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Abstract
The AVeriTeC shared task introduces a new
real-word claim verification dataset, where a
system is tasked to verify a real-world claim
based on the evidence found in the internet. In
this paper, we proposed a claim verification
pipeline called QECV which consists of two
modules, Evidence Retrieval and Claim Veri-
fication. Our pipeline collects pairs of <Ques-
tion, Answer> as the evidence. Recognizing
the pivotal role of question quality in the ev-
idence efficacy, we proposed question enrich-
ment to enhance the retrieved evidence. Specif-
ically, we adopt three different Question Gen-
eration (QG) technique, muti-hop, single-hop,
and Fact-checker style. For the claim verifica-
tion module, we integrate an ensemble of mul-
tiple state-of-the-art LLM to enhance its robust-
ness. Experiments show that QECV achieves
0.41, 0.29, and 0.42 on Q, Q+A, and AVeriTeC
scores. Code is available here.

1 Introduction

Claim Verification has become critical in the past
few years due to the widespread of false informa-
tion. This highlight the needs for robust automated
system for claim verification. To advance the re-
search area, benchmark datasets and challenges
such as FEVER (Thorne et al., 2018) and FEVER-
OUS (Aly et al., 2021) have been introduced and
subsequent systems (Zhou et al., 2019; Liu et al.,
2020; Zhong et al., 2020; Barik et al., 2022; Chen
et al., 2022; Bouziane et al., 2021; Gi et al., 2021)
have demonstrated progress in claim verification.
Nevertheless, given the artificial claims and struc-
tured Wikipedia evidence in FEVER and FEVER-
OUS, those systems have been optimized primarily
under this condition. Verifying real-world claim
such as news claim still poses a significant chal-
lenge due to the complexity of sources, varying
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contexts, and the potential for misleading or evolv-
ing information.

Recently, a new claim verification benchmark
on real-world called AVeriTeC (Schlichtkrull et al.,
2024) was introduced. In this benchmark, the sys-
tem is required to retrieve relevant document from
articles across the internet and extract essential in-
formation from the articles that can debunk the
claim. Then, the system must classify the claim
as Supported, Refuted, Not Enough Evidence, or
Conflicting Evidence/Cherrypicking.

Compare with previous datasets that relies on
synthetic claims derived from Wikipedia, AVeriTeC
focused on real-world claims. Additionally,
question-answer pairs have been introduced to cap-
ture reasoning steps and include annotations for
conflicting evidences, offering a more nuanced ap-
proach to claim verification.

In this dataset, question generation is a struc-
tured process aimed at deconstructing the reason-
ing used in fact-checking. Annotators identify key
aspects of a claim that require verification by read-
ing original claim, relevant fact-checking source(s)
and original source of the claim. They have been
tasked to generate questions that would help break
verification into the smaller steps. These questions
need to be designed to extract specific pieces of
evidences that would be required to verify claim.

In this paper, we propose Question Enrichment
Claim Verification (QECV) consisting of 2 mod-
ules, Evidence Retrieval and Claim Verification.
To enhance the quality of the retrieved evidence,
we adopt three different question generation ap-
proaches; multi-hop, single-hop, and fact-checker
style. Single-hop aims to retrieve more general evi-
dence to verify the claim, while multi-hop targets
more detailed evidence for each component of the
claim. Fact-checker style mimic how human fact-
checker generate questions by conditioning on both
the claim and the content article. In contrast, single-
hop and multi-hop solely rely on the claim for
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question generation. Our claim verification mod-
ule combine two different approaches: evidence-
level verifier and claim-level verifier. The former
classify intermediate label to individual piece of
evidence, which are subsequently aggregated to
determine the claim label. Conversely, the latter
directly classifies the claim label based from all
the retrieved evidence. To leverage the strength
of each approach, we employ a voting-based en-
semble model to aggregate the output and obtain
the final label. Our pipeline achieves 0.41, 0.29,
and 0.42 on Q, Q+A, and AVeriTeC scores respec-
tively, which outperforms the baseline model with
a substantial margin.

2 Pipeline

As shown in Figure 1, our pipeline consists of two
modules: Evidence Retrieval and Claim Verifica-
tion. The input claim first passes through our three
variants of evidence retrieval to retrieve relevant
pairs of <Question, Answer>. Each variant gener-
ate questions from the claim and retrieve relevant
articles through Faiss: a library for efficient simi-
larity search (Douze et al., 2024). Then, it outputs
list of <Question, Answer> which later combined
to become the retrieved evidence. Thereafter, the
claim sentence and the retrieved evidence are fed
to the claim verification module to predict the final
label. The detail of each module will be elaborated
in subsequent subsections.

2.1 Evidence Retrieval
The evidence retrieval module processes a claim
sentence through a sequential of sub-modules to
extract relevant pairs of <Question, Answer> evi-
dence.

2.1.1 Question Generation
Crafting effective questions is crucial in the ques-
tion generation process, especially for claim veri-
fication. The quality of the questions can signifi-
cantly influence the verification outcome, guiding
it towards uncovering the truth or leading to ambi-
guity. Therefore, we place great importance on de-
signing these questions carefully. Specifically, we
propose three different question generation strate-
gies: multi-hop, claim as a question, and FC-style
question generation.

Multi-hop Question Generation Following
QACheck methodologies (Pan et al., 2023), we
employ two different question types in this strategy,
initial question and follow-up question. The initial

Figure 1: QECV Pipeline

question serves as the starting point for verification.
Here is the prompt structure for generating initial
question:

Claim = CLAIM

What kind of question need to be
asked to start fact checking
process?

Follow-up questions build on the initial question
and any previous responses to further validate the
claim. Here is the prompt structure for generating
follow-up questions:

Claim = CLAIM

We already know the following:

CONTEXT = Prev. QA Pairs

Given a claim and previous
questions, what follow-up
question need to be asked to
verify the claim?

Claim as Question Generation Unlike the
multi-hop question, this strategy leverages the en-
tire claim as a question to better grasp the overall
context and nuances of the claim. Specifically, a
question "Is it true that CLAIM?" is manually con-
structed and subsequently paraphrased using Ope-
nAI’s GPT4o.
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Fact-checker Style Question Generation
After manually reviewing the questions gener-

ated by annotators, we discovered that most of
these questions are more sophisticated than those
based solely on the claim. Generating such sophis-
ticated questions requires additional knowledge,
including details from the source text, information
about where the claim was published, and the na-
ture of the publishing company. Often, this infor-
mation might not seem directly connected to the
claim at first glance.

To generate these types of questions, we need
to provide more comprehensive information to the
model and tailor the question generation process
accordingly.

Here is the prompt structure for generating fact-
checker style questions:

Claim = CLAIM

Article text = TEXT Is this
article relevant to our claim?
If yes - what question need to
be asked based on the article
text that will be required to
verify claim?

By systematically asking well-structured ques-
tions, our system aims to facilitate a thorough and
accurate verification process.

2.1.2 Document Retrieval
This module accepts a question as input to extract
relevant documents. We leverage the provided doc-
ument collections from the dataset provided in the
challenge. However, given the substantial propor-
tion of empty documents (exceeding 50%) within
these collections, we augmented more documents
by querying the claim itself with Google API. We
also scraped a few hundred URLs manually for
which document-text field was empty.

To match any question with the corresponding
documents, we tried multiple techniques. In sum-
mary, we create an embedding vector for each doc-
ument and also the question, using the Sentence
Transformer library (Reimers and Gurevych, 2019).
Considering the resource constraints, we used "all-
MiniLM-L6-v2" model to get the encodings. We
found that Faiss yields fast indexing and best simi-
larity results even for extremely long texts, partly
due to the quality of encodings by Sentence Trans-
formers. We get the 20 best matches with the ques-
tion and pass it to the Reranking module which is
described below.

2.1.3 Rerank Documents
In our manual analysis, we noticed that some of
the URLs could be from inauthentic sources, and
could include wrong information. However, the
gold labeled URLs in training data seemed to have
authentic information. To leverage this, we de-
vise a simple reranking algorithm, based on the
training data’s Gold standard websites (retrieved
from the URLs). We calculate the frequency based
weighting for the training data’s ground truth web-
sites which are of type "gold", and also for the rest,
which we call "normal" website weight. Now, for
the test stage, we check every URL’s Faiss score,
and multiply it with the corresponding website
weight. Gold websites are always prioritised above
the normal weighted websites. This reranking mul-
tiplication considers only the top 20 documents and
not all, because considering all URLs could result
in dissimilar documents being at the top.

Post-reranking, we take the top 5 documents re-
trieved and pass them to the Question Answering
stage, which is described below. This reranking
stage yielded us best results for Claim-as-question
generation. However, it didn’t yield significantly
better results for the Multi-hop based QG. By
adding URL weightings (and using no claim-as-
questions yet) on the development dataset, our Q
and Q+A score slightly go down from 31.35 and
21.67 to 30.64 and 20.32 respectively. Our hypoth-
esis for this observation is that, multiple questions
retrieve multiple documents. As a result, those
retrieved documents already cover a number of au-
thentic websites. Hence, URL weighting might
hinder more than help in multi-hop stage.

2.1.4 Question Answering
Once we retrieve the five most relevant documents,
the first step is to generate a summary tailored to
the question at hand. For summary generation,
we utilize OpenAI’s GPT4o, providing it with the
question, the claim, and the text of the document
as input.

Since the summary is generated with the specific
goal of addressing the question based on the doc-
ument’s content, it is subsequently treated as the
answer in the following modules. The prompt used
for generating the summary is as follows:

Claim = CLAIM

Question= QUESTION

Text = TEXT
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Provide a brief summary of the
text, focusing on information
relevant to the question. The
summary should aim at answering
the question.

2.1.5 QA Validator
The QA Validator module plays a crucial role in
our fact-checking system, as it determines the di-
rection of subsequent verification processes. Given
that some questions may yield conflicting answers
(which could lead to cherry-picking the final label),
it is essential to determine differences in answers
before proceeding. To address this, we assign indi-
vidual labels to each QA pair based on their con-
tent.

Each QA pair can be assigned one of three labels:
Supported, Refuted, or Not Enough Evidence. Once
each QA pair is labeled, we group them based on
these three categories. The logic for handling the
labels is as follows:

• If a question has both Supported and Not
Enough Evidence pairs, we only consider the
Supported pairs.

• If a question has both Refuted and Not Enough
Evidence pairs, we only consider the Refuted
pairs.

• If a question has both Supported and Refuted
pairs, we retain both and generate follow-up
questions based on these two paths.

• If a question only has Not Enough Evidence
pairs, we proceed with that label.

After selecting the pairs to continue with, we
must choose the best QA pair within each cate-
gory. Using OpenAI’s GPT4o, we analyze each
QA pair and select the one that provides the most
informative response to the question.

2.2 Claim Verification
The claim verification module is given a claim sen-
tence and evidence as input, it tasked to classify the
label of the claim. The module is a combination
of two claim verification system variants, namely
Evidence-level verifier and Claim-level verifier.

Evidence-level Verifier In this variant, the model
was trained to independently classify the label of a
claim w.r.t a piece of evidence. The evidence is a
concatenation of a question and an answer follow-
ing this format: "Question: [Question]. Answer:

[Answer]". Claims are classified as Supported, Re-
futed, or Not Enough Evidence, constituting a fine-
grained label. Ultimately, the claim label was de-
termined through applying deterministic function
to the fine-grained labels:

• Supported: If all the fine-grained labels are
Supported.

• Refuted: If all the fine-grained labels are Re-
futed.

• Conflicting Evidence/Cherrypicking: If
both Supported and Refuted are presents in
the fine-grained labels

• Not Enough Evidence: Otherwise

Claim-level Verifier In this variant, we follow
a conventional claim verification model, in which,
the model is tasked to classify the label of the claim
given all pieces of evidence. The evidence is the
concatenation of questions and answers following
this format: Question-1: [Question-1]. Answer-1:
[Answer-1]. ... Question-N: [Question-N]. Answer-
N: [Answer-N]. The claim is classified either Sup-
ported, Refuted, Not Enough Evidence, or Conflict-
ing Evidence/Cherrypicking.

For each variant, we experimented with different
LLMs as the backbone and we combine the output
of these models through a voting-based ensemble
model to obtain the final claim label. A compre-
hensive description of each LLM is presented in
the next section.

2.2.1 Training Detail
We fine-tuned five LLMs: (1) flan-t5-Large (Chung
et al., 2024), (2) Mistral-7B-Instruct-v0.1 (Jiang
et al., 2023), (3) Mixtral-8x7B-Instruct-v0.1 (Jiang
et al., 2024), (4) gpt-3.5-turbo-0125, and (5) gpt-
4o-mini. For T5, Mistral, and Mixtral, we set the
learning rate to 1e−4 and fine-tuned it for 2 epochs.
We use LoRA with rank, alpha, and dropout are
set to 8, 32, and 0.05. Meanwhile, for GPT3.5
and GPT4, we use 4 epochs. We set the other
hyperparameters as default.

Evidence-level Verifier: to obtain
the training data for this variants, we
first filter out all claims with label
Conflicting Evidence/Cherrypicking. Then,
quadruplets of <claim, question, answer, label>
are obtained from the training set. For Claim-level
Verifier, we collect quadruplets of <claim, list of
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Model Q Q+A
baseline 0.24 0.19
Single 0.23 0.16
Single+Multi 0.39 0.27
Single+Multi+FC 0.44 0.31

Table 1: Evidence Retrieval Result on Development Set.
Comparison of results from different question genera-
tion types.

questions, list of answers, label> from the whole
training set.

We employ majority voting for the ensemble
models. Based from the experiments on the dev
set, our final claim verification is an ensemble of 4
different models: GPT4 on Evidence-level verifier
and Mistral, GPT3.5, and GPT4 on Claim-level
verifier.

3 Results

3.1 Evidence Retrieval

Table 1 reports the results evidence retrieval per-
formance of QECV compared to the baseline mod-
els on the development set. Among the investi-
gated Question Generation style, the single-hop
approaches yield the lowest score among other vari-
ants. This shows that claim as question is not suf-
ficient to retrieve enough evidence to verify the
claim. Nevertheless, the claim as question is com-
petitive with the baseline models. Augment the
evidence through multi-hop question led to a sub-
stantial improvement, which improves 0.13 on Q
and 0.11 on Q+A. This suggest that Q+A effec-
tively capture more detailed and relevant evidence.
Finally, adding FC-style question improve addi-
tional performance gain by 0.5 on Q and 0.4 on
Q+A, emphasizing the efficacy of this approach
to collect evidence that are hardly mention by the
claim.

3.2 Claim Verification

Table 2 reports the Evidence-level Verifier, and
Table 3 reports the Claim-level Verifier on the de-
velopment set using various fine-tuned LLM.

Effect on LLMs size: Through the experiments,
we can see that on evidence-level verifier, bigger
model such as mixtral, GPT3.5, and GPT4 outper-
forms smaller models on AVeriTeC score. Mean-
while on claim-level verifier, mistral, GPT3.5 and
GPT4 outperforms smaller models on AVeriTeC

score. Moreover, GPT3.5 and GPT4 are consis-
tently achieved the highest performance across both
variants.

Effect on Different Variants: Experimental re-
sults demonstrate that claim-level verifier are supe-
rior than the evidence-level verifier, both in macro
F1 and AVeriTeC score. The under performance
of evidence-level is attributed to the deterministic
function. For instance, for a "Supported" claim
"Amy Coney Barrett was confirmed as US Supreme
Court Justice on October 26, 2020.", our evidence
retrieval retrieves 7 evidence and the evidence-
level verifier predicts 6 out of the 7 evidence as
"Supported". The last evidence stated that "The
summarized information does not provide the ex-
act date of Amy Coney Barrett’s confirmation to
the US Supreme Court. It only states that she has
been confirmed.", which the verifier predicts as Not
Enough Evidence. Finally, the final claim label
is Not Enough Evidence due to the deterministic
function. Nevertheless, evidence-level verifier is
superior in identifying Not Enough Evidence label,
achieving 0.28 F1 score compared to 0.16 F1 score
for claim-level verifier.

Impact of using different LLMs: Experimental
results indicate that different models exhibit vary-
ing strength. In claim-level verifier, GPT3.5 and
GPT4 are superior on Supported and Refuted la-
bels, whereas Mistral and Mixtral excel on Not
Enough Evidence and Conflicting labels. Con-
versely, in the evidence-level verifier, GPT3.5 and
GPT4 are the most effective on Not Enough Evi-
dence and Conflicting labels, meanwhile Mixtral
excels on Refuted and BART on Supported. This
suggest that each LLM possesses it’s own strength
depending on the verifier variant. Consequently,
combining the strength of these models across dif-
ferent variants can enhance the robustness of the
verifier.

3.3 Full Pipeline
For our final pipeline, we use the best performance
for the evidence retrieval, which is a combination
Single+Multi+FC-style based QG. For the claim
verification, we ensemble GPT4 on evidence-level
verifier and Mistral, GPT3.5, and GPT4 on claim-
level verifier to gain benefit the strength of dif-
ferent variants. Table 4 indicates that our final
pipeline significantly outperforms the baseline on
every metrics, by 0.17 on Q, 0.10 in Q+A, and 0.31
in AVeriTeC score.
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Model AVeriTeC F1
Sup Ref Nee Conf Macro

baseline (BART_large) 0.09 0.43 0.71 0.00 0.09 0.32
T5 0.33 0.28 0.78 0.27 0.14 0.36
Mistral 0.32 0.19 0.78 0.24 0.10 0.33
Mixtral 0.36 0.33 0.81 0.16 0.09 0.35
GPT3.5 0.35 0.24 0.79 0.28 0.13 0.36
GPT4 0.37 0.40 0.80 0.22 0.14 0.39

Table 2: Evidence-level verifier results on the development set. "Sup" denotes "Supported," "Ref" stands for
"Refuted," "Nee" represents "Not Enough Information," and "Conf" corresponds to "Conflicting" or "Cherrypicking"
label types.

Model AVeriTeC F1
Sup Ref Nee Conf Macro

T5 0.39 0.42 0.79 0.11 0.14 0.37
Mistral 0.44 0.61 0.82 0.09 0.20 0.43
Mixtral 0.38 0.46 0.82 0.16 0.16 0.40
GPT3.5 0.46 0.61 0.84 0.12 0.16 0.43
GPT4 0.44 0.59 0.84 0.08 0.18 0.42

Table 3: Claim-level Verifier Result on Development Set, where "Sup" - Supported, "Ref" - Refuted, "Nee" - Not
Enough Information, "Conf" - Conflicting/Cherrypicking type of labels.

Development Set Test Set
Model Q Q+A AVeriTeC Q Q+A AVeriTeC
baseline 0.24 0.19 0.09 0.24 0.20 0.11
ours 0.44 0.31 0.46 0.41 0.30 0.42

Table 4: Result on Full Pipeline compare with baseline results, where "Q" - question-based retrieval performance,
"Q+A" - question + answer retrieval performance

4 Conclusion

In this paper, we introduced the QECV, a pipeline
for verifying real-world claims. Improving the evi-
dence retrieval through question enrichment enable
the framework to cover more evidence for verify-
ing the claim, thus achieves 0.41 and 0.30 for the
Q and Q+A performance on the test set. Addition-
ally, our pipeline combines across various claim
verifier variants and LLMs to leverage their unique
strengths, resulting in more robust verification pro-
cess and an 0.42 AVeriTeC score on the test set.

5 Limitations

We believe one of the major limitations of this
pipeline is relevance of documents we retrieve for
each question. We have tried to address this by
introducing multi-hop QG, claim-as-question mod-
ule, and emphasising fact-checking styled docu-
ments. However, there is definitely scope of further
improvement here.

Despite the ability of our question enrichment
methods on the evidence retrieval, the hallucina-
tion remains, particularly in the question answer-
ing stage. Moreover, our claim verification models
rely solely on the ground truth data for training.
Given that the previous works demonstrate the ef-
fectiveness of adding noise for claim verification
on synthethic claim, it is worthwhile to investigate
whether a similar approach can be applied to the
real-world claims.

References
Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. FEVEROUS: Fact extraction and
VERification over unstructured and structured
information.

Anab Maulana Barik, Wynne Hsu, and Mong Li
Lee. 2022. Incorporating external knowledge for
evidence-based fact verification. In Companion Pro-

69

https://arxiv.org/abs/2106.05707
https://arxiv.org/abs/2106.05707
https://arxiv.org/abs/2106.05707


ceedings of the Web Conference 2022, pages 429–
437.

Mostafa Bouziane, Hugo Perrin, Amine Sadeq, Thanh
Nguyen, Aurélien Cluzeau, and Julien Mardas. 2021.
Fabulous: fact-checking based on understanding of
language over unstructured and structured informa-
tion. In Proceedings of the Fourth Workshop on Fact
Extraction and VERification (FEVER), pages 31–39.

Jiangjie Chen, Qiaoben Bao, Changzhi Sun, Xinbo
Zhang, Jiaze Chen, Hao Zhou, Yanghua Xiao, and
Lei Li. 2022. Loren: Logic-regularized reasoning
for interpretable fact verification. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 10482–10491.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library.

In-Zu Gi, Ting-Yu Fang, and Richard Tzong-Han Tsai.
2021. Verdict inference with claim and retrieved
elements using roberta. In Proceedings of the
Fourth Workshop on Fact Extraction and VERifica-
tion (FEVER), pages 60–65.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and
Zhiyuan Liu. 2020. Fine-grained fact verification
with kernel graph attention network. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7342–7351.

Liangming Pan, Xinyuan Lu, Min-Yen Kan, and Preslav
Nakov. 2023. Qacheck: A demonstration system
for question-guided multi-hop fact-checking. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, pages 264–273.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Michael Schlichtkrull, Zhijiang Guo, and Andreas Vla-
chos. 2024. Averitec: A dataset for real-world claim
verification with evidence from the web. Advances
in Neural Information Processing Systems, 36.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
809–819.

Wanjun Zhong, Jingjing Xu, Duyu Tang, Zenan Xu,
Nan Duan, Ming Zhou, Jiahai Wang, and Jian Yin.
2020. Reasoning over semantic-level graph for fact
checking. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6170–6180.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. 2019.
Gear: Graph-based evidence aggregating and reason-
ing for fact verification. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 892–901.

70

https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

