrieval after encod-
ing all potential evidence sentences retrieved from
the provided knowledge store documents. Then,
we perform a second retrieval of question-answer
pairs from the training set (encoder into dense vec-
tors) to support question generation with in-context
examples. During training, the question genera-
tor learns to generate question given retrieved/gold
evidence by jointly updating both generator and ev-
idence/answer encoder using the RAG loss (Lewis
et al., 2020). Finally, a veracity prediction model
is employed to label the retrieved evidence.

3.1 Evidence retrieval

Using the searched documents provided by the
search engine, we similarly keep the top 100 sen-
tences as potential evidence using BM25. We then
encode each sentence si into dense vector repre-
sentations using a Bert-base encoder Es(·). We
represent each sentence using the 768-d pooled
vector of the [CLS] special token. Given a dataset
D of N claims, instead of encoding all sentences
into a (N×100×768) matrix, we rather encode the
top 100 potential sentence evidence of each claim
ci ∈ D into one (N × 100 × 768) matrix. This
allows to reduce the search space during evidence
retrieval since the relevant evidence sentences of
claim ci are likely to be found in its correspond-
ing top-100 retrieved sentence set. Thus, we build
N Faiss indexes (Johnson et al., 2019) for each
ci ∈ D where each of them, maps evidence sen-
tences to dense vectors. These enable us to perform
fast exact maximum inner product search (MIPS).
Formally, given a claim ci, and its top-100 evidence

sentence set Si = {sj}100j=1, we compute the inner
product between its dense vectors and all sj ∈ Si

as follows :

s(ci, sj) = Es(ci)Es(sj) (1)

In this way, given an input claim ci, we retrieve
the top-K most relevant sentence using the highest
relevance scores s(·).

3.2 In-context QA pairs retrieval
Similar to (Schlichtkrull et al., 2024), in order
to provide the generator in-context examples for
question-answer pair generation, we retrieve the
top L QA-pairs from the training set which serve
for building the final prompt. Given a retrieved sen-
tence si obtained after the first step, we encode it
using the same pre-train BERT-base encoder Es(·).
Similar to the baseline system, the top L QA-pairs
are selected according to the semantic similarity
between answers in the QA pair training set and the
retrieved evidence sentences. We therefore perform
maximum inner product search for each sentence
si after encoding and indexing all the answers in
the training set as follows:

s(si, aj) = Es(si)Es(aj) (2)

Similar to the sentence retrieval stage, we select the
top-L QA pairs whose answers achieve the highest
retrieval scores.

3.3 Question generation
In this step, given a claim ci, we generate a question
for each sentence retrieved in the first stage. Note
that the top-L retrieved QA pairs (in-context exam-
ples) are used in the same way as in (Schlichtkrull
et al., 2024) to build the prompt. Given a generated
question qi and a retrieved sentence si, we consider
(qi, si) as a QA evidence pair for ci.

3.4 Veracity prediction
Given a claim ci, its top-K QA generated pairs
as evidence, we followed the baseline system to
predict the veracity label which relies on a pre-
trained BERT sequence classification model.

3.5 Training and inference
During training, given a claim ci, we use its ground-
truth QA evidence pairs provided in the training
set to build the question generation prompt as well
as generation labels. More precisely, given a set of
ground truth QA pairs, we use the question of the

114

Evidence Retrieval Question
GenerationClaim

Relevant
Sentences

top-100
sentences

TrainingQA
pairs

QA Retrieval Veracity
Prediction

Figure 1: Our proposed pipeline system overview.

first QA pair as the generation target while the re-
maining pairs are used as in-context QA examples
to build the final prompt. Experiments showed that
using ground-truth QA pairs to build the prompt
during training showed better performance than us-
ing retrieved ones. Thus, evidence retrieval and
in-context QA pairs retrieval are only performed at
inference time. In this setting, the sentence encoder
and the question generator are jointly trained on
the following RAG loss (Lewis et al., 2020):

LRAG = −
N∑

i=1

(log(s(ci, a
∗) · pΦ(q∗|pt(ci), a∗)))

(3)
where N is the number of claims in the dataset,
q∗ is the ground truth question, a∗ is the ground
truth answer and pΦ(q

∗|pt(ci), a∗) is the probabil-
ity distribution of generating the question q∗ given
the built prompt pt(ci) and a∗, and Φ is the gener-
ator’s parameters. s(ci, a∗) is the similarity score
between the claim ci and the ground truth answer.
This learning objective allows to condition the gen-
erated questions on the retrieved evidence since
the gradients are propagated through both the sen-
tence encoder and the generator. At inference time,
more relevant evidence sentences are expected to
be retrieved thanks to the generator feedback sig-
nals during training while improved retrieval will
contribute to generate more accurate questions.

4 Experiments

4.1 Evaluation

Systems are evaluated on their ability to retrieve
evidence and to predict veracity labels. Note that
veracity predictions are considered correct only
when correct evidence has been found. The Hun-
garian METEOR metric (Schlichtkrull et al., 2024)
is used to score retrieved questions and retrieved

questions + answers. Furthermore, systems are
ranked according to the Averitec score (METEOR)
conditioned on correct evidence retrieved at a cut-
off value of 0.25.

4.2 Implementation details
We initialized the pre-trained BERT-base model
used for evidence retrieval and in-context QA re-
trieval with an answer encoder trained on Trivi-
aQA (Joshi et al., 2017). For question generation,
we experiment with the T5-large (738M param-
eters) (Raffel et al., 2020) pre-trained generator.
The batch size is set to 2 due to GPU memory limit.
We trained our system using a 2e-5 learning rate
for 20 epochs. At inference time, we decode us-
ing beam-search with 2 beams. We selected the
model checkpoints based on the validation perfor-
mance. All experiments needed only one Nvidia
A100 (80G) GPU. Our implementation is based
on PyTorch (Paszke et al., 2017). Pretrained mod-
els are obtained using Hugginface and Transform-
ers (Wolf et al., 2020). The Faiss library (Johnson
et al., 2019) is used for MIPS search and vector
indexing.

5 Results

Table 1 reports the performance results of our
approach and baseline systems evaluated on the
AVeriTeC shared task for the dev and test splits.
Models are evaluated based on their ability to: 1)
retrieve evidence in two settings: Question only
(Q only), Question and Answer (Q+A). 2) Verify-
ing veracity of claims using the AVeriTeC score
for different cutoff values. Overall, our system
with 955M parameters (BERT encoder + T5-large)
significantly outperforms the AVeriTeC-BLOOM-
7b baseline on both evidence retrieval and verac-
ity checking across all the metrics suggesting that
LLM’s parametric memory is not sufficient to solve
knowledge-intensive tasks such as fact-checking.

115

Model split Q only Q+A Veracity@0.2 Veracity@0.25 Veracity@0.3

AVeriTeC-BLOOM-7b dev 0.240 0.185 0.186 0.092 0.050
AVeriTeC-BLOOM-7b test 0.248 0.185 0.176 0.109 0.059
Ours (UPS) dev 0.280 0.250 0.280 0.198 0.092
Ours (UPS) test 0.310 0.270 - 0.210 -

Table 1: Averitec shared task results

Claim Type Veracity score

Event/Property Claim 0.131
Position Statement 0.168
Causal Claim 0.118
Numerical Claim 0.144
Quote Verification 0.123

Table 2: Averitec scores by type @0.25 of our best
performing system for dev set.

Veracity Label F1

Supported 0.292
Refuted 0.653
Not Enough Evidence 0.160
Conflicting Evidence/Cherrypicking 0.166

Table 3: Veracity prediction dev set F1 results for each
veracity label.

At inference time, we achieved the best perfor-
mance with the number of retrieved evidence K=10,
while higher values decreases both evidence re-
trieval and veracity checking. Regarding the num-
ber of retrieved in-context examples L, we found
that building the prompt using only L=3 is suffi-
cient for the question generation model to reach our
best performing system. We assume that our BERT-
base retrieval provides more useful in-context ex-
amples in the top retrieved QA pairs and does not
need to re-rank evidence compared to the baseline
model which relies on BM25 to retrieve evidence.
Indeed, while we do not perform evidence retrieval
during training, we still update the BERT retrieval
encoder parameters using the claim-evidence simi-
larity scores with the RAG loss. This latter allows
to learn retrieving more relevant evidence for the
target question using the feedback from the ques-
tion generator.

We reports in Table 2 the veracity scores of our
best performing system for each claim type. We
note that there is no substantial performance gap
between claim types, even if our system struggles

more with causal and Quote Verification claims.
Analysing these results need more investigations in
future work.

Table 3 shows the F1 scores for each veracity
label. We employed the provided checkpoint for
veracity prediction which failed to predict the Con-
flicting Evidence/Cherrypicking label even with
gold evidence (Schlichtkrull et al., 2024). Verac-
ity prediction performs better on this label using
our system however predictions are worse for the
Supported label which suggests that improving evi-
dence retrieval plays an important role to achieve
the best fact-checking performance.

6 Conclusion

We presented in this paper our participant system
(UPS) at the AVeriTeC shared task on verifying real-
world claims with evidence from the Web. In pre-
liminary automatic evaluation, our system achieved
respectively 0.198 and 0.210 AVeriTeC scores on
the dev and test sets, and was ranked 13 out of 23
participant teams. In terms of limitations, our pro-
posed system relies solely on the AVeriTeC train-
ing set which is relatively small size. We believe
that our RAG approach would benefit from more
training data. Moreover, experimenting with larger
generator models may improve the quality of gen-
erated questions and thus the overall fact-checking
performance.

116

References
Rami Aly, Zhijiang Guo, Michael Schlichtkrull, James

Thorne, Andreas Vlachos, Christos Christodoulopou-
los, Oana Cocarascu, and Arpit Mittal. 2021.
FEVEROUS: Fact Extraction and VERification Over
Unstructured and Structured information. arXiv
preprint. ArXiv:2106.05707 [cs].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. In NIPS
2017 Workshop on Autodiff, Long Beach, CA, USA.
MIT Press.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Michael Schlichtkrull, Zhijiang Guo, and Andreas Vla-
chos. 2024. Averitec: A dataset for real-world claim
verification with evidence from the web. Advances
in Neural Information Processing Systems, 36.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin c! robust fact verification with con-
trastive evidence. arXiv preprint arXiv:2103.08541.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. arXiv preprint arXiv:1803.05355.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

117

http://arxiv.org/abs/2106.05707
http://arxiv.org/abs/2106.05707
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

