
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 297–306
November 15, 2024 ©2024 Association for Computational Linguistics

FactGenius: Combining Zero-Shot Prompting and Fuzzy Relation Mining
to Improve Fact Verification with Knowledge Graphs

Sushant Gautam
SimulaMet & OsloMet

Oslo, Norway
sushant@simula.no

Roxana Pop
University of Oslo

Oslo, Norway
roxanap@ifi.uio.no

Abstract

Fact-checking is a crucial natural language
processing (NLP) task that verifies the
truthfulness of claims by considering reliable
evidence. Traditional methods are labour-
intensive, and most automatic approaches
focus on using documents as evidence. In this
paper, we focus on the relatively understudied
fact-checking with Knowledge Graph data
as evidence and experiment on the recently
introduced FactKG benchmark. We present
FactGenius, a novel method that enhances fact-
checking by combining zero-shot prompting
of large language models (LLMs) with fuzzy
text matching on knowledge graphs (KGs).
Our method employs LLMs for filtering
relevant connections from the graph and
validates these connections via distance-based
matching. The evaluation of FactGenius
on an existing benchmark demonstrates its
effectiveness, as we show it significantly
outperforms state-of-the-art methods.
The code and materials are available at
https://github.com/SushantGautam/FactGenius.

1 Introduction

Fact-checking is a critical task in natural language
processing (NLP) that involves automatically
verifying the truthfulness of a claim by considering
evidence from reliable sources (Thorne et al., 2018).
This task is essential for combating misinformation
and ensuring the integrity of information in digital
communication (Cotter et al., 2022). Traditional
fact-checking is performed by domain experts and
is a labour-intensive process. Automatic fact-
checking systems have been introduced to address
this, but most of them work with textual data as
evidence sources (Vladika and Matthes, 2023).

Recent advancements in large language models
(LLMs) have shown promise in enhancing fact-
checking capabilities (Choi and Ferrara, 2024).
LLMs, with their extensive pre-training on diverse
textual data, possess a vast amount of embedded

knowledge (Yang et al., 2024). However, their
outputs can sometimes be erroneous or lacking in
specificity, especially when dealing with complex
reasoning patterns required for fact-checking.
External knowledge, such as knowledge graphs
(KGs) (Hogan et al., 2021), can aid in fact-
checking.

In this paper, we propose FactGenius, a novel
approach that combines zero-shot prompting of
LLMs with fuzzy relation-mining techniques
to improve reasoning on knowledge graphs.
Specifically, we leverage DBpedia (Lehmann et al.,
2015), a structured source of linked data, to
enhance the accuracy of fact-checking tasks.

Our methodology involves using the LLM to
filter potential connections between entities in
the KG, followed by refining these connections
through Levenshtein distance-based fuzzy
matching. This two-stage approach ensures that
only valid and relevant connections are considered,
thereby improving the accuracy of fact-checking.

We evaluate our method using the FactKG
dataset (Kim et al., 2023b), which comprises
108,000 claims constructed through various
reasoning patterns applied to facts from DBpedia.
Our experiments demonstrate that FactGenius
significantly outperforms existing baselines (Kim
et al., 2023a), particularly when fine-tuning
RoBERTa (Liu et al., 2019) as a classifier,
achieving superior performance across different
reasoning types.

In summary, the integration of LLMs with KGs
and the application of fuzzy matching techniques
represent a promising direction for advancing fact-
checking methodologies. Our work contributes to
this growing body of research by proposing a novel
approach that effectively combines these elements,
yielding significant improvements in fact-checking
performance.

297

https://github.com/SushantGautam/FactGenius

Figure 1: Overall pipeline of FactGenius: The process starts with LLM-based Connection Filtering using a
knowledge graph (see Section 4.1.1). In Fuzzy Relation Mining (see Section 4.1.2), Stage-I matches one-hop
connections of entities, and optionally, Stage-II includes all entities’ connections. The classifier (BERT, RoBERTa,
or Zero-Shot LLM; see Section 4.3) then determines if the claim is supported or refuted.

2 Literature Review

Fact-checking has become an increasingly vital
aspect of natural language processing (NLP) due
to the proliferation of misinformation in digital
communication (Guo et al., 2022). Traditional
approaches to fact-checking have typically relied
on manually curated datasets and rule-based
methods. While these methods are effective
in controlled environments, they often struggle
with scalability and adaptability to new types
of misinformation (Saquete et al., 2020; Guo
et al., 2022). The labor-intensive nature of these
methods also poses significant challenges in rapidly
evolving information landscapes (Nakov et al.,
2021; Zeng et al., 2021).

To address challenges in understanding machine-
readable concepts in text, FactKG introduces a
new dataset for fact verification using claims,
leveraging knowledge graphs (KGs) to encompass
diverse reasoning types and linguistic patterns.
This approach aims to enhance the reliability and
practicality of KG-based fact verification (Kim
et al., 2023b). Similarly, the Fact Extraction
and VERification (FEVER) dataset (Thorne et al.,
2018) pairs claims with Wikipedia sentences that
support or refute them, providing a benchmark for
fact-checking models. The authors employed a
combination of natural language inference models
and information retrieval systems to assess claim
veracity.

The GEAR framework (Zhou et al., 2019)
improves fact verification by using a graph-based
method to aggregate and reason over multiple
pieces of evidence. This approach surpasses
previous methods by enabling more interactive and
effective use of evidence.

Recent advancements in large language models
(LLMs) have demonstrated considerable potential
for enhancing fact-checking processes (Kim et al.,
2023a; Choi and Ferrara, 2024). LLMs are pre-
trained on vast and diverse corpora (Yang et al.,
2024), allowing them to generate human-like
text and possess a broad knowledge base (Choi
and Ferrara, 2024). However, despite their
impressive capabilities, LLMs can sometimes
produce erroneous outputs or lack the specificity
required for complex fact-checking tasks (Choi and
Ferrara, 2024). This issue becomes particularly
evident when intricate reasoning and contextual
understanding are necessary to verify claims
accurately (Chai et al., 2023). Several studies have
explored the integration of LLMs with external
knowledge sources to improve their performance
in fact-checking tasks (Cui et al., 2023; Ding et al.,
2023).

The incorporation of knowledge graphs into fact-
checking frameworks has also garnered attention.
KGs, such as DBpedia (Lehmann et al., 2015),
provide structured and linked data that can
enhance the contextual understanding of LLMs.
Knowledge graphs have been used to improve
various NLP tasks by providing additional context
and relationships between entities, as demonstrated
by initiatives for knowledge-aware language
models (Li et al., 2023; Logan Iv et al., 2019) and
KG-BERT (Yao et al., 2019).

Approximate string matching, also called fuzzy
string matching, is a technique used to identify
partial matches between text strings (Navarro,
2001). Fuzzy matching techniques (Navarro, 2001)
have been applied to enhance the integration of
LLMs and KGs (Wang et al., 2024).

298

The Levenshtein distance-based similarity
measure (Levenshtein et al., 1966) is one
such technique that helps identify strings with
approximate matches, which can be useful for
finding relevant connections between entities
by accommodating minor discrepancies in data
representation. This approach has been beneficial
in refining the outputs of LLMs, ensuring that only
valid and contextually appropriate connections are
considered (Guo et al., 2023).

Our proposed method, FactGenius, builds
on these advancements by combining zero-shot
prompting of LLMs with a fuzzy relation-mining
technique to improve reasoning over KGs. This
methodology leverages DBpedia as a structured
source of linked data to enhance fact-checking
accuracy. By using LLMs to filter potential
connections between entities and refining these
connections through fuzzy matching, FactGenius
aims to address the limitations of existing fact-
checking models.

3 Preliminaries

A Knowledge Graph (KG) G is a set of triples
(s, r, o), with s, o ∈ E and r ∈ R, where E is
the set of entities, and R is the set of relations
connecting those entities. A KG can be viewed
either as a set of triples or as a graph with nodes in
E and edge labels in R. Hence, when we discuss
the 1-hop neighborhood of a certain entity e, we
refer to the set of entities connected to e through an
edge in this graph. For a triple (s, r, o), we consider
s to be connected to o through an edge labeled as r,
while we consider o to be connected to s through an
edge labeled as ∼r, where ∼r denotes the inverse
relation of r.

We consider natural language sentences in their
intuitive sense.

Given a claim in natural language C, a KG G
with entities E, and a set of entities relevant to the
claim EC , the fact verification with KG evidence
task is to predict whether the claim C is supported
or not according to the evidence in G.

4 Methodology

We introduce the FactGenius system for the fact
verification with KG evidence task. Our system has
two main components: a graph filtering component
that selects the relevant KG evidence for the input
claim, and a classifier component that uses this
evidence together with the claim to predict whether

the claim is supported or not.
FactGenius leverages the capabilities of a Large

Language Model (LLM) to filter the set of triples
in the input graph G. More concretely, an LLM is
used in a zero-shot setting to select the relevant
relations from the 1-hop neighborhood of the
entities EC associated with claim C. Since the
output of LLMs can be erroneous, the triples are
further validated against the unfiltered set using
fuzzy matching techniques. Finally, the classifier,
which can be fine-tuned over pre-trained models
like BERT (Devlin et al., 2019) or RoBERTa (Liu
et al., 2019), or a Zero-Shot LLM, determines
whether the claim is supported or refuted. The
overall pipeline is shown in Figure 1.

4.1 FactGenius: Relation Filtering with LLM
and Fuzzy Matching

The first step in our FactGenius pipeline is
identifying the graph evidence relevant to the input
claim. We select the relevant relations in the 1-hop
neighborhood of the claim entities by employing
LLM-based filtering. Once we have the relevant
relations, we select the 1-hop neighborhood triples.
These triples are then turned into strings and used
together with the claim by the classifier.

4.1.1 LLM Prompt-Based Filtering
We utilize an LLM, specifically the Llama3-
Instruct model, to identify and filter potential
connections between entities based on a given
claim.

This is done in the following way. First, we must
select a set of relations to filter using the LLM.
Given that KGs can be very large, for example,
DBpedia contains billions of triples and thousands
of edges (Lehmann et al., 2015), considering the
full set of relations in an LLM prompt is infeasible.
In FactGenius, we choose to look only at the 1-hop
neighborhood of the given set of claim entities EC

to generate the initial set of relations. We therefore
construct a set of 1-hop relations for each entity e,
i.e. {r|(e, r, e1) ∈ G}, which we will denote by
RC(e). The LLM is then given the claim C and the
set of relations RC(e) for each entity relevant to the
input claim (each e ∈ EC), and it outputs subsets
of each RC(e), which we denote by Rllm

C (e). A
prompt example is given in Figure 2.

A retry mechanism is employed to handle
potential failures in LLM responses. If the LLM
output is inadequate (e.g., empty or nonsensical),
the request is retried up to a specified maximum

299

System prompt:
You are an intelligent graph connection finder.
You are given a single claim and connection
options for the entities present in the claim.
Your task is to filter the Connections options that
could be relevant to connect given entities to
fact-check Claim1. ~ (tilde) in the beginning
means the reverse connection.
User prompt:
Claim1:
<<<Well, The celestial body known as 1097
Vicia has a mass of 4.1kg.»>
TASK:
- For each of the given entities given in the DICT
structure below:
Filter the connections strictly from the given
options that would be relevant to connect given
entities to fact-check Claim1.
- Think clever, there could be multi-step hidden
connections, if not direct, that could connect the
entities somehow.
- Prioritize connections among entities and
arrange them based on their relevance. Be extra
careful with signs.
- No code output. No explanation. Output only
valid python DICT of structure:
<<<
{
"1097_Vicia": ["...", "...", ...]
options (strictly choose from): discovered,
formerName, epoch, periapsis, apoapsis, ...,
Planet/temperature "4.1": ["...", "...", ...],
options (strictly choose from): ~length,
~ethnicGroups, ~percentageOfAreaWater,
~populationDensity, ~engine, ..., ~number
}
>>>

Figure 2: Filtering prompt example. The text inside
< < < and > > > changes with each input.

number of attempts, in practice 10. In our
experiments, however, we did not encounter any
cases where retries exceeded this limit. If the limit
is exceeded, the non-filtered sets of relations are
returned.

4.1.2 LLM Output Validation
As mentioned, the LLM could output relations that
are not in G. That is, Rllm

C (e) is not necessarily a
subset of RC(e) or even R.

We therefore pass the LLM output through a
validation stage, which has two sub-stages, namely
Stage A and Stage B.

In Stage A, we perform validation of the relation
set for each entity from the claim. That is, for
each entity e ∈ EC , we select the subset of RC(e)
that best matches the LLM output Rllm

C (e). To do
so, we fuzzily match the relations in RC(e) to the
relations in Rllm

C (e) using Levenshtein distance. A
threshold on this distance is considered to decide
whether two relations match or not.

The limitation of the first validation type is
that if the LLM suggests the correct relation, but
associates it with the wrong entity, this relevant
relation is removed through the first validation type.
We will exemplify this on the prompt in Figure
2. The model is given the entities 1097_Vicia
and 4.1, each with the list of possible relations.
If the model identifies Planet/temperature but
associates it with 4.1 instead of 1097_Vicia this
relation is removed during Stage A validation.

To address this limitation, we introduce Stage B
validation. In this stage, we consider the full set
of relations generated by the LLM for all entities
associated with the input claim, i.e., Rllm

C =
Rllm

C (e1) ∪ ... ∪Rllm
C (en) for all e1, . . . , en ∈ EC .

Similarly to Stage A, we use Levenshtein distance
to compare the relations in RC(e) with the filtered
relations, but we consider the full filtered set Rllm

C

instead of the entity-specific set Rllm
C (e). The

details are explained in Algorithm 1.

4.2 Claim-Driven Relation Filtering

To measure the effectiveness of LLM in relation
filtering (as described in 4.1), we create a baseline
that ensures only the relations most pertinent to
the claim, based on lexical similarity, are selected.
To filter relations relevant to a claim, we begin
by tokenizing the claim sentence, excluding stop
words, to obtain a list of significant word tokens.
Next, for each entity e ∈ EC present in the claim,
we gather all 1-hop relations RC(e).

300

Algorithm 1 LLM output validation
1: Input: EC = {e1,, en} - entities in the claim;
2: RC(e1), ..., RC(e_n): relations in the 1-hop neighborhood for

each entity in the claim;
3: Rllm

C (e1), ..., Rllm
C (en): relation sets output by the LLM;

4: stage: validation stage, either A or B
5: Output: R′

C(e1), ..., R′
C(e_n)- Validated relation sets.

6: procedure VALIDATERELATION
7: Initialize: probable_connections: {}

8: for each e ∈ EC do
9: for each r ∈ RC(e) do

10: if stage = A then
11: Rllm−compare = Rllm

C (e)
12: else
13: Rllm−compare = Rllm

C (e1) ∪ ... ∪Rllm
C (en)

14: end if
15: for each rllm ∈ Rllm−compare do
16: d = LEVENSHTEINDISTANCE(r, rllm)
17: if d > 90 then
18: R′

C(e) = R′
C(e) ∪ {r}

19: end if
20: end for
21: end for
22: end for
23: end procedure

We then apply a fuzzy matching process to each
tokenized word in the claim, comparing it to the
relations in RC(e) using the Levenshtein distance.
This process yields a subset of relations R′

C(e),
where each relation’s similarity to the claim words
exceeds a predefined threshold.

4.3 With Evidence Classifier

In this configuration, the model is supplied with
both the claim and graphical evidence as input,
and it then makes predictions regarding the label.
FactGenius utilizes graph filtering, as explained in
Section 4.1, to ensure retention of the most relevant
and accurate connections.

4.4 Evidence Stringification

To effectively pass evidence triples to the
language model, we must first convert these
triples into a string format. For each entity e
in the claim with its associated relations {r |
(e, r, e1) ∈ G} extracted from the graph G, we
transform each triplet (e, r, e1) into the string
format "{e} > −{r}− > {e1}". For multiple
triples of evidence, the resulting strings are
simply concatenated into a single evidence string,
preserving the order and structure of the triples.
This approach ensures a seamless and coherent
integration of structured graph data into the
language model’s input.

4.5 Zero-Shot LLM as Fact Classifier

This involves utilizing Llama-3-Instruct as a fact
classifier, to predict whether the given input claim
and evidence string are supported or refuted.
A retry mechanism is implemented to handle
potential failures in LLM responses. A prompt
example with evidence is shown in Figure 3.

4.6 Fine-Tuning Pre-Trained Models

Pre-trained BERT-base-uncased1 and RoBERTa-
base are fine-tuned with the claim and evidence
string as inputs to predict whether the claim is
supported or refuted.

An ablation study was conducted to evaluate
the contributions of each stage of our approach.
This involved sequentially removing Stage-B and
measuring the system’s performance. The results of
the ablation study allowed us to quantify the impact
of both stages on the overall performance of the
model. Accuracy was used as an evaluation metric
across all reasoning types to quantify performance
improvements from the ablation study.

4.7 Implementation

Our FactGenius system implementation leverages
several advanced tools and frameworks to
ensure efficient and scalable processing. The
Llama3-Instruct inference server is set up using
vLLM (vLLM Project, 2024; Kwon et al., 2023),
running on an NVIDIA A100 GPU (80 GB
vRAM) to facilitate rapid inference. This server
runs standalone, integrating seamlessly with the
FactGenius pipeline.

For model fine-tuning and evaluation, we employ
the Hugging Face Transformers library, utilizing
the Trainer class for managing the training
process. This setup allows for the fine-tuning
of pre-trained models like BERT and RoBERTa
within our pipeline. Hyper-parameters such as
batch size, learning rate, and training epochs
are configured to optimize performance, with
computations accelerated by PyTorch.

The models were fine-tuned on a single NVIDIA
V100 GPU, with RoBERTa requiring around 25
minutes per epoch with a batch size of 32, and
BERT taking around 8 minutes per epoch with a
batch size of 64. The fine-tuning process utilized
the Adam optimizer with settings of β1 = 0.9,
β2 = 0.98, and ϵ = 1e − 6 for RoBERTa, and
β1 = 0.9, β2 = 0.99, and ϵ = 1e− 8 for BERT.

1huggingface.co/google-bert/bert-base-uncased

301

https://huggingface.co/google-bert/bert-base-uncased

A weight decay of 0.01 was used over all the
layers. A learning rate of 5e − 6 was used with
early stopping over validation loss for 3 epochs,
retaining the best epoch’s weights.

5 Experiments

To evaluate the performance of our proposed
methods, we conducted a series of experiments
comparing different strategies for fact-checking on
the FactKG (Kim et al., 2023b) benchmark.

5.1 Dataset

The FactKG dataset (Kim et al., 2023b) comprises
108,000 claims constructed using various
reasoning patterns applied to facts sourced from
DBpedia (Lehmann et al., 2015). Each data point
consists of a natural language claim in English, the
set of DBpedia entities mentioned in the claim,
and a binary label indicating the claim’s veracity
(Supported or Refuted). The distribution across
labels and five different reasoning types is shown
in Table 1. The relevant relation paths starting
from each entity in the claim are provided, which
aids in the evaluation and development of models
for claim verification tasks.

The dataset is accompanied by two processed
versions of the FactKG Knowledge Graph, derived
from DBpedia 2015. The first version encompasses
the entire DBpedia dataset with the directionality
of edges removed by incorporating reverse relation
triples, denoted as DBpedia-Full. The second
version is a curated subset of the first, containing
only the relations pertinent to FactKG, thus
enabling more focused and efficient analysis, and
is referred to as DBpedia-Light.

Set Train Valid Test
Total Rows 86,367 13,266 9,041
True (Supported) 42,723 6,426 4,398
False (Refuted) 43,644 6,840 4,643
One-hop 15,069 2,547 1,914
Conjunction 29,711 4,317 3,069
Existence 7,372 930 870
Multi-hop 21,833 3,555 1,874
Negation 12,382 1,917 1,314

Table 1: Data distribution across labels and five
reasoning types.

5.2 Results
Following prior work (Kim et al., 2023b,a),
we conducted experiments with two types of
approaches: one that takes as input only the
claim, referred to as Claim Only, and another that
integrates KG information, referred to as With
Evidence. The goal of this comparison is to assess
whether the required knowledge is already stored
in the weights of pre-trained large language models
or if injecting KG information is beneficial. The
results are summarized in Table 2.

5.3 Claim Only
For the Claim Only scenario, we compared
four methods: two from the previous literature
and two designed by us. We selected two of
the best-performing methods from prior work:
the BERT-based claim-only model introduced
with the FactKG dataset by Kim et al. (Kim
et al., 2023b), and the ChatGPT-based model
subsequently introduced by Kim et al. (Kim et al.,
2023a). Additionally, we experimented with two
models of our own design: we used the Meta-
Llama-3-8B-Instruct2 (Meta, 2024) model with
zero-shot prompting, and a RoBERTa-base (Liu
et al., 2019) model, which we fine-tuned on the
fact verification task. An example of the prompt
we used for Meta-Llama-3-8B-Instruct is found in
Appendix B.

Our results show that RoBERTa outperformed
the reported accuracy of BERT (Kim et al., 2023b),
achieving an accuracy of 0.68, which is on par with
the 12-shot ChatGPT model reported in the KG-
GPT paper (Kim et al., 2023a). This suggests that
RoBERTa inherently stores knowledge relevant for
fact-checking, at least on the FactKG benchmark.
Our prompting approach, however, achieved a
score of 0.61, underperforming on the task.

5.4 With Evidence
In the With Evidence setting, we compared different
versions of our FactGenius system with two
systems from prior work (Kim et al., 2023b,a). For
our FactGenius approach, we experimented with
five versions, using either an LLM classifier with
prompting (Llama3-Instruct-zero-shot in Table 2)
or a fine-tuned LLM as the classifier, either BERT-
based (Devlin et al., 2019) or RoBERTa-based (Liu
et al., 2019). For both the BERT-based and
RoBERTa-based systems, we experimented with
both stage A and stage B output validation.

2huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

302

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Input type Source Model One-hop Conjunction Existence Multi-hop Negation Total

Claim Only

FactKG (Kim et al., 2023b) BERT* 0.69 0.63 0.61 0.70 0.63 0.65

KG-GPT (Kim et al., 2023a) ChatGPT (12-shot)* - - - - - 0.68

Ours Llama3-Instruct-zero-shot 0.61 0.67 0.59 0.61 0.53 0.61

Ours RoBERTa 0.71 0.72 0.52 0.74 0.54 0.68

With Evidence

FactKG GEAR* 0.83 0.77 0.81 0.68 0.79 0.77

KG-GPT KG-GPT (12-shot)* - - - - - 0.72

Ours on DBpedia-Light Claim-driven relation filtering 0.81 0.71 0.98 0.71 0.76 0.78

FactGenius (Ours) Llama3-Instruct-zero-shot 0.72 0.75 0.76 0.62 0.52 0.68

on DBpedia-Light BERT-stage-A 0.85 0.80 0.91 0.79 0.78 0.81

BERT-stage-B 0.85 0.83 0.88 0.81 0.73 0.82

RoBERTa-stage-A 0.84 0.86 0.88 0.82 0.77 0.84

RoBERTa-stage-B 0.89 0.89 0.93 0.83 0.78 0.87

FactGenius (Ours) Llama3-Instruct-zero-shot 0.72 0.76 0.72 0.61 0.51 0.68

on DBpedia-Full BERT-stage-A 0.81 0.83 0.67 0.80 0.56 0.76

BERT-stage-B 0.81 0.81 0.67 0.80 0.56 0.76

RoBERTa-stage-A 0.86 0.85 0.91 0.79 0.82 0.84

RoBERTa-stage-B 0.86 0.86 0.90 0.82 0.79 0.84

Table 2: Comparing our method with other strategies and methods in terms of reported accuracies in the test set.
The * symbol indicates results taken directly from prior works, whereas ’-’ indicates results were not reported by
prior works.

5.4.1 On DBpedia-Light Knowledge Graph
Our results show that adding evidence to the
Llama3-Instruct model’s instructions significantly
improved its accuracy from 0.61 to 0.68. This
indicates that even for large language models,
incorporating relevant evidence can enhance fact-
checking performance in a zero-shot learning
scenario. However, directly applying zero-shot
prompting with Llama3-Instruct did not yield
superior performance compared to claim-driven
relation filtering. The performance improved when
using fine-tuned BERT or RoBERTa as classifiers.
We also observed that the performance of the
pipeline increased further when stage-B was used
instead of stage-A relation mining, with fine-tuned
RoBERTa performing better than BERT.

To assess the contribution of the validation
stages, we applied both stages to our best-
performing model, the RoBERTa-based system.
We found that employing stage A of filtering
resulted in an accuracy of 0.84. Incorporating
stage B further improved the performance to 0.87.
The second stage enhanced performance across
most reasoning types, with notable improvements
in conjunction and negation tasks. We achieved the
highest performance by fine-tuning RoBERTa with
stage-B relation mining, leading to an accuracy of
0.87 on the DBpedia-Light knowledge graph. To
the best of our understanding, FactKG uses the
DBpedia-Light graph, while KG-LLM employs

DBpedia-Full, as inferred from their respective
public implementations.

5.4.2 On DBpedia-Full Knowledge Graph
When using the DBpedia-Full knowledge graph,
we observed a decrease in performance for
all model variants compared to the DBpedia-
Light setting. The Llama3-Instruct-zero-shot
approach showed a similar performance gain.
Fine-tuned BERT with both stage-A and stage-B
maintained moderate scores, indicating stability
but not improvement. RoBERTa-stage-A and
RoBERTa-stage-B models achieved comparable
performance at 0.84, with both stages performing
similarly, indicating that stage-B processing does
not significantly outperform stage-A in the more
complex graphs. These results highlight the
challenges associated with scaling to larger and
more complex knowledge graphs.

6 Discussion

The enhanced performance of FactGenius,
particularly in Conjunction, Existence, and
Negation reasoning, can be attributed to its
innovative combination of zero-shot prompting
using large language models (LLMs) and fuzzy
text matching on knowledge graphs.

303

The evidence-based filtering approaches
revealed significant findings. The stage-B
validation approach improves accuracy compared
to stage-A, although the model shows only
moderate performance improvement in Multi-hop
reasoning. This suggests that more advanced
techniques may be necessary to handle the
complexity of Multi-hop reasoning effectively.

The two-step approach of filtering and validating
connections proved to be especially effective. In
the first step, the LLM narrows down potential
connections based on the context provided by the
claim, significantly reducing the search space. The
second step refines these connections through fuzzy
matching, ensuring that only the most relevant
and accurate ones are retained. Our comparative
study confirmed the importance of both steps, with
the second step being particularly beneficial for
Conjunction and Negation reasoning tasks.

While fine-tuned LLM models, such as BERT
and RoBERTa, generally outperformed the zero-
shot Llama3-Instruct model and claim-driven
relation filtering, the increased graph complexity in
DBpedia-Full compared to DBpedia-Light limited
the gains from fine-tuning. This limitation can be
attributed to the input token restrictions of BERT
and RoBERTa, which truncate inputs after 512
tokens. Truncation is more likely with the larger
DBpedia-Full graph, potentially excluding relevant
information, thereby reducing the effectiveness
of evidence-based filtering. Additionally, the
similar performance between stage-A and stage-
B relation mining in the full graph setting suggests
that the added complexity of stage-B does not
yield better accuracy, likely due to these input
constraints. These observations underscore the
need for architectural adaptations or preprocessing
methods to more effectively handle larger datasets.

As LLM inference is a crucial component of
this framework, we employed vLLM (vLLM
Project, 2024) to enable rapid inference using a
single NVIDIA A100 GPU. In our experiments,
the LLM inference speed was approximately 15
queries per second, including retries in case of
failure. This rate is feasible, especially as LLM
inference continues to be optimized with the latest
technologies. Embedding LLM in this framework
has proven to be a sound decision.

7 Conclusion

In this paper, we introduced FactGenius, a novel
method that combines zero-shot prompting of large

language models with fuzzy relation mining to
improve reasoning on knowledge graphs. This
approach addresses several key challenges in
traditional fact-checking methods. First, the
integration of LLMs allows for the leveraging of
extensive pre-trained knowledge in a zero-shot
setting. Second, the use of fuzzy text matching
with Levenshtein distance ensures that minor
discrepancies in entity names or relationships do
not hinder the relationship selection process, thus
improving robustness.

Our experiments on the FactKG dataset
demonstrated that FactGenius significantly
outperforms traditional fact-checking methods and
existing baselines, particularly when fine-tuning
RoBERTa as a classifier. The two-stage approach
of filtering and validating connections was crucial
for achieving high accuracy across various
reasoning types.

The findings from this study suggest that
utilizing LLMs for KG evidence retrieval
holds great promise for advancing fact-checking
capabilities. Future work could explore applying
this approach to other domains and datasets, as well
as incorporating additional structured data sources
to further enhance performance.

Limitations

The primary limitation of this work is that we
only consider the 1-hop neighborhood when
constructing the graph evidence. While this
approach performs well on the FactKG benchmark,
it may not capture the multi-hop reasoning required
for more complex claims in other datasets or real-
world scenarios. Additionally, our evaluation is
limited to FactKG, restricting the generalizability
of our findings. Another limitation stems from
the input context limitations of the fine-tuned
models and the LLMs, particularly when dealing
with entities that have extensive graph connections,
leading to input length constraints and necessitating
truncation. Finally, we focused on zero-shot
prompting with a single LLM and did not explore
few-shot learning or alternative models, which
might enhance performance.

Acknowledgement

This work has benefited from the Experimental
Infrastructure for Exploration of Exascale
Computing (eX3) at Simula, which is financially
supported by the Research Council of Norway.

304

References
Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao

Han, Xiaohai Hu, Xuanwen Huang, et al. 2023.
GraphLLM: Boosting Graph Reasoning Ability of
Large Language Model. arXiv.

Eun Cheol Choi and Emilio Ferrara. 2024. FACT-GPT:
Fact-Checking Augmentation via Claim Matching
with LLMs. In WWW ’24: Companion Proceedings
of the ACM on Web Conference 2024, pages 883–886.
Association for Computing Machinery, New York,
NY, USA.

Kelley Cotter, Julia R. DeCook, and Shaheen
Kanthawala. 2022. Fact-Checking the
Crisis: COVID-19, Infodemics, and the
Platformization of Truth. Social Media + Society,
8(1):20563051211069048.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and
Li Yuan. 2023. ChatLaw: Open-Source Legal
Large Language Model with Integrated External
Knowledge Bases. arXiv.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. ACL Anthology, pages 4171–4186.

Yan Ding, Xiaohan Zhang, Saeid Amiri, Nieqing Cao,
Hao Yang, Andy Kaminski, et al. 2023. Integrating
action knowledge and LLMs for task planning and
situation handling in open worlds. Auton. Robot.,
47(8):981–997.

Zhijiang Guo, Michael Schlichtkrull, and Andreas
Vlachos. 2022. A Survey on Automated Fact-
Checking. Transactions of the Association for
Computational Linguistics, 10:178–206.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang,
Dan Shi, Supryadi, et al. 2023. Evaluating Large
Language Models: A Comprehensive Survey. arXiv.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia
D’amato, Gerard De Melo, Claudio Gutierrez, et al.
2021. Knowledge Graphs. ACM Comput. Surv.,
54(4):1–37.

Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward
Choi. 2023a. KG-GPT: A General Framework
for Reasoning on Knowledge Graphs Using Large
Language Models. ACL Anthology, pages 9410–
9421.

Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James
Thorne, and Edward Choi. 2023b. FactKG: Fact
Verification via Reasoning on Knowledge Graphs.
ACL Anthology, pages 16190–16206.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, et al. 2023.
Efficient Memory Management for Large Language
Model Serving with PagedAttention. In SOSP ’23:
Proceedings of the 29th Symposium on Operating
Systems Principles, pages 611–626. Association for
Computing Machinery, New York, NY, USA.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, et al. 2015.
DBpedia – A large-scale, multilingual knowledge
base extracted from Wikipedia. Semantic Web,
6(2):167–195.

Vladimir I Levenshtein et al. 1966. Binary codes
capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10,
pages 707–710. Soviet Union.

Xinze Li, Yixin Cao2, Liangming Pan, Yubo Ma, and
Aixin Sun. 2023. Towards Verifiable Generation: A
Benchmark for Knowledge-aware Language Model
Attribution. arXiv.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, et al. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach.
arXiv.

Robert L. Logan Iv, Nelson F. Liu, Matthew E. Peters,
Matt Gardner, and Sameer Singh. 2019. Barack’s
Wife Hillary: Using Knowledge-Graphs for Fact-
Aware Language Modeling. arXiv.

Meta. 2024. Meta Llama 3. [Online;
https://llama.meta.com/llama3].

Preslav Nakov, David Corney, Maram Hasanain, Firoj
Alam, Tamer Elsayed, Alberto Barrón-Cedeño,
et al. 2021. Automated Fact-Checking for
Assisting Human Fact-Checkers. In Proceedings
of the Thirtieth International Joint Conference
onArtificial Intelligence, {IJCAI-21}, pages 4551–
4558. International Joint Conferences on Artificial
Intelligence Organization.

Gonzalo Navarro. 2001. A guided tour to approximate
string matching. ACM Comput. Surv., 33(1):31–88.

Estela Saquete, David Tomás, Paloma Moreda,
Patricio Martínez-Barco, and Manuel Palomar. 2020.
Fighting post-truth using natural language processing:
A review and open challenges. Expert Syst. Appl.,
141:112943.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a Large-scale Dataset for Fact Extraction
and VERification. ACL Anthology, pages 809–819.

Juraj Vladika and Florian Matthes. 2023. Scientific Fact-
Checking: A Survey of Resources and Approaches.
arXiv.

vLLM Project. 2024. vLLM. [Online;
https://github.com/vllm-project/vllm].

Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa Siu,
Ruiyi Zhang, and Tyler Derr. 2024. Knowledge
Graph Prompting for Multi-Document Question
Answering. AAAI, 38(17):19206–19214.

305

https://doi.org/10.48550/arXiv.2310.05845
https://doi.org/10.48550/arXiv.2310.05845
https://doi.org/10.1145/3589335.3651504
https://doi.org/10.1145/3589335.3651504
https://doi.org/10.1145/3589335.3651504
https://doi.org/10.1177/20563051211069048
https://doi.org/10.1177/20563051211069048
https://doi.org/10.1177/20563051211069048
https://doi.org/10.48550/arXiv.2306.16092
https://doi.org/10.48550/arXiv.2306.16092
https://doi.org/10.48550/arXiv.2306.16092
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/s10514-023-10133-5
https://doi.org/10.1007/s10514-023-10133-5
https://doi.org/10.1007/s10514-023-10133-5
https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.48550/arXiv.2310.19736
https://doi.org/10.48550/arXiv.2310.19736
https://doi.org/10.1145/3447772
https://doi.org/10.18653/v1/2023.findings-emnlp.631
https://doi.org/10.18653/v1/2023.findings-emnlp.631
https://doi.org/10.18653/v1/2023.findings-emnlp.631
https://doi.org/10.18653/v1/2023.acl-long.895
https://doi.org/10.18653/v1/2023.acl-long.895
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.48550/arXiv.2310.05634
https://doi.org/10.48550/arXiv.2310.05634
https://doi.org/10.48550/arXiv.2310.05634
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1906.07241
https://doi.org/10.48550/arXiv.1906.07241
https://doi.org/10.48550/arXiv.1906.07241
https://llama.meta.com/llama3
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1016/j.eswa.2019.112943
https://doi.org/10.1016/j.eswa.2019.112943
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.48550/arXiv.2305.16859
https://doi.org/10.48550/arXiv.2305.16859
https://github.com/vllm-project/vllm
https://doi.org/10.1609/aaai.v38i17.29889
https://doi.org/10.1609/aaai.v38i17.29889
https://doi.org/10.1609/aaai.v38i17.29889

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, et al. 2024.
Harnessing the Power of LLMs in Practice: A Survey
on ChatGPT and Beyond. ACM Trans. Knowl.
Discovery Data, 18(6):1–32.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for Knowledge Graph Completion.
arXiv.

Xia Zeng, Amani S. Abumansour, and Arkaitz Zubiaga.
2021. Automated fact-checking: A survey. Lang.
Linguist. Compass, 15(10):e12438.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, et al. 2019. GEAR: Graph-
based Evidence Aggregating and Reasoning for Fact
Verification. ACL Anthology, pages 892–901.

A Zero-shot fact-checking with evidence

We experimented with a language model in a
zero-shot setting for fact verification including the
evidence. We prompted the model with the claim
and the evidence given as a list of triples — an
example of the prompt is shown in Figure 3.

[{
"role": "system", "content":
"You are an intelligent fact-checker. You are given

a single claim and supporting evidence for the entities
present in the claim, extracted from a knowledge graph.

Your task is to decide whether all the facts in the
given claim are supported by the given evidence.

Choose one of {True, False}, and output a one-sentence
explanation for the choice."

},{
"role": "user", "content":
'''
TASK:
Now let’s verify the Claim based on the evidence.
Claim:
<<< The celestial body known as 1097 Vicia has a
mass of 4.1kg. >>>

Evidence:
<<< 1999_Hirayama -> mass -> "4.1"
1097_Vicia -> mass -> "9.8" >>>

Answer Template:
"True/False (single word answer),
One-sentence explanation."
'''
}]

Figure 3: Example prompt given to Llama3-Instruct
with evidence for zero-shot fact-checking.

B Claim-only models

A baseline is established using the Meta-Llama-3-
8B-Instruct3 (Meta, 2024) model with zero-shot
prompting for claim verification, asking it to verify
the claim without evidence. Through instruction
prompt engineering, the model is ensured to
respond with either ’true’ or ’false’. A retry
mechanism is implemented to handle potential
failures in LLM responses. A prompt example

3huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

is shown in Figure 4. The retry mechanism simply
retries calling the LLM up to a fixed number of
times and diverts to a default handling function if
the LLM is unable to provide a proper output.

[{
"role": "system", "content":
"You are an intelligent fact-checker trained on
Wikipedia. You are given a single claim, and your task
is to decide whether all the facts in the given claim
are supported by your knowledge.
Choose one of {True, False}, and output a one-sentence
explanation for the choice."
},{
"role": "user", "content":
'''
TASK:
Now let’s verify the Claim based on your knowledge.
Claim:
<<< The celestial body known as 1097 Vicia has a
mass of 4.1kg. >>>

Answer Template:
"True/False (single word answer),
One-sentence explanation."
'''
}]

Figure 4: Example prompt given to Llama3-Instruct
without evidence for zero-shot fact-checking.
«< ... »> signs are added just to indicate that the content inside
changes for each prompt.

306

https://doi.org/10.1145/3649506
https://doi.org/10.1145/3649506
https://doi.org/10.48550/arXiv.1909.03193
https://doi.org/10.1111/lnc3.12438
https://doi.org/10.18653/v1/P19-1085
https://doi.org/10.18653/v1/P19-1085
https://doi.org/10.18653/v1/P19-1085
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

