
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 27–36
November 15, 2024 ©2024 Association for Computational Linguistics

Multi-hop Evidence Pursuit Meets the Web: Team Papelo at FEVER 2024

Christopher Malon
NEC Laboratories America

Princeton, NJ 08540
malon@nec-labs.com

Abstract

Separating disinformation from fact on the web
has long challenged both the search and the
reasoning powers of humans. We show that
the reasoning power of large language mod-
els (LLMs) and the retrieval power of modern
search engines can be combined to automate
this process and explainably verify claims. We
integrate LLMs and search under a multi-hop
evidence pursuit strategy. This strategy gener-
ates an initial question based on an input claim
using a sequence to sequence model, searches
and formulates an answer to the question, and
iteratively generates follow-up questions to pur-
sue the evidence that is missing using an LLM.
We demonstrate our system on the FEVER
2024 (AVeriTeC) shared task. Compared to a
strategy of generating all the questions at once,
our method obtains .045 higher label accuracy
and .155 higher AVeriTeC score (evaluating
the adequacy of the evidence). Through abla-
tions, we show the importance of various de-
sign choices, such as the question generation
method, medium-sized context, reasoning with
one document at a time, adding metadata, para-
phrasing, reducing the problem to two classes,
and reconsidering the final verdict. Our sub-
mitted system achieves .510 AVeriTeC score on
the dev set and .477 AVeriTec score on the test
set.

1 Introduction

Since 2018, the FEVER shared task has chal-
lenged natural language processing systems to ver-
ify claims using a corpus and provide evidence
that witnesses these verdicts. It has evolved from
a simple combination of natural language infer-
ence (NLI) and entailment (Thorne et al., 2018)
to a challenge involving adversarially constructed
claims (Thorne et al., 2019), to a challenge to ver-
ify complex, multi-hop claims using a combination
of tables and free text (Aly et al., 2021). In the
current task, it finally arrives at combating real-

life disinformation on the web (Schlichtkrull et al.,
2023).

Systems are challenged to classify claim texts
as supported, refuted, not enough evidence, or con-
flicting evidence/cherrypicking. In addition to clas-
sifying the claim, the systems must submit a list
of questions and answers about a claim as evi-
dence, with each answer derived from information
on the open web and cited with a URL. Credit is
given only when both the classification matches
the ground truth and the evidence is adequate. The
AVeriTeC score determines evidence adequacy by
thresholding an average of METEOR scores be-
tween each gold QA pair and the corresponding
submitted QA pair in the best assignment of QA
pairs.

This task may involve retrieval and reasoning
skills at a level for which professional journalists
are sometimes employed. The reasoning may in-
volve quote verification, stance detection, or nu-
merical comparisons. The retrieval challenge goes
beyond previous political fact-checking tasks (Os-
trowski et al., 2021; Alhindi et al., 2018) and even
beyond previous FEVER tasks in advancing from
a closed corpus (Wikipedia) to the open web.

Whereas previous FEVER shared tasks needed
to be solved by researcher-trained models, the cur-
rent shared task allows the use of commercial API
components. The winning team in FEVEROUS
based their retriever on fitting a Dense Passage Re-
triever (Karpukhin et al., 2020) to the FEVEROUS
data (Bouziane et al., 2021), but the training data
for FEVER 2024 is quite limited, consisting of
only 3,068 claims, and a retriever trained on user
feedback from worldwide search queries should
easily be more powerful. Additionally, an external
web search engine such as Google Search may pro-
vide additional query understanding features not
found in DPR, as a recent feature (not in the API

27

we used) applies generative AI to search1. Even
though the gold evidence documents are guaran-
teed to appear in the knowledge store provided by
the contest organizers, the snippets may not be ex-
tracted successfully. We found that 297 of the 500
claims in the dev set included gold documents with
empty extracted text. In contrast, web search pro-
vides at least some text even from pages that the
provided web scraper is blocked from accessing.
Therefore, we chose to incorporate web search into
our system.

Relying on a large language model (LLM) such
as GPT-4o (OpenAI, 2024) for reasoning lets us
leverage skills that could not be learned from 3,068
heterogenous claims, and go beyond the simple se-
mantic comparison of an NLI model. Beyond sim-
ple NLI, ChatGPT and GPT-4 have been utilized to
detect hallucinations in text summaries (Luo et al.,
2023), as multi-faceted evaluators that score gener-
ated text (Zheng et al., 2023), and for critiques and
corrections of generated text (Lin et al., 2024).

Though there are many ways of using a search
engine and LLM within a fact-checking system,
our main contribution is to show the power of com-
bining them in a strategy of multi-hop evidence
pursuit, which formulates additional questions only
after searching and formulating answers to previ-
ous questions. In the following sections, we also
investigate the impact of many choices of how the
questions could be generated, the nature and size
of context for generating answers, handling of mul-
tiple search results, metadata, paraphrasing, reduc-
ing the problem to two classes, and reconsidering
the final verdict.

2 Related work

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) provides a general paradigm for en-
abling an LLM to answer questions that surpass the
knowledge encoded in the LLM parameters, which
is a task somewhat isomorphic to verifying claims
(Demszky et al., 2018).

A growing body of work utilizes LLMs as high-
level reasoning controllers that can solve tasks by
querying agents to provide information or solve
subproblems (Xi et al., 2023; Wu et al., 2023a).
An early example for fact-checking an LLM’s own
output was LLM-Augmenter (Peng et al., 2023),
which called an open retrieval pipeline as an agent
action to iteratively improve an LLM response.

1https://blog.google/products/search

Chan et al. (2024) uses an LLM to rewrite, decom-
pose, and disambiguate queries before searching,
and these steps are made into a hierarchy of agents
in Chen et al. (2024). Wang et al. (2024) used
a combination of Google search and GPT-4 with
a single hop to fact-check claims in the FacTool-
KB, FELM-WK, and HaluEval datasets. Behind a
closed API, SearchGPT has been launched in beta
to a few users as a service to provide access to a
search-empowered OpenAI LLM.2

FEVER 2024 presents a multi-hop, open cor-
pus fact verification challenge. In the multi-hop
shared task of FEVEROUS, all but two contestants
collected all the needed evidence up front, after
only reading the claim (Aly et al., 2021). Later top
performers (DCUF, UniFee, SEE-ST) addressed
evidence interaction with graph-based methods but
still did not address evidence that might be missed
by the initial document retrieval (Hu et al., 2022,
2023; Wu et al., 2023b). Malon (2021) estab-
lished an iterative paradigm for fact verification
that retrieves further documents, sentences, and ta-
ble cells by generating follow-up queries that are
formulated after considering only the first retrieval,
which we follow in the present system, in multi-hop
evidence pursuit.

In medical question answering, Xiong et al.
(2024) contemporaneously has proposed “iterative
RAG for medicine” which uses an LLM to gen-
erate follow-up questions considering previous re-
trievals. In our algorithm, the relevance of each
question is assured by generating it only upon a
failure to verify the claim as true or false based on
the existing evidence. Their method may generate
irrelevant questions after an answer could already
be obtained, simply because the fixed numbers of
questions are not achieved, resulting in lower ev-
idence relevance and higher computational cost.
Our system can stop as soon as a verdict is clear,
and if our system is configured to generate addi-
tional questions by paraphrasing, their relevance is
assured by their similarity to the original questions.

3 Methodology

3.1 Overall architecture
Pseudocode outlining the overall system is given
in Algorithm 1, with the main loop shown
in Figure 1. At the core of the system are
question generation functions GetF irstQuestion
and GetNextQuestion, for which we consider

2openai.com/index/searchgpt-prototype/

28

Figure 1: Pursuing additional evidence by generating follow-up questions.

implementations either by sequence-to-sequence
encoder-decoder transformers such as T5 (Raffel
et al., 2020), or by an LLM. The GetAnswer func-
tion (Algorithm 2) prompts an LLM to implement
LLMBestDoc and LLMAnswer to answer the
generated questions. The final verdict is also cho-
sen by prompting an LLM with the generated ques-
tions and answers, in LLMV erdict.

Algorithm 1. Claim verification
Input: Claim c, max questions n
Initialize QA list Q = ∅
Let q = GetF irstQuestion(c)
while |Q| < n and q ̸= True and q ̸= False

Let a = GetAnswer(q, c)
Append (q, a) to Q
Let q = GetNextQuestion(c,Q)
GetNextQuestion outputs True or False
if next question not needed

Let k = |Q|
while |Q| < n

Let i = |Q|
Let q = Paraphrase(qimod k)
Let a = GetAnswer(q, c)
Append (q, a) to Q

Output: v = LLMV erify(Q, c) and Q

Unlike the baseline system (Schlichtkrull et al.,
2023), our system does not generate questions on a
post hoc basis after finding evidence, but generates
questions before web searches, playing a key role
in steering the verification process. Rather than

Algorithm 2. Function GetAnswer(q, c)

Input: Question q, claim c
Let s = c+ q concatenation
Let G = WebSearch(s)
if G = ∅:

Let G = WebSearch(NamedEntities(s))
G = {(url0, quote0), . . . , (url9, quote9)}
Let i = LLMBestDoc(G, q)
Let d = FullDocument(urli)
Let e = AlignContext(d, quotei, 5)
Output: a = LLMAnswer(q, e)

assuming all evidence can be found up front with
a single search query, we review the current set of
evidence and generate text (in our case, a question)
that provides a query to search for what is still miss-
ing and needed after each hop, like the followup
queries introduced in Malon (2021). Whereas the
queries in Malon (2021) were generated by train-
ing a sequence to sequence model to predict what
the missing evidence would look like, our system
prompts an LLM to ask a question that the missing
evidence answers.

The generation of evidence QA pairs temporar-
ily stops when GetNextQuestion thinks it can
classify the claim as supported or refuted without
asking another followup question (see Appendix
B). After that point, the already generated questions
are paraphrased using an LLM and corresponding
answers are found until the desired number of QA
pairs is obtained. Finally, an LLM uses all QA

29

pairs to decide the final classification for the claim.

3.2 Question generation
We consider two variants for the functions
GetF irstQuestion and GetNextQuestion. In
the Seq version, we finetune a sequence-to-
sequence encoder-decoder transformer model.
For GetF irstQuestion, the input is the claim,
and the output is the first question. For
GetNextQuestion, the input is the claim concate-
nated with all previous question-answer pairs, in
the format

Claim: claim Question: question0

Answer: answer0 Question: question1

Answer: answer1 . . .

and the output is the next question to be gener-
ated. These input strings are prefixed with the
string “question: ”. Details of the fine-tuning pro-
cedure are in Appendix A. Question-answer pairs
from the gold data in the training set are used for
this fine-tuning.

The other variant is the LLM version, in which
we prompt the LLM with similar inputs. The
prompts are given in Appendix B. Because LLM
output is often verbose and may contain unnec-
essary explanations, we sentence split the output
and use only the first sentence containing a ques-
tion mark. If this is impossible, we use the whole
output.

If an adequate number of questions and answers
has been generated and the verdict is clear, the
model has the opportunity to output a True or False
verdict to stop the question generation.

As a further ablation, we consider a more
traditional technique of generating all the ques-
tions at once, given the claim. The function
AllAtOnce (prompt in Appendix B) replaces
GetF irstQuestion to generate a set of questions,
and the while loop in Algorithm 1 is replaced
by a loop over the generated questions, calling
GetAnswer but not GetNextQuestion.

3.3 Evidence selection
Here we describe the function GetAnswer, dis-
played in Algorithm 2, which retrieves evidence
and uses it to answer the generated questions.
Prompts for its LLM helper functions are given
in Appendix B.

The generated question is concatenated to the
claim to form a web search query, and the top ten
search results are obtained, including their URL,

the short snippet displayed in the search results, and
usually the page title, site name, and publication
date. When the web search returns no results, we
retry the search using only the named entities (and
other capitalized words after the first word) from
the initial search query, following the supplemen-
tal queries which improved retrieval by Wikipedia
page title lookups in Malon (2018).

By prompting, LLMBestDoc is used to choose
one document that best answers the question from
the set of ten web search hits. We attempt to re-
trieve and scrape the text of that document using
its URL (function FullDocument). This is im-
plemented using the scrape_text_from_url
function provided in the AVeriTeC baseline
(Schlichtkrull et al., 2023), which uses the Python
trafilatura library.3 If the scraping succeeds, we
look for a small window of text (five sentences in
our experiments) that best overlaps the web search
snippet (function AlignContext). Specifically, all
five-sentence windows of the document that in-
clude more than 70% of the words in the web
search snippet are recorded in order, and the mid-
dle such window is taken. Using this window as
the document excerpt provides more background
and context to the text that web search found to be
relevant, while avoiding prompting with the over-
whelming amount of text that might be found in
the full web page. If the scraping fails, we continue
to the next stage using only the web search snippet
as document text.

Because LLMBestDoc depends on parsing
LLM output, it may fail to choose a best document.
If a best document is chosen and the scraping suc-
ceeds, the LLM is prompted to answer the question
using the selected five-sentence window of the best
document in LLMAnswer. If the best document
is chosen and the scraping fails, LLMAnswer is
run using the text of the web search snippet only. If
a best document was not chosen in LLMBestDoc,
we use the full text of the LLM response in that
function as the answer and the web search result
page itself as the evidence.

In LLMBestDoc and LLMAnswer, the
prompt includes not only the text for each doc-
ument, but metadata including the page title, site
name, and publication date, when this metadata
appears in web search results. This metadata may
occasionally be useful in assessing the credibility
or relevance of the information to the question.

3github.com/adbar/trafilatura

30

3.4 Reconsideration and Classification

The Paraphrase function asks the LLM for
paraphrases of the existing questions. In prac-
tice, multiple paraphrases of each question are
requested at once to avoid repeated calls, even
though they are used one at a time. Although
these paraphrases may not be logically necessary
once GetNextQuestion has determined a verdict,
sometimes they provide a chance to reconsider the
same questions using multiple sources. The varia-
tions in wording also improve the AVeriTec score,
as discussed in section 4.

The LLMV erdict function is called after all
question-answer pairs are collected, to choose the
predicted label for each example. Using additional
QA pairs, it may override the decision that stopped
the QA generation process. Table 1 shows the
distribution of labels in the training and develop-
ment sets. “Not Enough Evidence” and “Conflict-
ing evidence / cherrypicking” are minority classes,
and we were unable to predict them with good
F1 score. We obtained a higher score by limit-
ing LLMV erdict to predicting “Supports” or “Re-
futes.”

Class Train Dev
Supported 27.7% 24.4%
Refuted 56.8% 61.0%
NEI 9.2% 7.0%
Conflicting 6.4% 7.6%

Table 1: Distribution of class labels.

4 Experiments

We implement Algorithm 1 using GPT-4o
(gpt-4o-2024-05-13, seed 42) as the LLM,
T5 (t5-large) (Raffel et al., 2020) as the
sequence-to-sequence model, and Google as the
web search engine, and consider various ablations.
For a faster development cycle and reduced mone-
tary cost, Table 2 reports the performance of each
of our systems only on the first 200 examples of
the development set.

4.1 Question formation

Recall from Section 3.2 that in Algorithm
1, the functions GetF irstQuestion and
GetNextQuestion could be implemented
either by Seq or LLM, or instead of Algorithm
1, the questions could be generated AllAtOnce.

Whichever question generation approach is
used, at most five questions are taken from the
question generator and the paraphrase loop of
Algorithm 1 extends the list to five questions.
The submitted system follows Algorithm 1 using
Seq for GetF irstQuestion, and LLM for
GetNextQuestion (Seq+LLM).

The lower performance of the AllAtOnce al-
ternative indicates that this task requires followup
searches considering the evidence already retrieved,
with searches that cannot be anticipated using the
claim alone. It validates our choice to use a multi-
hop evidence pursuit strategy (Malon, 2021).

The LLM+LLM alternative shows that perfor-
mance worsens if we generate the first question
using GPT-4o. An inspection of the data revealed
that the gold first questions were usually simple
rephrasings of the claims, which T5 can learn well,
whereas GPT-4o often tried to generate something
more complicated.

The Seq+Seq alternative shows that performance
worsens if we generate the subsequent questions
using T5. Subsequent gold questions often re-
flected deeper reasoning using the obtained an-
swers, which we suspect are beyond the capabilities
of simple sequence to sequence models.

4.2 Label prediction
We have implementations of LLMV erdict that
use a four-class prompt, or eliminate the “Not
Enough Evidence” (NEI) and “Conflicting Evi-
dence / Cherrypicking” classes to decide only be-
tween “Supported” and “Refuted.” The 4-class re-
sult (otherwise the same as the main system) shows
very low F1 scores for the NEI and Conflicting
classes. As NEI claims form only 7.0% of the
dev set and Conflicting claims form only 7.6%, we
decided that it is always best to guess another label.

Another variant, “No late verdict,” calls
LLMV erdict only if the while loop is not ter-
minated by predicting True or False, and maintains
that early decision even after the paraphrases are
added. (If True is obtained, “Supported” is pre-
dicted and if False is obtained, “Refuted” is pre-
dicted.) The difference in label accuracy shows it
is sometimes useful to consider the whole question
and answer chain from the beginning when forming
a verdict.

4.3 Answer formation
The submitted system uses FullDocument and
AlignContext to obtain longer document contexts

31

System Supp F1 Ref F1 NEI F1 Conf F1 Acc AVeriTec 0.25
AllAtOnce .591 .813 0 0 .705 .340
LLM+LLM .644 .821 0 0 .720 .385
Seq+Seq .638 .816 0 0 .715 .370
4 class .486 .593 .148 .069 .415 .245
No late verdict .643 .811 0 0 .705 .450
No long doc .577 .819 0 0 .705 .465
Multi-doc .673 .837 0 0 .735 .460
No metadata .575 .810 0 0 .700 .410
No paraphrase .701 .839 0 0 .745 .225
Repeat not para .624 .813 0 0 .710 .340
Algorithm 1 .716 .841 0 0 .750 .495

Table 2: Results on the first 200 examples of the dev set

Data Submission Supp F1 Ref F1 NEI F1 Conf F1 Acc AVeriTec 0.25
Dev Algorithm 1 .698 .853 0 0 .754 .486
Dev Inflated to 10 .698 .853 0 0 .754 .510
Test Algorithm 1 — — — — — .445
Test Inflated to 10 — — — — — .477

Table 3: Final results on full datasets

for prompting LLMAnswer. The “No long doc”
ablation uses only the original web search snippet
as context for LLMAnswer. The close perfor-
mance in AVeriTeC score shows that while longer
context is helpful, it is often unnecessary. Scraping
web pages to obtain this longer context has become
difficult as many sites seek to restrain robots, so
relying on snippets is convenient. In cases where
our scraping fails, the original snippet is returned
by FullDocument anyway.

The “Multi-doc” ablation calls LLMAnswer
using all ten search hits and their snippets, without
calling LLMBestDoc to focus on one. It is very
close to our system in label accuracy. Although it
narrows the depth and context of information pre-
sented to LLMAnswer, it may have advantages
in presenting multiple possible perspectives.

Metadata for each document context is usually
presented to LLMAnswer in the form

Document i : (title, from site, published date)

The lower label accuracy and AVeriTeC score of the
“No metadata” variant show that knowing where
evidence came from is helpful to the LLM.

4.4 Evidence length
When the label is predicted correctly for an ex-
ample, the AVeriTeC score thresholds an exam-

ple score, which is computed as the sum of the
METEOR scores between gold QA pairs and best
matching predicted QA pairs, divided by the num-
ber of gold QA pairs. Whenever fewer QA pairs
are predicted than gold QA pairs, those gold QA
pairs contribute zero to this average. Therefore,
to optimize the AVeriTec score, it is important to
predict at least as many QA pairs as the number of
gold pairs, even if the some predicted pairs match
poorly.

A system could submit up to ten QA pairs for
each example. However, only 5% of examples had
more than five gold QA pairs in the development
set. Since the ultimate objective is optimizing hu-
man evaluation rather than AVeriTeC score and
reading more than five QA pairs may be frustrating
for a human, we initially applied our systems to
produce five QA pairs per question.

For many examples, Algorithm 1 could reach de-
cisions of q = True or q = False in its first loop
of GetF irstQuestion and GetNextQuestion
using fewer than five QA pairs. We compared the
score obtained by repeating QA pairs, or by ask-
ing the LLM to paraphrase the existing questions
in the second loop of Algorithm 1, until five QA
pairs were obtained. In the case of paraphrase,
new answers are sought for the rewritten questions.
Besides improving the AVeriTeC score, the new an-

32

swers may be used to reconsider the final verdict.
The “No paraphrase” ablation has a minimal ef-

fect on label accuracy, but since fewer QA pairs
are generated, AVeriTec score is less than half the
score of the submitted system. “Repeat not para-
phrase” to get five QA pairs can recover some of
the AVeriTeC score, but the paraphrases help the
METEOR score of the best assignment much more
than duplicates.

Ten QA pairs is the upper limit, and submitting
additional QA pairs up to ten can only improve the
score of the best assignment between submitted
pairs and gold pairs. We took our five generated
QA pairs from Algorithm 1 (GetF irstQuestion,
GetNextQuestion, and paraphrasing) and dupli-
cated them to submit ten. Naturally, repeating
can be helpful if one generated QA pair addresses
points raised in multiple gold QA pairs. The effect
of inflating the QA pairs on our full dev set and test
set performance is shown in Table 3.

5 Conclusion

The AVeriTeC shared task is a realistic fact-
checking challenge on actual web disinformation.
The best large language models offer the deep rea-
soning power needed to pursue missing evidence
to verify claims, and the best web search engines
provide the vast document indices and retrieval
capabilities needed to find it.

We have contributed a multi-hop evidence pur-
suit framework which combines the strengths of
sequence to sequence models with LLMs to gen-
erate first question and subsequent questions sepa-
rately, considering the present information; to stop
pursuit once the answer is clear; and to embellish
evidence by paraphrasing before considering the
whole evidence chain to make the final verdict.
Ablations indicate the importance of each design
choice. Multi-hop evidence pursuit outperforms
trying to generate all questions in one step. Reduc-
ing the number of classes, and using metadata and
multi-sentence context from one best document,
were important in obtaining our best performance.

The fact checking system presented may be use-
ful to expedite the work of human fact checkers or
provide a more rapid preliminary response to disin-
formation. Its full explainability could mitigate the
effect of misclassifications, if the explanations were
read and considered by a human. Over a history
of many claims, ratings of disinformation from our
system and/or human fact checkers could be used

to rate the credibility of an information source.

Limitations

When “Not Enough Evidence” (NEI) is an option,
an LLM tends to select it too often. Our system
was unable to predict either NEI or “Conflicting
Evidence / Cherrypicking” with acceptable accu-
racy. Considering this, and the fact the overall label
accuracy is only .754, humans should be cautious
in trusting this system’s output to verify a claim
without reading the rationale.

LLMs have insufficient information to judge the
overall credibility of a website, and currently just
the site name is given for the LLM’s consideration.
Metadata including the site name helps (to give an
example from the dev set, GPT-4o was aware or
discovered through its searches that Scoopertino
was a satirical website), but generally, misinforma-
tion that is corroborated elsewhere on the web may
fool our fact checking system.

Although the LLM is always prompted to an-
swer questions “based on the above information”
quoted from retrieved documents or its previous
answers, there is no guarantee that the LLM does
not apply other, untraceable knowledge in forming
its answers. We use a date filter to ensure that all
web searches return documents only from before
each claim date, but we use an LLM whose training
cutoff is after the claim dates.

Novel information first reported, which has no
basis in existing documents, can never be fact-
checked with the techniques of this system (for
example, the first report that a presidential candi-
date was shot). That kind of fact checking requires
judgments of plausibility, credibility, and consis-
tency that are out of scope for this system.

References
Tariq Alhindi, Savvas Petridis, and Smaranda Mure-

san. 2018. Where is your evidence: Improving fact-
checking by justification modeling. In Proceedings
of the First Workshop on Fact Extraction and VERi-
fication (FEVER), pages 85–90, Brussels, Belgium.
Association for Computational Linguistics.

Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,
James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. The fact extraction and VERification
over unstructured and structured information
(FEVEROUS) shared task. In Proceedings of the
Fourth Workshop on Fact Extraction and VERifica-
tion (FEVER), pages 1–13, Dominican Republic.
Association for Computational Linguistics.

33

https://doi.org/10.18653/v1/W18-5513
https://doi.org/10.18653/v1/W18-5513
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1

Mostafa Bouziane, Hugo Perrin, Amine Sadeq, Thanh
Nguyen, Aurélien Cluzeau, and Julien Mardas. 2021.
FaBULOUS: Fact-checking based on understanding
of language over unstructured and structured informa-
tion. In Proceedings of the Fourth Workshop on Fact
Extraction and VERification (FEVER), pages 31–39,
Dominican Republic. Association for Computational
Linguistics.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. Rq-rag: Learn-
ing to refine queries for retrieval augmented genera-
tion. Preprint, arXiv:2404.00610.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Jiangning
Liu, Wenwei Zhang, Kai Chen, and Feng Zhao. 2024.
Mindsearch: Mimicking human minds elicits deep ai
searcher. Preprint, arXiv:2407.20183.

Dorottya Demszky, Kelvin Guu, and Percy Liang.
2018. Transforming question answering datasets
into natural language inference datasets. Preprint,
arXiv:1809.02922.

Nan Hu, Zirui Wu, Yuxuan Lai, Xiao Liu, and Yansong
Feng. 2022. Dual-channel evidence fusion for fact
verification over texts and tables. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5232–5242,
Seattle, United States. Association for Computational
Linguistics.

Nan Hu, Zirui Wu, Yuxuan Lai, Chen Zhang, and Yan-
song Feng. 2023. UnifEE: Unified evidence extrac-
tion for fact verification. In Proceedings of the 17th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 1150–
1160, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking llms for critique-correct reasoning.
Preprint, arXiv:2402.14809.

Zheheng Luo, Qianqian Xie, and Sophia Ananiadou.
2023. Chatgpt as a factual inconsistency evaluator
for text summarization. Preprint, arXiv:2303.15621.

Christopher Malon. 2018. Team papelo: Trans-
former networks at FEVER. In Proceedings of the
First Workshop on Fact Extraction and VERification
(FEVER), pages 109–113, Brussels, Belgium. Asso-
ciation for Computational Linguistics.

Christopher Malon. 2021. Team papelo at FEVEROUS:
Multi-hop evidence pursuit. In Proceedings of the
Fourth Workshop on Fact Extraction and VERifica-
tion (FEVER), pages 40–49, Dominican Republic.
Association for Computational Linguistics.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Wojciech Ostrowski, Arnav Arora, Pepa Atanasova, and
Isabelle Augenstein. 2021. Multi-hop fact check-
ing of political claims. In Proceedings of the Thir-
tieth International Joint Conference on Artificial In-
telligence, IJCAI-21, pages 3892–3898. International
Joint Conferences on Artificial Intelligence Organi-
zation. Main Track.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check
your facts and try again: Improving large language
models with external knowledge and automated feed-
back. Preprint, arXiv:2302.12813.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Michael Schlichtkrull, Zhijiang Guo, and Andreas Vla-
chos. 2023. Averitec: A dataset for real-world claim
verification with evidence from the web. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 65128–65167. Curran Associates,
Inc.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal. 2018.
The fact extraction and VERification (FEVER)
shared task. In Proceedings of the First Workshop on
Fact Extraction and VERification (FEVER), pages 1–
9, Brussels, Belgium. Association for Computational
Linguistics.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal. 2019.
The FEVER2.0 shared task. In Proceedings of the
Second Workshop on Fact Extraction and VERifica-
tion (FEVER), pages 1–6, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Yuxia Wang, Revanth Gangi Reddy, Zain Muham-
mad Mujahid, Arnav Arora, Aleksandr Rubashevskii,
Jiahui Geng, Osama Mohammed Afzal, Liang-
ming Pan, Nadav Borenstein, Aditya Pillai, Isabelle
Augenstein, Iryna Gurevych, and Preslav Nakov.
2024. Factcheck-bench: Fine-grained evaluation
benchmark for automatic fact-checkers. Preprint,
arXiv:2311.09000.

34

https://doi.org/10.18653/v1/2021.fever-1.4
https://doi.org/10.18653/v1/2021.fever-1.4
https://doi.org/10.18653/v1/2021.fever-1.4
https://arxiv.org/abs/2404.00610
https://arxiv.org/abs/2404.00610
https://arxiv.org/abs/2404.00610
https://arxiv.org/abs/2407.20183
https://arxiv.org/abs/2407.20183
https://arxiv.org/abs/1809.02922
https://arxiv.org/abs/1809.02922
https://doi.org/10.18653/v1/2022.naacl-main.384
https://doi.org/10.18653/v1/2022.naacl-main.384
https://doi.org/10.18653/v1/2023.eacl-main.82
https://doi.org/10.18653/v1/2023.eacl-main.82
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2402.14809
https://arxiv.org/abs/2402.14809
https://arxiv.org/abs/2303.15621
https://arxiv.org/abs/2303.15621
https://doi.org/10.18653/v1/W18-5517
https://doi.org/10.18653/v1/W18-5517
https://doi.org/10.18653/v1/2021.fever-1.5
https://doi.org/10.18653/v1/2021.fever-1.5
https://arxiv.org/abs/2303.08774
https://doi.org/10.24963/ijcai.2021/536
https://doi.org/10.24963/ijcai.2021/536
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
https://arxiv.org/abs/2302.12813
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd86a30526cd1aff61d6f89f107634e4-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd86a30526cd1aff61d6f89f107634e4-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.18653/v1/W18-5501
https://doi.org/10.18653/v1/W18-5501
https://doi.org/10.18653/v1/D19-6601
https://arxiv.org/abs/2311.09000
https://arxiv.org/abs/2311.09000

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-
lah, Ryen W White, Doug Burger, and Chi Wang.
2023a. Autogen: Enabling next-gen llm appli-
cations via multi-agent conversation. Preprint,
arXiv:2308.08155.

Zirui Wu, Nan Hu, and Yansong Feng. 2023b. En-
hancing structured evidence extraction for fact ver-
ification. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6631–6641, Singapore. Association for
Computational Linguistics.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey. Preprint, arXiv:2309.07864.

Guangzhi Xiong, Qiao Jin, Xiao Wang, Minjia Zhang,
Zhiyong Lu, and Aidong Zhang. 2024. Improv-
ing retrieval-augmented generation in medicine
with iterative follow-up questions. Preprint,
arXiv:2408.00727.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

A Fine-tuning

A t5-large model was fine-tuned for three
epochs with batch size 4, maximum source
length 64 or 256 for GetF irstQuestion or
GetNextQuestion, and maximum target length
64. For the AdamW optimizer, default Hugging-
face values of 5× 10−5 were used for the learning
rate, β1 = 0.9, and β2 = 0.999. The model was
prompted with the prefix “question: ” followed by
the inputs. Only gold data from AVeriTeC was used
for the fine-tuning of each model.

B Prompts

GetFirstQuestion. For the LLM variant, the
prompt is:

We are trying to verify the following
claim by speaker on date. Claim: claim
We aren’t sure whether this claim is true

or false. Please write one or more ques-
tions that would help us verify this claim,
as a JSON list of strings. Keep the list
short.

The JSON is parsed and only the first string in the
list is used.

AllAtOnce. For the AllAtOnce variant, we use
the same prompt as GetF irstQuestion to get the
questions, but we keep the entire list.

GetNextQuestion. For the LLM variant, the
prompt is:

We are trying to verify the follow-
ing claim by speaker on date. Claim:
claim So far we have asked the ques-
tions: Question 0: question0 An-
swer: answer0 Question 1: question1

Answer: answer1 . . . Based on these
questions and answers, can you verify
whether the claim is true or false? Please
answer [[True]] or [[False]], or
ask one more question that would help
you verify.

The response is searched for [[True]] or
[[False]]. If neither is found, then the response
is sentence tokenized with the sent_tokenize
function of NLTK 3.8.1 and the first sentence that
includes a question mark is returned.

LLMBestDoc. The prompt is:

We searched the web and found
the following information. Docu-
ment 0 (title0, from site0, published
date0): snippet0 Document 1 (title1,
from site1, published date1): snippet1
. . . Document 9 (title9, from site9, pub-
lished date9): snippet9 Based on the
above information, please answer the
following question, referring to the one
document that best answers the question.
question

Note that the original claim is not used in this
prompt. The response is searched with a regex for
the first instance of Document\s+([0-9])/ or
Documents[0-9,]+and ([0-9]+) and
the corresponding numbered document is taken. If
the regex search fails, the search result page itself
is used as context for answering the question, and
the full response is used as the answer.

LLMAnswer. Unlike LLMBestDoc, this is
called with context from one document. The
prompt is:

35

https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://doi.org/10.18653/v1/2023.emnlp-main.409
https://doi.org/10.18653/v1/2023.emnlp-main.409
https://doi.org/10.18653/v1/2023.emnlp-main.409
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2408.00727
https://arxiv.org/abs/2408.00727
https://arxiv.org/abs/2408.00727
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf

We searched the web and found the
following information. Document (title,
from site, published date): context
Based on the above information, please
answer the following question. question

The entire response is used as the answer.
Paraphrase. The prompt is:

Please give four ways to rephrase the
following question. Give your answer as
a JSON list of strings, each string being
one question. Question: question

LLMVerify. The prompt is:

We are trying to verify the follow-
ing claim: claim Based on our web
searches, we resolved the following ques-
tions. 0. question0 answer0 . . .k.
questionk answerk Is the claim (A)
fully supported by the evidence, or (B)
contradicted by the evidence? Please re-
spond in the format [[A]] or [[B]].

We search the response for [[A]] or [[B]]. For
the four class variant, the end of the prompt is:

Is the claim (A) fully supported by
the evidence, (B) contradicted by the ev-
idence, (C) insufficient information, or
(D) conflicting evidence? Please respond
in the format [[A]], [[B]], [[C]],
or [[D]].

36

