@inproceedings{urbani-etal-2024-retrieving,
title = "Retrieving Semantics for Fact-Checking: A Comparative Approach using {CQ} (Claim to Question) {\&} {AQ} (Answer to Question)",
author = "Urbani, Nicol{\`o} and
Modha, Sandip and
Pasi, Gabriella",
editor = "Schlichtkrull, Michael and
Chen, Yulong and
Whitehouse, Chenxi and
Deng, Zhenyun and
Akhtar, Mubashara and
Aly, Rami and
Guo, Zhijiang and
Christodoulopoulos, Christos and
Cocarascu, Oana and
Mittal, Arpit and
Thorne, James and
Vlachos, Andreas",
booktitle = "Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.fever-1.3",
pages = "37--46",
abstract = "Fact-checking using evidences is the preferred way to tackle the issue of misinformation in the society. The democratization of information through social media has accelerated the spread of information, allowing misinformation to reach and influence a vast audience. The significant impact of these falsehoods on society and public opinion underscores the need for automated approaches to identify and combat this phenomenon.This paper is describes the participation of team IKR3-UNIMIB in AVeriTeC (Automated Verification of Textual Claims) 2024 shared task. We proposed a methods to retrieve evidence in the question and answer format and predict the veracity of a claim. As part of the AVeriTeC shared task, our method combines similarity-based ColBERT re-ranker with traditional keyword search using BM25. Additionally, a recent promising approach, Chain of RAG (CoRAG) is introduced to generate question and answer pairs (QAs) to evaluate performance on this specific dataset. We explore whether generating questions from claims or answers produces more effective QA pairs for veracity prediction. Additionally, we try to generate questions from the claim rather than from evidence (opposite the AVeriTeC dataset paper) to generate effective QA pairs for veracity prediction. Our method achieved an AVeriTeC Score of 0.18 (more than baseline) on the test dataset, demonstrating its potential in automated fact-checking.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="urbani-etal-2024-retrieving">
<titleInfo>
<title>Retrieving Semantics for Fact-Checking: A Comparative Approach using CQ (Claim to Question) & AQ (Answer to Question)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicolò</namePart>
<namePart type="family">Urbani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandip</namePart>
<namePart type="family">Modha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Pasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Schlichtkrull</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenxi</namePart>
<namePart type="family">Whitehouse</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenyun</namePart>
<namePart type="family">Deng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mubashara</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rami</namePart>
<namePart type="family">Aly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijiang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Fact-checking using evidences is the preferred way to tackle the issue of misinformation in the society. The democratization of information through social media has accelerated the spread of information, allowing misinformation to reach and influence a vast audience. The significant impact of these falsehoods on society and public opinion underscores the need for automated approaches to identify and combat this phenomenon.This paper is describes the participation of team IKR3-UNIMIB in AVeriTeC (Automated Verification of Textual Claims) 2024 shared task. We proposed a methods to retrieve evidence in the question and answer format and predict the veracity of a claim. As part of the AVeriTeC shared task, our method combines similarity-based ColBERT re-ranker with traditional keyword search using BM25. Additionally, a recent promising approach, Chain of RAG (CoRAG) is introduced to generate question and answer pairs (QAs) to evaluate performance on this specific dataset. We explore whether generating questions from claims or answers produces more effective QA pairs for veracity prediction. Additionally, we try to generate questions from the claim rather than from evidence (opposite the AVeriTeC dataset paper) to generate effective QA pairs for veracity prediction. Our method achieved an AVeriTeC Score of 0.18 (more than baseline) on the test dataset, demonstrating its potential in automated fact-checking.</abstract>
<identifier type="citekey">urbani-etal-2024-retrieving</identifier>
<location>
<url>https://aclanthology.org/2024.fever-1.3</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>37</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Retrieving Semantics for Fact-Checking: A Comparative Approach using CQ (Claim to Question) & AQ (Answer to Question)
%A Urbani, Nicolò
%A Modha, Sandip
%A Pasi, Gabriella
%Y Schlichtkrull, Michael
%Y Chen, Yulong
%Y Whitehouse, Chenxi
%Y Deng, Zhenyun
%Y Akhtar, Mubashara
%Y Aly, Rami
%Y Guo, Zhijiang
%Y Christodoulopoulos, Christos
%Y Cocarascu, Oana
%Y Mittal, Arpit
%Y Thorne, James
%Y Vlachos, Andreas
%S Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F urbani-etal-2024-retrieving
%X Fact-checking using evidences is the preferred way to tackle the issue of misinformation in the society. The democratization of information through social media has accelerated the spread of information, allowing misinformation to reach and influence a vast audience. The significant impact of these falsehoods on society and public opinion underscores the need for automated approaches to identify and combat this phenomenon.This paper is describes the participation of team IKR3-UNIMIB in AVeriTeC (Automated Verification of Textual Claims) 2024 shared task. We proposed a methods to retrieve evidence in the question and answer format and predict the veracity of a claim. As part of the AVeriTeC shared task, our method combines similarity-based ColBERT re-ranker with traditional keyword search using BM25. Additionally, a recent promising approach, Chain of RAG (CoRAG) is introduced to generate question and answer pairs (QAs) to evaluate performance on this specific dataset. We explore whether generating questions from claims or answers produces more effective QA pairs for veracity prediction. Additionally, we try to generate questions from the claim rather than from evidence (opposite the AVeriTeC dataset paper) to generate effective QA pairs for veracity prediction. Our method achieved an AVeriTeC Score of 0.18 (more than baseline) on the test dataset, demonstrating its potential in automated fact-checking.
%U https://aclanthology.org/2024.fever-1.3
%P 37-46
Markdown (Informal)
[Retrieving Semantics for Fact-Checking: A Comparative Approach using CQ (Claim to Question) & AQ (Answer to Question)](https://aclanthology.org/2024.fever-1.3) (Urbani et al., FEVER 2024)
ACL