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Abstract

Summarizing documents with Large Language
Models (LLMs) warrants a rigorous inspec-
tion of the resulting outputs by humans. How-
ever, unaided verification of generated outputs
is time-intensive and intractable at scale. For
high-stakes applications like healthcare where
verification is necessary, expediting this step
can unlock massive gains in productivity. In
this paper, we focus on the task of evidence
extraction for abstractive summarization: for
each summary line, extract the corresponding
evidence spans from a source document. View-
ing this evidence extraction problem through
the lens of extractive question answering, we
train a set of fast and scalable hierarchical archi-
tectures: EarlyFusion, MidFusion, and LateFu-
sion. Our experiments show that (i) our method
outperforms the state-of-the-art by 1.4% rela-
tive F1-Score; (ii) our model architecture re-
duces latency by 4x over a RoBERTa-Large
baseline; and (iii) pretraining on an extractive
QA corpus confers positive transfer to evidence
extraction, especially in low-resource regimes.

1 Introduction

Suppose we train an LLM to summarize a doctor-
patient conversation into a clinical note. Such mod-
els could save physicians hours each day. However,
an auditing step is still requisite. This auditing in-
volves repeatedly diving through a long transcript
to find relevant information for every detail that ap-
pears in the note (see fig.1). Without an automated
mechanism that makes this process efficient, can
we really say that we’ve saved a clinician any time?

Workflows that involve grounded tasks that op-
erate on top of a source document (e.g. summa-
rization, dialogue and translation) (Touvron et al.,
2023; Bubeck et al., 2023; Widyassari et al., 2022;
Rafailov et al., 2023; Liang et al., 2023) are well
suited for LLMs (Krishna et al., 2021; Lehman
et al., 2019; Lei et al., 2016; Asan et al., 2020).
However, owing to the lingering limitations of

Figure 1: Verifying details in a clinical note requires
perusing long conversation transcripts to find substanti-
ating evidence.

these models, humans have remained firmly in the
loop, providing last-mile verification of the model’s
outputs. In these setups, an individual may spend a
significant amount of time on verification of LLM-
generated first drafts. For grounded tasks, verifying
each generated sentence can be broken down into
two steps (i) locating a span of text from the much
larger source document that has information related
to that sentence; (ii) using the obtained span to form
conclusions about correctness. With long sources
(e.g. hour-long conversation transcripts), it’s likely
that carrying out the first step of extracting the right
span of evidence proves more cumbersome than
using the extracted evidence to make conclusions.
Furthermore, this problem is exacerbated as the
transcript grows in length. Therefore, we present
automated Evidence Extraction (EE) as an efficient
and scalable way to reduce verification time and
fully realize the benefits of workflow automation.
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Figure 2: Architectures of the Early, Mid and LateFusion models. Breaking down the source document into
sentences helps scale to large documents. In Late and MidFusion architectures the encoders are separated allowing
us to cache the embeddings of the sentences of the source. In the MidFusion model, we do not immediately select
the CLS embedding but concatenate with the query embeddings for an intermediate transformer step.

In this work, we pose the Evidence Extraction
(EE) problem as follows: Given a sentence that re-
quires verification (query) and a source document
D that this line should be grounded in, can we
identify spans in D (evidence-spans) that contain
information relevant to the query? We immediately
notice a parallel to Extractive Question Answering
(QA): query to question, source to passage, and
evidence to answer. This parallel allows us to (i)
explore designs for model architectures drawing in-
spiration from the dual-encoder and cross-encoder
families in QA; (ii) explore the benefits that train-
ing on QA datasets confer to EE. The latter point
proves useful since EE data is hard to come by
while ample amounts of QA datasets are available.

In our work, we are focused on exploring simple
architectures that are scalable and fast when work-
ing with source documents that span beyond thou-
sands of words. For scaling to longer documents,
we consider hierarchical architectures that break
down a source document into sentences which
are encoded independently through RoBERTa-like
backbones. We then add document-wide context by
concatenating them along the sequence dimension
and passing them through an LSTM. For speed, we
aim to decouple the encoding of the query and the
encoding of the source document. This allows us
to amortize the higher cost of computing source
document embeddings by caching them for reuse

upon subsequent queries on the same source. Af-
ter the decoupled encoding process, we combine
the obtained source and query embeddings in a
Late-Fusion step (see Figure 2).

On the flip side, while slow, we find that early
fusion of the query string with each sentence in
the source is easier to train and performs well due
to query-conditioned encoding of the source sen-
tences. We explore an optimal point in the trade-off
between performance and throughput and advocate
for the use of our proposed MidFusion (MF) archi-
tecture that finds an intermediate point to include
query-source cross attention. Further, the perfor-
mance gap between the Late, Mid and Early Fusion
models narrows with access to more training data,
or in its absence, QA pretraining data. Thus, prac-
titioners can follow the two step strategy of pre-
training an MF architecture on QA data followed
by finetuning on available EE data.

Our EarlyFusion (EF) model outperforms the
State-of-the-Art on the Unified Summarization
Benchmark (USB) dataset by 1.4% relative while
our MidFusion model following the two step strat-
egy is 5.8x faster while performing within 5% rela-
tive F-Score. On our medical dataset, we find the
gap between the three models to be far less em-
phatic due to our access to nearly 0.5M training
points. Further, while F-Score reflects the trade-
off between precision and recall, we also compute
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human-agreement (HA) of displayed evidence us-
ing human annotators on our Medical Dataset. We
find that the HA of EF is 96%, MF 94%, LF 90%
highlighting a gap between the efficacy of these
methods under span selection metrics versus hu-
man judgement of helpful evidence. As an addition,
we collect feedback from two clinicians who used
our EE models for verifying LLM generated clini-
cal notes in real clinics. We begin by highlighting
relevant prior work in the next section.

2 Related Work

Innovations in better LLM generations are plenty
(Lewis et al., 2020; Wallace et al., 2021; Choubey
et al., 2021; Wei et al., 2022; Ramprasad et al.,
2023; Rafailov et al., 2023). However, our work
is situated among post-hoc methods that serve to
increase trust in these generations. With the ten-
dency of LLMs to hallucinate (Kalai and Vempala,
2023; Xu et al., 2024) there has been growing in-
terest in post-hoc evaluation of the factuality of
LLM generations (Zhang et al., 2021; Manakul
et al., 2023; Wei et al., 2024; Goyal and Durrett,
2021; Honovich et al., 2022). Our work considers
applications where the aim is not to automatically
evaluate each generation but to retrieve supporting
material from the source to aid a human with verifi-
cation. Thus, while scoring the extent of factuality
is useful, they cannot replace human spot-checking
when an LLM is deployed in a low-risk setting.

While there are similarities with the line of work
in Lei et al. (2016); Lehman et al. (2019); Jain et al.
(2020) that highlight regions of the input that have
correlation with model predictions, they are closer
to explaining predictions than explicitly retrieving
supporting material. Similar ideas also appear in
MultiHop QA works Zhao et al. (2023); Tu et al.
(2020); Nishida et al. (2019), but differ in our fo-
cus on scale and domain adaptation. The meth-
ods in Pruthi et al. (2020) tackle the EE problem
in Deep NLP, as we framed it, although they are
limited to classification tasks. Further, Kryściński
et al. (2019) builds EE and factuality verification
models with weak supervision, but their method
does not handle cross-sentence dependencies or co-
reference resolution. More recently, Stammbach
(2021); DeHaven and Scott (2023); Krishna et al.
(2023); Wadden et al. (2021, 2020) all tackle the
EE task, but are distinct given our focus on scala-
bility, speed, and establishing the benefits of QA
pretraining for EE. An open-source benchmark for

Domain # of Examples
Train Valid Test

Biographies 3740 1875 3642
Landmarks 0 0 211
Disasters 247 122 256
Newspapers 0 0 137
Companies 162 75 156
Schools 220 123 235

Table 1: Number of examples across different domains
for the train, validation, and test splits of the Unified
Summarization Benchmark (USB) dataset.

EE is introduced in (Krishna et al., 2023) along
with the state-of-the-art methods on this dataset
which we compare against.

3 Methodology

We have a source document D made up of compo-
nents u ∈ U . Unless mentioned otherwise, u is a
sentence (we make explicit when u is a token). An
operation (e.g. summarization) on D results in an
output O. For each sentence q ∈ O (e.g summary
sentence) we need to find an evidence span E ⊂ U .
We refer to q as query. Intuitively, E should have
sentences u that contain information relevant to q.

3.1 Proposed Architectures

EarlyFusion Hierarchical Classification For
scalability, we first consider a hierarchical archi-
tecture that encodes each utterance ui indepen-
dently, while adding document-wide context at a
later step. This allows us to scale inference to arbi-
trarily long documents since we batch through the
sentences that make up the document. We begin
by concatenating the tokens of the query q with
the tokens of the ith sentence ui, separated by a
demarcating </s> token. Denote each such query-
sentence sequence fi. Then each fi is pushed
through an encoder backbone (e.g. RoBERTa (Liu
et al., 2019)) and the vector corresponding to the
CLS token is taken to obtain an embedding ri. We
add document-wide context by concatenating all
the sentence embeddings ris into a sequence and
passing this through an LSTM, whose outputs are
pushed through a classification head to obtain log-
its li. We consider the sigmoid of the logit σ(li) to
be the score si to include ui in the evidence set E.

LateFusion Hierarchical Classification While
processing the document hierarchically allows us
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to scale inference to long documents , it does not
contribute to faster inference. The main bottleneck
is pushing each query-sentence pair through a large
backbone like RoBERTa (Liu et al., 2019). If a
second query on the same source D originates, we
would repeat the entire process. This overhead
could be avoided if we independently obtain sen-
tence embeddings for D and reuse them for every
query based off of D. Therefore, we consider a late
fusion of sentence and query embeddings as fol-
lows: Each sentence ui is pushed through the back-
bone (e.g.RoBERTa) and the vector corresponding
to the CLS token is selected as the sentence embed-
ding ri. These embeddings ris can be cached. In
order to find an evidence set for query q, push the
query through the backbone and select the vector
corresponding to the CLS token as the query embed-
ding rq. Now concatenate rq vector and ri vector
to get the late-fused embeddings denoted as, say
fi. Finally, to add document wide context, concate-
nate these fused embeddings fis into a sequence
which is pushed through an LSTM. Use a classi-
fication head on the outputs of the LSTM for this
sequence to obtain logits li on which we apply a
sigmoid to obtain scores si for each sentence. For
each subsequent query on this source, we can reuse
ris and only need to recompute a single push of
the new query through the backbone followed with
relatively lightweight LSTM and linear operations.

MidFusion Hierarchical Classification The
LateFusion architecture removes several layers of
cross-attention between the tokens in the query and
the tokens in source sentences that the EarlyFu-
sion architecture enjoys, rendering it much weaker.
This leads us to explore where such cross attention
could be included while still allowing us to cache
the outputs of the backbone model on the source
sentences. In the previous architectures, we im-
mediately compress the backbone outputs on the
source sentences and the query by simply selecting
the CLS token’s embedding alone. Consider instead
that we delay this compression. We could now con-
catenate the query’s token level embeddings with
each of the source sentence’s token level embed-
dings to form a query-sentence sequence, instead of
concatenating the query tokens themselves with the
source sentence tokens (as we did in EarlyFusion).
Formally, push each sentence ui through the back-
bone encoder to obtain token level embeddings ti
for each sentence ui. Cache these embeddings. To
find an evidence set for a query q, push the query

through the backbone encoder to obtain query em-
beddings tq. Now concatenate the query embed-
ding sequence with the token embedding sequence
to obtain sequence embeddings [tq, ti]. These con-
catenated embedding sequences are passed through
a transformer layer, and the outputs of the trans-
former layer are mean pooled into a single vector ri.
Document wide context is now added by concate-
nating these ris into a sequence and operating an
LSTM on them, followed through by a classifica-
tion head. We find that this additional transformer
layer before the compression into a single vector
with mean-pooling is competitive with the Early-
Fusion architecture while still being much faster.

All these architectures are depicted in Figure 2.

Figure 3: F-Score vs Throughput tradeoff for the three
fusion types along with the baseline (adopted from (Kr-
ishna et al., 2023)). We use RoBERTa-Large as the back-
bone encoder. Throughput is computed as an average
across the examples in the test split of the USB dataset.
We note that the MF model outperforms previous state-
of-the-art while having much higher throughput.

3.2 Parallel to Extractive QA
Our Evidence Extraction problem as framed is es-
sentially a span identification problem. Thus, a
parallel can be drawn between our task and an ex-
tractive QA task (Pearce et al., 2021; Lewis et al.,
2019; Xu et al., 2021): query to question, evidence
to answer, and source document to passage. An
answer in QA tasks is less subjective than evidence
and usually has a clearly identified location in the
passage. Viewing Evidence Extraction as a harder
QA task leads us to explore the benefits of pretrain-
ing on QA data. Given the comparatively much
higher quantities of QA datasets, we could lever-
age them for the following reasons:

1. The need to operate in low-data regimes
Document-Query-Evidence data tuples are
scarce. Furthermore, enterprises often update
their language models, but re-annotating new
EE data each the time the LLM is swapped
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Model F-Score

RoBERTa Large 71.01
T5-Large 77.22
Flan-T5-Large 77.71

Early Fusion (ours) 77.32
Early Fusion++ (ours) 78.80

Mid Fusion (ours) 51.21
Mid Fusion++ (ours) 74.50

Late Fusion(ours) 36.80
Late Fusion++ (ours) 53.06

Llama-13B 5.56
Vicuna-13B 6.65
GPT-3.5-turbo 26.78

Table 2: Results on the USB 4.1 test set. We compute
the F-Score at a corpus level by stacking predictions and
ground truth for sentences across examples to compute
Precision and Recall. ++ indicates models that were
first trained on a QA Pretraining Corpus 4.3. The first 3
methods are state-of-the-art from (Krishna et al., 2023).

is impractical. Therefore, the EE model may
have to be trained in a low-data regime.

2. Domain Adaptation gains Krishna et al.
(2023) show that the gains from increasing
quantities of in-domain EE train data on OOD
test data plateaus. In our experiments we find
that pretraining on a related but different task
unlocks further domain adaptation gains.

3. Bi-encoders perform better with more data
Models like our Late and MidFusion models
typically converge and perform better when
they have access to ample amounts of data.
See performance gaps in Table 2 vs Table 4.

We include additional comments and rationale
on our methodology in Appendix F.

4 Datasets

4.1 Unified Summarization Benchmark (USB)

The USB dataset (Krishna et al., 2023) is a Wiki-
derived benchmark containing annotations for 8
summarization-related tasks. One of those tasks
is EE, providing a testbed that is (i) open-source;
(ii) presents a low-data regime; (iv) has natural do-
main splits that allow for testing OOD performance.
Dataset statistics are presented in Table 1.

4.2 Medical Dataset

Clinical documentation is one of the leading causes
of physician burnout in the United States (Gaffney
et al., 2022; Sinsky et al., 2016). Following each
encounter, physicians are required to author a
SOAP note that covers (S)ubjective (O)bjective
(A)ssessment and (P)lan information summariz-
ing the appointment. Traction has been gained by
automating the generation of this note using Foun-
dation Models (e.g. see Abridge AI). We use a
unique corpus containing thousands of recorded
clinical conversations (in English) with correspond-
ing SOAP notes created by an annotation work-
force trained in SOAP note standards. Composed
of 6862 visits of real-life patient-doctor encounters
(de-identified to remove PHI information and with
full consent), our dataset presents for each visit a
trained-worker-scribed transcript, segmented into
utterances along with a SOAP note. The conver-
sations are 1.5k words on average. Further, each
sentence in the SOAP note is annotated with a sup-
porting evidence span from the conversation. We
split the dataset into 5770, 500 and 592 notes for
train, validation and test splits. Considering each
[SOAP note sentence, evidence utterances] tuple
as a data point results in 400k train, 50k valid and
50k test samples.This dataset is not open-sourced
due to the sensitive nature of the data.

4.3 QA Pretraining Corpus

Our QA Pretraining Corpus is formed by combin-
ing three popular Question Answering datasets:
SQuAD V1 (Rajpurkar et al., 2016), HotPotQA
(Yang et al., 2018), and BioASQ datasets (Krithara
et al., 2023). We setup the span-selection problem
as sentence classification, to resemble our down-
stream formulation (Ram et al., 2021). The dataset
details are presented in the Appendix in Table 10.

4.4 SynthMed: Synthetically Curated
Extractive QA on PubMed Articles

Domain-specific extractive QA datasets are falling
out of favor as more focus is given to freeform
answer generation. This in tandem with the idea
that training on domain-specific extractive QA
might be more beneficial than general extractive
QA leads us to explore the synthetic generation of
domain-specific extractive QA datasets using GPT-
4 (Achiam et al., 2023). Given PubMed documents,
we prompt GPT-4 to generate QA pairs. We tai-
lor the prompt to focus on challenging questions
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Train Domain Biographies Companies Disasters Landmarks News Schools

Mid Fusion 52.15 35.10 31.82 34.84 36.12 40.75
Mid Fusion++ 68.08 50.39 42.13 51.01 52.54 48.89

Table 3: Domain Shift experiments on USB dataset. We train the midfusion model on Biographies without (first
row) and with (second row) pretraining. We then evaluate its performance on other domains. F-Scores are presented.

Method Base Model Precision Recall HA

BM25 - 63.01 39.00 65.00
Dual Encoder Retriever Longformer 79.02 72.10 83.00

Late Fusion (Span Extraction) RoBERTa-base 74.42 79.06 85.00
Late Fusion (Classification) RoBERTa-base 75.61 80.29 90.00
Mid Fusion (Classification) RoBERTa-base 76.37 82.18 94.00
Early Fusion (Classification) RoBERTa-base 81.29 83.16 96.40

Table 4: Evidence Extraction results on the test split of our Medical Dataset 4.2. We compute the metrics at a
character level for better comparison between different granularities and tokenizers. HA (Human Agreement)
percentage of examples where the predicted evidence was considered satisfactory by humans.

Method Precision Recall HA

Late Fusion (SE) 65.41 65.72 74.40
Late Fusion (C) 68.21 67.13 76.00
Mid Fusion (C) 71.22 71.98 80.00
Early Fusion (C) 75.27 73.62 84.80

Table 5: EE results on a modified test split of our medi-
cal data 4.2 where the queries are modified by applying
stochastic rules such as token dropout and reordering.
Metrics are computed at a character level. SE: Span
Extraction, C: Classification, HA: Human-Agreement.
All methods use RoBERTa-base as the backbone.

that have low lexical overlap with the extractive
answer, involving multi-hop reasoning, and strictly
grounded to the document. We similarly try to gen-
erate synthetic Evidence Extraction data but find
the generated examples to be of lower quality, often
with high lexical overlap between the query and
evidence, and sometimes altogether incorrect. For
examples and details including the exact prompts
used to generate them, refer to Appendix A.

5 Experiment Setup

5.1 General Evidence Extraction

Our first line of experiments aims to test our pro-
posed hierarchical architectures on an open-source
benchmark. Accordingly, we use a dataset which
contains scope for Evidence Extraction: the USB
dataset 4.1. We run experiments with the MidFu-

sion architecture, comparing its domain adaptation
performance with and without pretraining. USB
provides an organic way to measure domain adap-
tation capacity by demarcating their data into pre-
specified domains. We train on the Biographies
domain and test on the others, providing insights
into the benefits of pretraining on out-of-domain
data.

We borrow previous state-of-art results on this
dataset from (Krishna et al., 2023). We carry out
our experiments with RoBERTa-Large (Liu et al.,
2019), while adapting the state-of-the-art t5-large
(Raffel et al., 2020) and flan-t5-large (Chung et al.,
2022) results from (Krishna et al., 2023). We
note that there is a discrepancy in the sizes of
these models (the t5-large family is at 770M, while
RoBERTa-large has 355M parameters with negli-
gible additions from the added LSTM and dense
layers) which places us at a disadvantage.

5.2 Medical Evidence Extraction

Our second line of experiments, compares method-
ologies on our Medical Dataset 4.2. In addition
to our hierarchical classification methods, we also
include straightforward dual-encoder token-level
span selection, as well as LateFusion when posed
as span selection. The dual-encoder token-level
approach simply encodes the entire transcript using
an encoder, and the query using an encoder, con-
catenates the encodings and classifies start and end
tokens for evidence, without any hierarchy involve-
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ment. For completeness, we also show the result
obtained by a simple BM25 baseline (Robertson
et al., 2009). Refer Table 4. For the dual-encoder
token-level method we use Longformer (Beltagy
et al., 2020) as the choice of backbone for support-
ing the encoding of long transcripts, while for the
hierarchical methods we stick to RoBERTa-base.
In addition to Precision and Recall we include an
additional metric Human-Agreement (HA) which
measures the fraction of examples where a human
annotator is satisfied with the conciseness and cov-
erage of the surfaced evidence. It is important
to note that Precision and Recall are computed
on a test set with 10,000 examples, but Human-
Agreement is computed on a random subset of 250
examples since it requires human labor.

In order to test the robustness of our models,
we simulate mild distribution shift by adding con-
trolled noise to the queries in the test set. Collab-
oration with Abridge helped us identify realistic
noise models that emulate the characteristics of
noise observed in hospital systems. These results
are presented in Table 5. The noise model is a
combination of stochastic token drop in the query,
token re-ordering, and inclusion of queries larger
than typical of the examples in the dataset.

We also pretrain our models on both generic as
well as SynthMed dataset, while testing with and
without addition of simulated noise. Refer Table 6.

6 Experiment Results

Naive Baselines are not competitive From Table
4 it is evident that the BM25 model performs much
worse than deep learning based alternatives. This
puts perspective on the non-trivial nature of the
task. Further, conforming with intuition, the BM25
model suffers in recall since rephrasing between
the source and query results in lack of a keyword
match and requires semantic similarity comparison.

More data helps reduce performance gap In
table 2 we see performance leaps as we move from
Late to Mid to Early Fusion. However, in table
4 we see that the performance gap while present
is not as stark. We attribute this difference to the
amount of data available for training. Our Medi-
cal Dataset contains hundreds of thousands of data
samples while USB contains a few thousand. This
also manifests when pretraining on a QA corpus,
we see that the gap especially for MidFusion++
model is significantly attenuated, and in distribu-
tion shift experiments we see that a further drop in

available data when restricted to a single domain
drops performance across the board (ref Table 3).

QA pretraining helps Evidence Extraction It
is easy to see from Table 6 and Table 2 that QA
pretraining confers significant performance boosts
despite being a different task. This shows more in
low-resource regimes, where MidFusion++ demon-
strates similar performance to the full attention
models while the boost in performance to Early-
Fusion++ seems comparatively modest. Also, QA
pretraining has massive impact in robustness as
seen in the performance of our models on the sim-
ulated OOD medical data (Table 6) as well as do-
main restricted training on USB (Table 3). While
in (Krishna et al., 2023) the authors note that more
data for in-domain finetuning does not prove useful,
with performance saturating quickly, when faced
with a more difficult setting, pretraining on a related
task continues to confer large percentage gains in
both in-domain and out-of-domain performance.
Consistent with their findings, we see that in the
EarlyFusion setting, the gains are relatively smaller.
Further, as is seen in Table 6, we find that pre-
training on domain specific QA data can be more
beneficial than training on generic QA datasets es-
pecially for niche domains like healthcare.

GPT-4 generated synthetic data is useful From
table 6 we see that SynthMidFusion significantly
outperforms other types of pretraining methodolo-
gies. The pretraining data for this model was cu-
rated by prompting GPT-4 as detailed in 4.4. This
suggested cheap and efficient ways to lower access
to pretraining QA data that is of sufficient quality.

Wide gap between HA and PR-metrics In table
4, 5, 6 we include human evaluation under the col-
umn HA (ref 5.2). Evidence relevance as assessed
by humans seem to place the model in much better
light. This is due to examples where the candidate
spans surfaced by the model provide alternate ev-
idence that we consider acceptable under human
evaluation but fails to score against the ground truth
transcript. The performance gap between Late and
EarlyFusion is diluted according to human anno-
tators. Thus, while LateFusion Models are from
perfect, they do surface reasonable candidates.

In Appendix D.1 we consider adding document-
wide context using a transformer instead of an
LSTM. Despite having fewer parameters, LSTMs
seem to do better than transformers.
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Method P(M) R(M) HA(M) P(AM) R(AM) HA(AM)

MidFusion 76.37 82.18 94.00 71.22 71.98 80.00
MidFusion++ 78.38 83.83 95.40 72.73 71.74 81.40
MidFusion++ w DAug. 79.80 83.00 95.20 74.00 75.10 83.80
SynthMidFusion++ 81.20 82.41 95.00 72.66 81.10 82.80

Table 6: Evidence Extraction Results on the test splits of our Medical Dataset excluding (M) and including
(AM) query augmentation. ++ indicates models that have QA pretraining. MidFusion++ w DAug. corresponds
to a MidFusion model where we enabled 10 percent of the medical finetuning data to contain the same query-
augmentation strategies as in the AM dataset. SynthMidFusion++ is a MidFusion model pretrained on synthetically
generated data 4.4 HA - Human-Agreement 5.2, M: Medical Dataset 4.2, AM: query Augmented Medical Dataset.

Absence of an entity Consider the following line
inserted in an LLM generated SOAP note: "Extrem-
ities: No clubbing or cyanosis" appearing under
Physical Exam (PE) section. The PE section is
populated this way by default and then changed
if an issue is discussed. Here, we need to surface
evidence that discussion about clubbing/cyanosis
is not part of the conversation. This is a failure
mode, perhaps for the problem setup itself, since
the complete evidence is the entire transcript.

When wrong is it really wrong? Often the pre-
dicted evidence is reasonable but does not score
since it is an alternate source of evidence:

Query: The patient to continue with the lower
dosage of Trulicity if it alleviates the symptoms.

Predicted Evidence: "It doesn’t cause that but
it can make it worse. So, let’s change Trulicity to
0.75 mg. It’s going to be a dose change. So, use
what you have and then we’ll go ahead and lower
the dosage to make sure that you’re doing okay.

Ground Truth Evidence: "What you can do is,
um, alternate the 1.5 with a 0.75 and you can see if
you see a difference in how you feel. And I can give
you some of the 0.75 and we’ll switch you to the
lower dosage because it is true that Trulicity can
give you more reflux and if you do have something
in your stomach, the bowel issue, it will worsen.

7 Feedback from Clinicians

With the help of Abridge we made our EE model
available to two clinicians to aid them in finding ev-
idence for verifying LLM-generated clinical notes
from transcripts. We asked them to randomly as-
sign 50 percent of their notes for enabling the aid
of our EE model and to carry out the remaining
half as usual without this aid (refer to Appendix C
for more details on the exact instructions). We then
collected feedback:

Feedback.1: EE dramatically reduces the
amount of time required to verify the contents of
the AI generated note. Without it, I tend to skim
the contents, do keyword searches, and struggle to
identify the evidence; this process is frustrating and
often negates the time that I saved by not drafting
the note myself. I estimate that EE finds the ap-
propriate evidence >75% of the time, and reduces
the amount of time needed to review a note from 5
min to 1 min. Moreover, I am more likely to do a
comprehensive review of the note when using EE.

Feedback.2: The time saved by using EE was
consistently 1-2m, almost half the time for a given
length, and takes extra cognitive effort without it.
Having to scan the whole transcript vs just 3-7 lines
of a transcript - huge efficiency booster. I estimate
I used EE about a total of 55 times, with 2-3 that
may have been close but not quite correct mapping,
but minor and corrected when extending the query.
In particular, EE makes it easier to check medical
terms, reported symptoms, and doses.1

8 Conclusions

In this paper, we described a setup that extracts
evidence spans for Language Model outputs on
grounded tasks. We presented three hierarchical ar-
chitectures focused on speed and scalability to long
documents, while looking to QA pretraining strate-
gies for boosting performance. We showed that
tapping into Extractive QA datasets allows positive
transfer even if the curated data is synthetic.

9 Limitations

Some notable limitations:
1F.1 is due to an Associate Professor of Medicine, Pul-

monary and Critical Care, University of Pittsburg Medical
Center and F.2 is due to an MD, University of Pennsylvania,
Perelman School of Medicine
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1. While the feedback included in 7 is promising,
it is not a rigorous clinical study. This paper
addresses the first piece of the puzzle: fast and
automated EE. A natural future step is to as-
certain its impact on reducing the verification
burden through formal clinical experiments.

2. It is also possible for users of the EE models
to log simple feedback on their satisfaction
with the surfaced evidence which could be
leveraged to further improve the EE model.

3. The synthetic data generated is of the QA task.
While this confers generalization benefits to
EE, this choice is also partly a consequence
of the relatively poor quality of synthetic EE
data that current LLMs generate. In Appendix
A we show some examples of synthetically
generated EE data even after several iterations
of refining the prompts used to generate them.
Notably, generated EE queries are often lines
copied verbatim from the passage. A future
direction is to more comprehensively explore
synthetic data generation strategies that might
directly yield EE data.

4. An important future step is to explore multi-
lingual capabilities of EE models, with possi-
bilities to have the query and the source be in
different languages.

10 Ethics

This study complies with HIPAA guidelines by
conducting training and evaluation only on de-
identified patient data to ensure privacy and data
security. Further, we did not retain or view any pa-
tient data when obtaining feedback from clinicians
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the deidentified medical data first obtained HIPAA
compliance certificates after completing mandatory
best-practices online courses.
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A Synthetic Data

In table 7 and 8 we show some randomly picked ex-
amples from our synthetically generated Question
Answering and Evidence Extraction datasets re-
spectively. We see a stark difference in the depth of
the QA examples versus those of the EE examples,
leading us to primarily consider the QA data for
pretraining experiments. The following prompts
were used to create these examples

1. QA Prompt: "Generate challenging question-
answer pairs given a passage, abiding by the
following instructions. (i) The answer should
be an extractive span from the passage. (ii)
Answering the question should require read-
ing and comprehending the full passage but
should not require any knowledge not found in
the passage. (iii) The question can be in ques-
tion form or statement form in which case the
answer should correspond to evidence from
the passage for that statement. (iv) Rewrite
the question such that it has low lexical over-
lap with the answer. (v) Your response should
be in JSONL format where each line is a dic-
tionary containing keys ’Statement’ and ’Evi-
dence’. Passage:

2. EE Prompt: Generate statement-evidence
pairs given a passage, abiding by the follow-
ing instructions. (i) The evidence should be an
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extractive span from the passage. (ii) Locat-
ing the evidence should require reading and
comprehending the full passage but should
not require any knowledge not found in the
passage. (iii) The statement can be such that
there is evidence in the passage to contradict
or substantitate it. (iv) Rewrite the statement
such that it has low lexical overlap with the ev-
idence. (v) Your response should be in JSONL
format where each line is a dictionary contain-
ing keys ’Statement’ and ’Evidence’. Passage:

B Versions of Software Packages

Numpy 1.24.4, Python 3.10.12, transformers
4.29.0, torch 2.0.0, SpaCy 3.6.0, fuzzywuzzy
0.18.0, openai 1.33.0

C Instructions for Feedback from
Clinicians

For obtaining F.1 and F.2 in sec 7 we first created
an interface with a simple mechanism to toggle the
LateFusion Model from table 4 on and off. They
were asked to randomly assign 20 of 40 notes to
their usual verification process without EE model
assistance, and the remaining 20 with EE model
assistance for querying evidence. The random as-
signment also allows us to remove biases in opinion
that may arise if one set is completed first before
the other due to the fatigue factor as they get to the
tail end of the experiment. The clinicians were then
asked to provide feedback paying attention to

1. Any change in average time required to ver-
ify a clinical note when using our model as
opposed to without

2. An estimate of how many times the model was
queried and what fraction of responses was
relevant evidence

3. If the use of the model led to identification
of errors that would have otherwise passed
unseen or impact on confidence in the final
note when using our model in the loop.

D Ablations

D.1 LSTM vs Transformer for adding
document wide context

For adding context across document (which is im-
portant for identifying non-contiguous evidence

spans and coreference resolution), our architec-
tures incoporate an LSTM, which is also themati-
cally light-weight in alignment with our efforts for
low-inference latency, that operates on the indepen-
dent sentence embeddings by treating them as a
sequence. In this section, we justify our use of the
LSTM over transformer layers by considering an
ablation. We run experiments on the Unified Sum-
marization Benchmark dataset with a transformer
instead of an LSTM in the final step. The results
are shown in table 9.

E Details of our QA corpus

In Table 10 we show the number of examples we
use in the train, test and validation splits of our QA
corpus. The positive to negative class prportion is
calculated by considering the ratio of number of
sentences that have positive label to the number of
sentences that have label zero.

F Comments on Methodology

Here we briefly include some commentary on the
methodology and relegate the rest to the analysis
of experiments.

Choice of Classification Setup: The task is to
produce prediction sets. Therefore, the space of
predictions is the power set of U (Tsoumakas and
Katakis, 2007; Bates et al., 2021). Predicting a
logit and a corresponding softmax score across
each member in this set is computationally infea-
sible. Assigning a softmax score across utterances
alternatively is interpreted as comparing the rela-
tive scores of different utterances making it into E
(multiclass) but does not extend an easy interpre-
tation to selecting multiple utterances (multilabel).
Therefore, while we do compute logits with-context
from neighbouring utterances, we proceed to score
each utterance using a sigmoid of its logit2. An
alternative that applies when the set E contains
only a single contiguous span of utterances is to
identify start and end utterance pointers for this
span. We also include modeling of this type where
applicable.

LLMs for Verification: In section 4.4 we dis-
cuss the prompting of LLMs to curate QA datasets
(Li et al., 2023; Figueira and Vaz, 2022). This is
different from their application to generate expla-
nations. The key point is that we are interested in

2enabling the selection of multiple utterances based on
thresholds (set using cross-validation)

216



Generated Question Corresponding Answer

Describe the outcome of capsaicin treatment
on the obesity and steatohepatitis development
in Pemt(-/-) mice.

disruption of the hepatic afferent vagus nerve
by capsaicin failed to reverse either the protec-
tion against the HFD-induced obesity or the
development of HF-induced steatohepatitis in
Pemt(-/-) mice.

How does hepatic vagotomy affect hepatic in-
flammation and ER stress in Pemt(-/-) mice?

HV increased the hepatic anti-inflammatory
cytokine interleukin-10, reduced chemokine
monocyte chemotactic protein-1 and the ER
stress marker C/EBP homologous protein.

Elucidate the method used to validate candi-
date genes following array analysis.

pyrosequencing and genotyping for putative
methylation-associated polymorphisms per-
formed using standard PCR

How many genes showed a significant num-
ber of BWC-linked CpGs, and what was this
threshold?

four of which showed ≥ 4 BWC-linked CpGs

In what way were subjects paired with the
control group in the HS prevalence study?

matched with controls based on age, gender,
and race

Table 7: Examples from GPT-4 generated synthetic QA data. This is a random sample and non-cherry picked, but it
is possible to see the innate ability of these models to generate quality QA examples for training.

Generated Query Corresponding Evidence

ILC2s were increased in patients with co-
existing asthma among the CRSwNP popu-
lation.

ILC2s were increased in patients with co-
existing asthma (P = 0.03) in the CRSwNP
population.

Pemt(-/-) mice are protected from HF-induced
obesity when fed a high-fat diet (HFD).

Pemt(-/-) mice are protected from HF-induced
obesity; however, they develop steatohepatitis.

A higher chemotherapy effect on lymphocytic
infiltration is associated with pCR and better
prognosis.

A higher infiltration by CD4 lymphocytes was
the main factor explaining the occurrence of
pCR, and this association was validated in six
public genomic datasets.

Cluster Y is a profile mainly characterized by
high CD3 and CD68 infiltration.

Immune cell profiles were analyzed and corre-
lated with response and survival.

A higher infiltration by CD4 lymphocytes pre-
dicts pathological complete response to neoad-
juvant chemotherapy.

We identified three tumor-infiltrating immune
cell profiles, which were able to predict patho-
logical complete response (pCR) to neoadju-
vant chemotherapy

Table 8: Examples from GPT-4 generated synthetic EE data. This is a random sample and non-cherry picked, yet it
is apparent that these examples consist of statements that have high lexical overlap with sentences in the passage.

outputs that point to locations in a document that
a human can quickly verify. While using LLMs
in chain-of-thought or self-rationalizing through
explanations is a form of interpretability, they do
not mitigate the need for a human to verify even

those freeform explanations.
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Model Fusion F-Score

EarlyFusion LSTM 77.32
EarlyFusion Transformer 76.61

EarlyFusion++ LSTM 78.80
EarlyFusion++ Transformer 78.12

MidFusion LSTM 51.21
MidFusion Transformer 48.87

MidFusion++ LSTM 74.50
MidFusion++ Transformer 74.31

LateFusion LSTM 36.80
LateFusion Transformer 39.72

LateFusion++ LSTM 53.06
LateFusion++ Transformer 54.13

Table 9: Ablation Study: We consider the use of Trans-
former instead of LSTM for the final stage of our hi-
erarchical architecture. Results are shown on the test
split of the USB dataset. The F-Score is computed at an
utterance level by computing micro precision and recall.

Entity Value

# Train Samples 180469
# Validation Samples 13006
Positive to Negative Class Proportion 0.073

Table 10: Dataset statistics for our QA Pretraining Cor-
pus, which consists of a mixture of SQuAD, HotpotQA,
and BioASQ.
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