
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 307–316
November 15, 2024 ©2024 Association for Computational Linguistics

Fact or Fiction? Improving Fact Verification with Knowledge Graphs
through Simplified Subgraph Retrievals

Tobias A. Opsahl
University of Oslo
tobiasao@uio.no

Abstract
Despite recent success in natural language pro-
cessing (NLP), fact verification remains a dif-
ficult task. Due to misinformation spreading
increasingly fast, attention has been directed
towards automatically verifying the correctness
of claims. In the domain of NLP, this is usually
done by training supervised machine learning
models to verify claims by utilizing evidence
from trustworthy corpora. We present efficient
methods for verifying claims on a dataset where
the evidence is in the form of structured knowl-
edge graphs. We use the FACTKG dataset,
which is constructed from the DBpedia knowl-
edge graph extracted from Wikipedia. By sim-
plifying the evidence retrieval process, from
fine-tuned language models to simple logical
retrievals, we are able to construct models that
both require less computational resources and
achieve better test-set accuracy.

1 Introduction

As the volume of information generated continues
to grow, so does the risk of misinformation spread-
ing, which has made automatic fact verification a
crucial task in NLP (Cohen et al., 2011; Hassan
et al., 2015; Thorne and Vlachos, 2018; Bekoulis
et al., 2021). Traditionally, fact verification has
been tackled in journalism by experts manually
researching topics and writing articles about their
findings. Some specific websites dedicated to this
approach are FactCheck.org and PolitiFact.com.
However, it is time-consuming and labor-intensive,
and is not able to follow the pace of information
created in digital media (Cohen et al., 2011; Hassan
et al., 2015).

One of the most popular datasets for fact ver-
ification is the Fact Extraction and VERification
(FEVER) dataset (Thorne et al., 2018). It consists
of claims supported by a corpus of Wikipedia arti-
cles. Models trained on the dataset need to extract
the relevant evidence and use it to classify claims
as supported, refuted or not enough information.

Despite its popularity, several issues have been
discovered. Due to the manual construction of
claims, the structure of the language is inherently
biased with respect to the classes, and therefore it
is possible to achieve good performance without
using the evidence at all (Schuster et al., 2019). It
has also been shown that models trained on FEVER
experience a significant drop in performance when
the factual evidence is changed in a way that in-
fluences the validity of claims (Hidey et al., 2020).
These issues can be improved by accordingly ad-
justing the validation and test dataset to contain
less biased data (Schuster et al., 2019; Hidey et al.,
2020), but we believe it is important to develop
models on other datasets as well.

A less studied approach to process evidence is by
structured data. In many real-world examples, data
is available in large structured databases, rather
than unstructured articles. This is relevant for do-
mains such as social networks, logistics, manage-
ment systems and database systems. The dataset
TabFact (Chen et al., 2019) was created with this
intent, consisting of claims with tabular evidence
extracted from Wikipedia.

This paper aims to increase the performance
of models trained on the FACTKG dataset (Kim
et al., 2023), a dataset created for fact verification
with structured evidence in the form of knowledge
graphs (KGs). The claims are created with ev-
idence from DBpedia (Lehmann et al., 2015), a
large KG extracted from Wikipedia. A KG consists
of nodes and edges linked together to represent
structural concepts. Nodes represent entities, such
as persons, things or events, and edges represent
relations, conveying how entities are related, as
shown in Figure 1. For instance, a node can be
the company Meyer Werft, and since it is located
in the city Papenburg, they are connected with the
edge location. We refer to Meyer Werft, location,
Papenburg as a knowledge triple.

Since the task of fact verification with KGs re-
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Figure 1: An example claim from FACTKG (Kim et al.,
2023). The claim can be verified or refuted based on the
DBpedia KG (Lehmann et al., 2015). This is Figure 1
from Kim et al. (2023).

mains relatively unexamined, we want to explore
several different approaches to the problem. We
use the following three model architectures:

• Textual Fine-tuning: Fine-tuning pretrained
encoder models on text data for claim verifi-
cation. We use BERT (Devlin et al., 2018)
by concatenating the claims with subgraphs
represented as strings.

• Hybrid Graph-Language Model: Using
a modification of a question answer graph
neural network (QA-GNN) (Yasunaga et al.,
2021), which both uses a pretrained encoder
model to embed the claim, and a graph neu-
ral network (GNN) to structurally process the
subgraphs.

• LLM Prompting: Deploying state-of-the-art
language models in a few-shot setting, without
the need for additional finetuning. We use
ChatGPT 4o (Achiam et al., 2023; Open AI,
2024) for this setting.

The textual finetuning serves as a simple and con-
ventional method, while the QA-GNN can handle
graph based data efficiently and is more specifically
constructed for the task of interest. In contrast, the
LLM prompting displays how well general purpose
language models can perform on the task. It does
not require any further training and does not use
any evidence. Therefore, it will serve as a baseline
and give insight to how difficult the task is.

Our main contribution is that we increase the
accuracy and computational efficiency of models
trained on FACTKG. By utilizing efficient subgraph

retrieval methods, we are able to increase the test-
set accuracy from 77.65% (Kim et al., 2023) to
93.49%. To the best of the authors’ knowledge,
this is the best performance achieved so far on this
dataset. Additionally, our models train quicker,
taking only 1.5-10 hours, compared to the 2-3
days spent on the benchmark model from Kim
et al. (2023), reported by the authors. The code
and documentation used for this article can be
found at https://github.com/Tobias-Opsahl/
Fact-or-Fiction.

2 Related Work

2.1 Fact Verification

The FEVER dataset is one of the most popular
datasets used for fact verification (Thorne et al.,
2018), and has influenced several model architec-
tures. Graph-based Evidence Aggregating and Rea-
soning (GEAR) (Zhou et al., 2019) works by find-
ing relevant articles with entity linking, giving them
a relevance score, embedding the claim and sen-
tences in the relevant evidence with a pre-trained
BERT (Devlin et al., 2018), and then using a GNN
to reason over the embeddings. The Neural Seman-
tic Matching Network (NSMN) (Nie et al., 2019)
used three homogenous neural networks used for
document retrieval, sentence selection and claim
verification. By using a transformer based archi-
tecture, Generative Evidence REtrieval (GERE)
(Chen et al., 2022) combined the evidence retrieval
and sentence identifying into a single step.

Several other datasets for fact verification have
also been proposed. The Fake News Challenge
(Hanselowski et al., 2018) were aimed towards pre-
dicting the relevance and agreement of a title and
text. VitaminC (Schuster et al., 2021) focuses on
representing changing evidence, and was created
by constructing claims based on different revisions
of Wikipedia articles. The dataset FAVIQ (Park
et al., 2021) explored ambiguous parts of claims,
while TabFact (Chen et al., 2019) used tabular data
as evidence. There have also been proposed mul-
timodular dataset for fact verification, combining
claims and images (Zlatkova et al., 2019; Mishra
et al., 2022).

2.2 The FactKG Dataset

The FACTKG dataset (Kim et al., 2023) consists
of 108,000 English claims for fact verification,
where the downstream task is to predict whether
the claims are true or false. The claims are con-
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structed from the DBpedia KG (Lehmann et al.,
2015), which is extracted from Wikipedia and rep-
resents how entities are related to each other.

The claims are constructed on either of the fol-
lowing five reasoning types:

• One-hop: To answer a one-hop claim, one
only needs to traverse one edge in the KG.
In other words, only one knowledge triple is
needed to verify the validity of the claim.

• Multi-hop: As opposed to one-hop claims,
one needs to traverse multiple steps in the KG
to verify multi-hop claims.

• Conjunction: The claim includes a combina-
tion of multiple claims, which are often added
together with the word and.

• Existence: These claims state that an entity
has a relation, but does not specify which en-
tity it relates to.

• Negation: The claim contains negations, such
as not.

The dataset is split in a train, validation and test
set of proportion 8:1:1. The train and validation
set includes relevant subgraphs for each claim, but
not the test set. All claims include a list of entities
present in the claim and as nodes in the KG.

2.3 Question Answer Graph Neural Networks
The question answer graph neural network (QA-
GNN) (Yasunaga et al., 2021) is a hybrid language
and GNN model that both uses a pre-trained lan-
guage model to process the text, and couples it with
a GNN reasoning over a subgraph. It is given text
and a subgraph as input. The text, consisting of a
question and possible answers, is added as a node
to the subgraph. The language model embeds the
text, and assigns a relevance score to each node in
the subgraph. The relevance scores are multiplied
with the node features, before being sent into the
GNN. The GNN output, text-node and the text em-
bedding are concatenated before being put into the
classification layer.

3 Methods

3.1 Efficient Subgraph Retrieval
We experiment with different ways of retrieving
relevant subgraphs for the claim, focusing on com-
putational efficiency. Each datapoint in the FAC-
TKG dataset consists of a claim and a list of entities

Figure 2: Examples of the different subgraphs ex-
plored in this article. Boxes and bold letters represent
entities, while arrows and italic letters represent rela-
tions. This claim is meant for illustrative purposes and
is not present in the FACTKG dataset.

that appear both in the claim and the KG. Since
the part of DBpedia used in FactKG is fairly large
(1.53GB), it is necessary to only use a small sub-
graph of it as input to the models. The benchmark
model from Kim et al. (2023) uses two language
models to predict the relevant edges and the depth
of the graph. We wish to simplify this step in or-
der to reduce the model complexity, and propose
methods for subgraph retrieval that do not need
training.

We experiment with the following methods (ex-
amples can be found in Figure 2):

• Direct: Only includes knowledge triples
where both nodes are present in the entity list.

• Contextualized: First, includes all direct sub-
graphs. Additionally, lemmatize the words in
the claim and check if the nodes in the entity
list have any relations corresponding to the
lemmatized words in the claim. Include all
knowledge triples where at least one node is
in the entity list and the relation can be found

309



in the claim.

• Single-step: Includes every knowledge triple
one can be traversed in one step from a node
in the entity list. In other words, include every
knowledge triple that contains at least one
node in the entity list.

3.2 Finetuning BERT

We use BERT (Devlin et al., 2018) as our pre-
trained language model. We first train a baseline
model using only the claims and no subgraphs, and
then with all of the different methods for retrieving
subgraphs. The subgraphs are converted to strings,
where each knowledge triple is represented with
square brackets, and the name of the nodes and
edges are the same as they appear in DBpedia. The
order of the knowledge triples is determined by the
order of the list of entities in the FactKG dataset
and the order of the edges in DBpedia. The sub-
graphs are concatenated after the claims and a “ | ”
separation token.

3.3 QA-GNN Architecture

In order to adapt the QA-GNN to the fact verifica-
tion setting, we perform some slight modifications.
Because the possible answers are always “true” or
“false”, we embed only the claims, instead of the
question and answer combination. Additionally,
we do not connect the embedded question or claim
to the subgraph.

We use a pre-trained BERT (Devlin et al., 2018)
as the language model to embed and calculate the
relevance scores. In order to reduce the complexity
of the model, we use a frozen BERT to calculate
the embeddings for the nodes and the edges in
the graph. This way, all of the embeddings in the
graph can be pre-calculated. We use the last hidden
layer representation of the CLS token, which is of
length 768. The BERT that calculates the relevance
scores and the embedding of the claim is not frozen.
The relevance scores are computed as the cosine
similarity between the claim embedding and the
embedding of the text in the nodes.

We use a graph attention network (Veličković
et al., 2017) for our GNN. Since the subgraphs are
quite shallow, we only use two layers in the GNN,
and apply batch norm (Ioffe and Szegedy, 2015).
Each layer has 256 features, which is mean-pooled
and concatenated with the BERT embedding and
sent into the classification layer. We add dropout

(Srivastava et al., 2014) to the GNN layers and the
classification layer.

3.4 ChatGPT Prompting

We construct a prompt for ChatGPT 4o in order
to answer a list of claims as accurately as possi-
ble. This is done by creating an initial prompt
and validating the results on 100 randomly drawn
claims from the validation set, and by trying dif-
ferent configurations of the prompt until we do not
get a better validation set accuracy. We then use
the best prompt with 100 randomly drawn unseen
test-set questions, and attempt to ask 25, 50 and
100 claims at a time, to see if the amount of claims
at a time influences the performance. We run the
testing three times.

Since we do not have access to vast enough com-
putational resources to run an LLM, this analysis
is limited by only using 100 datapoints from the
test set. In order to get access to a state-of-the-art
LLM, we used the ChatGPT website with a “Chat-
GPT Plus” subscription to perform the prompting.
This model is not seeded, so the exact answers
are not reproducible, but every prompt and answer
are available in the previously mentioned GitHub
repository. We used the ChatGPT 4o model 30th
of May 2024. Every prompt was performed in the
“temporary chat” setting, so the model did not have
access to the history of previous experiments.

Due to the inability to use the entire test set and
the lack of reproducibility, we do not directly com-
pare this experiment to the other models. However,
we still believe it serves as a valuable benchmark.
Recently, the performance of LLMs has rapidly im-
proved, which suggests that their applications will
continue to broaden. Additionally, this approach
is not fine-tuned, and may work as an interesting
benchmark that can contextualize the results of the
other models.

3.5 Benchmark Models

We will compare the results against the best bench-
mark models from Kim et al. (2023) and the best
performing models known to the authors, found in
Gautam (2024). These comparisons include both
baselines that use only the claims and models that
also incorporate subgraph evidence.
Claim-Only Models:

• FactKG BERT Baseline: The baseline model
from Kim et al. (2023) uses a fine-tuned
BERT, training only on the claims.
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Input Type Model One-hop Conjunction Existence Multi-hop Negation Total

Claim Only
FACTKG BERT Baseline 69.64 63.31 61.84 70.06 63.62 65.20

FactGenius RoBERTa Baseline 71 72 52 74 54 68
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

With Subgraphs
FACTKG GEAR Benchmark 83.23 77.68 81.61 68.84 79.41 77.65

FactGenius RoBERTa-two-stage 89 85 95 75 87 85
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49

Table 1: Test-set accuracy for the best models from this article and the best benchmark models. The FACTKG
models are from Kim et al. (2023), while the FactGenius models are from Gautam (2024). The fine-tuned BERT
model performed the best, while the QA-GNN was the computationally most efficient model.

• RoBERTa Baseline: Similar to the above,
the baseline from Gautam (2024) uses a fine-
tuned language model with claims only, but
uses RoBERTa (Liu et al., 2019) as the base
model.

Models Utilizing Subgraphs:

• GEAR-Based Model: The benchmark model
from Kim et al. (2023) is inspired by GEAR
(Zhou et al., 2019), but has been adapted to
handle graph-based evidence. It uses two fine-
tuned language models to retrieve the sub-
graphs. One of them predicts relevant edges,
the other predicts the depth of the subgraph.

• FactGenius: This model combines zero-shot
LLM prompting with fuzzy text matching on
the KG (Gautam, 2024). The LLM filters rel-
evant parts of the subgraphs, which are then
refined using fuzzy text matching. Finally,
a fine-tuned RoBERTa is used to make the
downstream prediction.

3.6 Further Experimental Details
Due to computational constraints, we tuned the
hyperparameters one by one, instead of performing
a grid search. All the training was performed on the
University of Oslo’s USIT ML nodes (University
Centre for Information Technology, 2023), using
an RTX 2080 Ti GPU with 11GB VRAM. The
BERT model has 109,483,778 parameters, which
all were fine-tuned. The QA-GNN used a total
of 109,746,945 parameters. The FACTKG dataset
comes with a lighter version of DBpedia that only
contains relevant entries, which was used for this
paper. Further details can be found in Appendix A.

4 Results

4.1 Improved Performance and Efficiency
The test results for our best model configurations
and the benchmark models can be found in Table 1.

The best performing model is the fine-tuned BERT
with single-step subgraphs. The fine-tuned BERT
without any subgraphs were able to achieve slightly
higher performance than the one from Kim et al.
(2023), which we suggest is due to finding better
hyperparameters.

Additionally, our models were much faster to
train. While the GEAR model used 2-3 days to
train on an RTX 3090 GPU (reported by the authors
by email), our QA-GNN only used 1.5 hours. The
training time of our fine-tuned BERT model was
significantly influenced by the size of the subgraphs
we used. With no subgraphs, it took about 2 hours
to train, while with the one-hop subgraph it took 10
hours. FactGenius was reported to use substantially
more computational resources, running the LLM
inference on a A100 GPU with 80GB VRAM for
8 hours.

4.2 Successful Subgraphs Retrievals

We now look at the different configurations for
the subgraph retrievals, which greatly influenced
the performance of the models. Since the direct
and contextual approach only includes subgraphs
if a certain requirement is fulfilled, it will result
in some of the claims having empty subgraphs.
In the training and validation set, 49.0% of the
graphs were non-empty for the direct approach, and
62.5% were non-empty for the contextual approach.
The single-step method resulted in vastly bigger
subgraphs.

While the QA-GNN could handle the big
subgraphs efficiently, the fine-tuned BERT was
severely slowed down when the size of the sub-
graphs got bigger. Therefore, we substituted any
empty subgraphs with the single-step subgraph
when using QA-GNN, but kept the empty graphs
when using fine-tuned BERT. This means that some
claims for the direct and contextual BERT models
were predicted only using the bias in the language
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Model One-hop Conjunction Existence Multi-hop Negation Total
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

BERT (direct) 80.24 83.30 59.05 77.62 74.58 79.64
BERT (contextual) 81.20 84.45 61.05 77.04 77.40 80.25
BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49
QA-GNN (direct) 74.60 74.01 58.97 76.41 74.12 75.01

QA-GNN (contextual) 76.58 69.94 84.68 74.58 80.75 76.12
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

Table 2: Test-set accuracy for different subgraph retrieval methods on FACTKG. The direct approach only
includes knowledge triples where both nodes appear in the claim, the contextual also includes edges appearing
in the claim, and the single-step includes all knowledge triples where at least one node appears in the claim. The
QA-GNN models used the single-step subgraph if the direct or contextual is empty, while the BERT models did not.

model and the claim.
The results can be found in Table 2 and Table 3.

We see a clear improvement in BERT when us-
ing the direct subgraphs over none, a small im-
provement when using the contextual subgraphs,
and a big improvement when using the single-step
method. The same is true for the QA-GNN, but
the differences in performance are smaller. The
models score the lowest on multi-hop claims.

Since we used non-trainable subgraph retrieval
methods and a frozen BERT for embedding the
nodes and edges in the subgraphs, we performed
this processing before training the models. During
training, the models used a lookup table to get the
subgraphs and the word embeddings, which signif-
icantly decreased the training time. The retrieval
of all the subgraphs took about 15 minutes, and the
embedding of all the words appearing in them took
about 1 hour. We also tried training a QA-GNN
without frozen embeddings, but it ran so slow that
we were not able to carry out the training with our
available computational resources.

4.3 Competitive ChatGPT Performance

The results for the ChatGPT prompting can be
found in Table 4. The accuracy is substantially
lower than from our best models, but better than
the baselines using only the claims. The accuracy
is fairly consistent over the three runs, and we do
not see a big difference between the amount of
questions asked at a time.

We started with an initial prompt asking for just
the truth values for a list of claims, and updated
it to also include some training examples and to
ask for explanations. Several configurations of the
prompt were tested, and it was also improved based
on feedback from ChatGPT.

We saw the biggest improvement when we asked

for a short explanation of the answers, instead of
just the truth values. Without asking for explana-
tions, the amount of answers were often longer or
shorter than the amount of questions, but this never
happened when explanations were included. We
added numbers to the questions to further help with
this issue. We also saw a slight improvement by for-
mulating the prompt with bullet point lists and by
including some example inputs and outputs from
the training set. The final prompt can be found in
Figure 3.

5 Discussion

We were able to train better and more efficient mod-
els by simplifying the subgraph retrieval methods,
both by using a fine-tuned BERT and a slightly
modified QA-GNN model. While the QA-GNN
models trained the fastest, the fine-tuned BERT
clearly performed the best, significantly outper-
forming the benchmark models. This suggests that
the simple logical subgraph retrievals worked bet-
ter than the complex trained approaches in previous
work. We suggest that the performance gain in the
claim-only benchmark was due to slightly better
hyperparameters.

All of the models performed better the bigger the
subgraphs were. This suggests that the model archi-
tectures are able to utilize the relevant parts of the
subgraphs, without needing an advanced subgraph
retrieval step. This is emphasized by our fine-tuned
BERT model achieving a 93.49% test set accuracy
by only using the single-step subgraphs, while the
GEAR model from Kim et al. (2023), which trained
two language models to perform graph retrieval,
achieved a 77.65% test-set accuracy.

When examining the precision and recall met-
rics in Table 3, we see that most of the models
has a higher precision than recall, except for the
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Model One-hop Conjunction Existence Multi-hop Negation Total
P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1

BERT (no subgraphs) 71.89 / 51.66 / 60.12 75.44 / 34.20 / 47.06 59.52 / 73.63 / 65.82 85.19 / 60.90 / 71.03 58.88 / 73.13 / 65.24 75.25 / 54.00 / 62.88
QA-GNN (direct) 76.19 / 67.04 / 71.32 80.11 / 51.22 / 62.49 56.19 / 74.10 / 63.91 80.04 / 74.80 / 77.33 70.97 / 73.80 / 72.36 77.21 / 69.01 / 72.88
QA-GNN (contextual) 84.79 / 61.29 / 71.15 80.27 / 38.29 / 51.85 81.83 / 88.38 / 84.98 82.31 / 67.17 / 73.98 77.26 / 82.26 / 79.68 84.10 / 62.78 / 71.89
QA-GNN (single-step) 82.51 / 70.55 / 76.06 78.89 / 53.95 / 64.08 79.69 / 88.70 / 83.95 78.44 / 73.09 / 75.67 77.06 / 79.10 / 78.07 81.41 / 71.19 / 75.96
BERT (contextual) 83.05 / 75.51 / 79.10 88.60 / 72.56 / 79.78 59.68 / 63.42 / 61.49 84.10 / 70.67 / 76.80 75.84 / 74.46 / 75.15 83.30 / 74.28 / 78.53
BERT (direct) 83.89 / 71.86 / 77.41 88.69 / 69.32 / 77.82 58.97 / 54.16 / 56.46 83.38 / 72.91 / 77.80 69.99 / 78.11 / 73.82 83.76 / 72.12 / 77.51
BERT (single-step) 96.27 / 98.29 / 97.27 96.06 / 98.13 / 97.09 96.45 / 98.12 / 97.28 85.31 / 76.59 / 80.72 92.01 / 91.71 / 91.86 93.75 / 92.79 / 93.27

Table 3: Precision (P), Recall (R), and F1 scores for different models and subgraph types on the test-set.

Model Accuracy (mean ± std)
ChatGPT 25 questions 73.67 ± 0.5
ChatGPT 50 questions 76.33 ± 3.3
ChatGPT 100 questions 73.00 ± 1.4

Table 4: Test-set accuracy for different configurations
of ChatGPT prompting. The metrics are averaged over
three runs. The prompts included 25, 50 or 100 claims
at a time, but the same claims were used in all of the
configurations.

best performing model, the single-step BERT. How-
ever, the single-step BERT does have a lower re-
call for the multi-hop claims, which it performs
significantly worse on. Therefore, the models
mostly have a higher precision than recall when
their performance is not so good, suggesting they
are slightly more likely to predict “false” on claims
that they are not confident about.

A limitation of our subgraph retrieval methods is
that they never include nodes that are more than one
step away from an entity node, while the trained
approach from Kim et al. (2023) is dynamic and
may include more. This might make the hypothe-
sis that the simple subgraph retrieval methods will
perform worse on multi-hop claims than the dy-
namically trained, however, we see the exact op-
posite behavior. The best BERT and QA-GNN
models score 80.32% and 74.72% at the multi-
hop claims respectively, while the dynamic GEAR
model scores 68.84%, even lower than the models
not using the subgraphs at all. We do however see
that the best performing BERT model clearly per-
forms the worst on the multi-hop claims compared
to the other claim types, indicating that even bigger
subgraphs might be beneficial.

While the sample size for the ChatGPT metrics
were small, it does indicate that non-fine-tuned
LLMs can achieve adequate few-shot performance
compared to a fine-tuned claim-only BERT. The
performance does not seem to be substantially com-
promised when the amount of questions prompted
increases, so with a bigger access to computational
resources, it might be possible to prompt the full

test-set at once. The removal of fine-tuning greatly
improves the ease of use if one only needs to verify
a few claims. While we are hesitant to make any
conclusion with the small sample size, we believe
that the results serve as an approximate benchmark
of how difficult the dataset is.

6 Conclusion and Future Work

Our results show that with simple, yet efficient
methods for subgraph retrieval, our models were
able to improve fact verification with knowledge
graphs with respect to both performance and effi-
ciency. The fine-tuned BERT model with single-
step subgraphs clearly achieves the best perfor-
mance, while the QA-GNN models are more ef-
ficient to train.

This indicates that complex models can work
well with simple subgraph retrieval methods. Since
the single-step subgraphs mostly contain informa-
tion not relevant for the claims, the models are
themselves able to filter away irrelevant informa-
tion, and complex subgraph retrieval methods may
hence not be necessary for accurate fact verifica-
tion. Additionally, since the best performing model
performed the poorest with multi-hop claims, fu-
ture research could explore simple subgraphs re-
trieval methods allowing for bigger depths than
one. Additionally, future work should also be
directed towards running similar experiments on
other datasets.

We also encourage researchers that have access
to bigger computational resources to further ex-
plore the performance of LLMs for fact verification.
A core limitation of our ChatGPT prompting was
the inability to use the full test-set, and we consider
this crucial for further development. We also think
it would be especially interesting to make LLM and
KG hybrid models. Since our results indicate that
simple single-step subgraph retrievals outperform
more complex methods, a promising path of future
research would be to simply use both the claims
and the single-step subgraphs as input to the LLM.
If possible, the LLM could also be fine-tuned on
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Task:
Determine the truth value (True or False) of the following claims based on information verifiable from Wikipedia, as represented
in the DBpedia knowledge graph. Provide your answers without using real-time internet searches or code analysis, relying
solely on your pre-trained knowledge.
Instructions:

• You will evaluate the following claims, presented one per line.

• Base your answers solely on your knowledge as of your last training cut-off.

• Provide answers in Python list syntax for easy copying.

• Respond with True for verifiable claims, and False otherwise.

• Include a brief explanation for each answer, explaining your reasoning based on your pre-training.

• If the claim is vague or lacks specific information, please make an educated guess on whether it is likely to be True or
False.

Output Format: Format your responses as a list in Python. Each entry should be a tuple, formatted as (claim number, answer,
explanation).
Example Claims:
1. The Atatürk Monument is located in Izmir, Turkey, where the capital is Ankara.
2. Yes, Eamonn Butler’s alma mater is the University of Texas System!
3. I have heard 300 North LaSalle was completed in 2009.
4. The band Clinton Gregory created an album in the rock style. ...
Example output:
[

(1, True, "The Atatürk Monument is indeed located in Izmir, and the capital of Turkey is Ankara."),
(2, False, "Eamonn Butler did not attend the University of Texas System; he is a British author and economist whose

educational background does not include this institution."),
(3, True, "300 North LaSalle in Chicago was indeed completed in 2009."),
(4, False, "Clinton Gregory is primarily known as a country music artist, not rock."),

...
]
Here are the actual claims you should answer:

Figure 3: Final prompt used to get truth values from ChatGPT 4o. The actual questions are not included, but
were in the format of the Example Claims. The Example Claims are from the training set, and the Example
Output is copy pasted from an actual ChatGPT answer.

the dataset. We also encourage future work to cre-
ate fully reproducible results with LLMs, which
we were unable to do.

7 Limitations

Our experiments with ChatGPT were done on a
small sample of test questions, with a model that
was not possible to seed, and therefore is not repro-
ducible. Due to the small sample size, we are not
able to directly compare the performance to other
approaches. The lack of reproducibility, which
stems from the state-of-the-art model that was avail-
able to the author is not fully publicly available,
makes it impossible for other researchers to com-
pletely verify our findings. Additionally, the pro-
cess for creating prompts were not standardized, we
simply tried different configurations based on our
own experience with using LLMs until we could
not increase the validation accuracy further. Due
to these limitations, one should therefore be very

hesitant to make any confident conclusions based
on the experiments we performed with ChatGPT.

Because our intention was to specifically explore
different language models’ abilities of fact verifi-
cation with knowledge graphs on the FACTKG
dataset, we did not conduct any experiments on
other datasets. It is possible that our results will
not be consistent with other datasets.

Additionally, our selection of models and hy-
perparameter settings could be more diverse. Due
to computational constraints, we did not perform
a grid search for hyperparameters, but tuned hy-
perparameters one by one. Which parameters we
searched for were not decided in advance. A pre-
defined grid search might lead to a fairer and more
reproducible approach. We did not experiment with
different orderings of the knowledge triples for the
fine-tuned BERT models, which could influence
the performance.
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A Hyperparameter Details

We used an AdamW optimizer (Loshchilov and
Hutter, 2017) with a linear learning rate sched-
uler with 50 warm up steps, and used the model
from the epoch with lowest loss on the validation
set. The hyperparameters were tuned in a line
search, first testing different learning rates, and
then testing all the other hyperparameters with
the best learning rate. We searched for learning

Model Learning Rate Batch Size Best Epoch
BERT (no subgraphs) 1e-4 32 6

BERT (direct) 1e-4 32 7
BERT (contextual) 5e-5 8 7
BERT (single-step) 5e-5 4 7
QA-GNN (direct) 1e-4 128 8

QA-GNN (contextual) 5e-5 64 17
QA-GNN (single-step) 1e-5 128 20

Table 5: Final hyperparameters for the different mod-
els. The direct QA-GNN model used GNN and classifier
dropout rates of 0.3 and 0.3, while the two other QA-
GNN models used 0.1 and 0.5, respectively.

rates in {1e − 3, 5e − 4, 1e − 4, 5e − 5, 1e − 5}
for all models. We initially set the batch size to
32, except for the BERT models with large sub-
graphs, which were set to 4 due to memory con-
straints. After finding the learning rate, we tried
batch sizes in {32, 64, 128, 256}. For the QA-
GNN model, we initially set the GNN dropout
and the classifier dropout to 0.3, and tried values
in {0, 0.1, 0.3, 0.5, 0.6}. We also tried to freeze
some of the layers in the base model, and to use a
RoBERTa (Liu et al., 2019) instead of BERT (De-
vlin et al., 2018), but neither of these approaches
improved the validation loss.

The final hyperparameters can be found in Ta-
ble A.

B Scientific Artifacts

We conducted the experiments using several python
libraries, including PyTorch version 2.0.1 (Paszke
et al., 2019) with CUDA version 11.7, Hugging-
Face Transformers (Wolf et al., 2020), NumPy
(Harris et al., 2020), SpaCy (Honnibal and Montani,
2017) and NLTK (Bird et al., 2009).
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