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Abstract

This paper describes the FZI-WIM system at
the AVeriTeC shared Task, which aims to as-
sess evidence-based automated fact-checking
systems for real-world claims with evidence
retrieved from the web. The FZI-WIM system
utilizes open-source models to build a reliable
fact-checking pipeline via question-answering.
With different experimental setups, we show
that more questions lead to higher scores in the
shared task. Both in question generation and
question-answering stages, sampling can be a
way to improve the performance of our system.
We further analyze the limitations of current
open-source models for real-world claim verifi-
cation. Our code is publicly available1.

1 Introduction

Disinformation is a major concern in digital times
as recent advances in generative artificial intelli-
gence, i.e., large language models (LLMs), en-
able humans to create fake information on a large
scale. Meanwhile, LLMs have also been inte-
grated into automated fact-checking (AFC) sys-
tems (Chen and Shu, 2024), which have drawn
lots of attention. Guo et al. (2022) summarize
three stages of an AFC system: claim detection,
evidence retrieval, and claim verification. Vari-
ous evidence-based fact-checking datasets have
been proposed for testing the systems (Thorne
et al., 2018; Wadden et al., 2020; Jiang et al.,
2020; Aly et al., 2021). The AVeriTeC shared task
aims to fact-check real-world claims. Compared
to previous fact-checking datasets, the AVeriTeC
dataset (Schlichtkrull et al., 2023) utilizes question-
answer (QA) pairs to tackle the complex reasoning
task for real-world claims. Questioning is a natu-
ral step in the fact-checking process. The follow-
ing steps involve retrieving corresponding answers
and making inferences based on the QA pairs to

1https://github.com/jens5588/
FZI-WIM-AVERITEC

validate the claims. Fan et al. (2020) have intro-
duced the QABRIEF dataset, which was collected
via crowdsourcing. They demonstrate that generat-
ing questions and then answering questions using
open-domain question-answering can increase the
accuracy and efficiency of fact-checking. With the
ClaimDecomp dataset, Chen et al. (2022) show that
questions to the claim can help identify relevant
evidence and verify the claim with their answers.

The FZI-WIM system is composed of three
stages, namely, question generation, question-
answering, and claim verification. All components
in the system are designed with open-source mod-
els. Given the claim and its meta information, the
system first generates critical questions. A retrieval
augmented generation (RAG) system is utilized to
answer the generated questions with context infor-
mation from the provided knowledge store. The
generated QA pairs are fact-checked and filtered
to tackle the potential hallucination problem. The
selected QA pairs are utilized to verify the claim.
We summarize our findings regarding this shared
task as follows:

• More sets of distinct questions lead to better
performance.

• The sampling strategy can compensate for the
deficits of open-source LLMs.

• Fact-checking the RAG system is critical for
getting reliable grounded answers.

• Compared to open-source models, proprietary
models show significantly better performance
regarding context understanding and reason-
ing capabilities for answering questions.

2 Background

The AVeriTeC dataset (Schlichtkrull et al., 2023)
is a continuation of the previous evidence-based
fact-checking dataset FEVER (Thorne et al., 2018)
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and FEVEROUS (Aly et al., 2021). The dataset
contains real-world claims from various sources.
The number of claims in the train, dev, and test
set are 3068, 500, and 2215 respectively. There
are five types of claims in the dataset, namely po-
sition statement, numerical claim, event/property
claim, quote verification, and causal claim. The
corresponding evidence has been collected from in-
ternet websites. Different from the previous dataset,
which uses sentences from documents as evidence,
the evidence of the AVeriTeC dataset has been for-
mulated as QA pairs. On average, each claim in the
train and dev sets has 2.6 questions. The answers
can be classified into four types, boolean, abstrac-
tive, extractive, and unanswerable. Based on the
QA pairs, the verification labels of the claims can
be classified into supported, refuted, not enough
evidence, and conflicting evidence/cherry-picking.
Figure 1 shows an example from the dataset.

Claim: Donald Trump has kept his promises to voters.
Claim type: Event/Property Claim
Speaker: None
Claim date: 24-8-2020

Question 1: What promises did Donald Trump
make to voters?
Answer 1 (Extractive & Abstractive): During the 2016
campaign, Donald Trump made more than 280 promises,
though many were contradictory or just uttered in a single
campaign event. By 2020 Trump had made a number of
promises, 6 of which he had not fulfilled, including ...
Question 2: Of the promises Donald Trump made, did he
fulfil any of them?
Answer 2 (Boolean): Yes.
Question 3: Has President Donald Trump kept his
campaign promises to voters?
Answer 3 (Abstractive): President Trump has only kept a
few of his promises.

Verification: Conflicting Evidence/Cherrypicking
Justification: QA pairs state promises kept and not kept.
Claim does not state he kept all promises.

Figure 1: An example from the AVeriTeC dataset, which
includes the claim, meta information, questions, an-
swers (answer types), verification label, and justification

3 System Description

Figure 2 illustrates the three-stage pipeline of the
FZI-WIM system for the AVeriTeC shared task in
the test phase. In the following, we will describe
the key components of each stage. The techni-
cal implementation details are presented in Ap-
pendix A.1.

3.1 Question Generator
As mentioned by (Chen et al., 2022), questions
can help to identify relevant evidence. As the first
component of the pipeline, raising the right ques-
tions about the claim can be critical for the final
verification. Similar to the AVeriTeC dataset, the
ClaimDecomp dataset (Chen et al., 2022) contains
in total 1200 claims in the training, validation, and
test sets while, on average, each claim has 2.7 ques-
tions. We integrate both datasets and create an
instruction-tuning dataset. Besides the claim and
questions, we also include the relevant meta infor-
mation, such as the speaker and claim date, in the
instruction dataset. We show an example of the
instruction dataset in Appendix A.2.

We apply Low-rank adaption (LORA) (Hu et al.,
2022), one of the parameter-efficient fine-tuning
methods for LLMs, to fine-tune the existing LLM,
Llama-3-70B-Instruct (AI@Meta, 2024). The con-
cept of LORA assumes that the updates to the
weights have a low intrinsic rank during the adap-
tion of LLMs for downstream tasks. The parameter
updates ∆W for a pre-trained matrix W0 can be
formulated as

W0 +∆W = W0 +BA, (1)

where B ∈ Rd×r, A ∈ Rr×k and r ≪ min(d, k)
(Hu et al., 2022). Given the instruction x and tar-
get output {y1, y2, ..., ym}, i.e., questions, the loss
function of the training can be formulated as

L =
m∑

i=1

− log(pθ(yi|x, y1, ..., yi−1)), (2)

where θ represents W0, B, A and only B and A
are trainable.

With the instruction-tuned model, we first gen-
erate for each claim one set of questions greedily.
With the greedy generation strategy, the model se-
lects the token with the highest probability as its
next token2. We further sample five sets of ques-
tions for each claim with a temperature of 0.7. With
an embedding model, all-mpnet-base-v23 (Reimers
and Gurevych, 2019), we iteratively select 2 sets
from 5 sampled sets, which are most distinct from
the greedy set based on the cosine similarity. Fi-
nally, each claim has three sets of questions, one
greedy set, and two sampled sets.

2https://huggingface.co/blog/
how-to-generate

3https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

78

https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2


Figure 2: FZI-WIM system pipeline for the test phase in stages. In Stage 1, we first generate three sets of questions
for each claim. One set of questions can contain multiple questions. Given questions and the knowledge store, our
system utilizes an RAG system to generate answers to the questions. With an entailment model, the generated QA
pairs are filtered. The selected QA pairs have a further conditional check. If conditions are not fulfilled, the steps in
stage 2 are then repeated with another set of questions, a maximum of two repeats. Finally, an instruction-tuned
claim verifier verifies the claim based on the aggregated QA pairs.

3.2 Question Answering

After generating questions for each claim, stage
2 answers these generated questions. Beginning
with the greedy set of questions, the questions are
answered with a retrieval augmented generation
(RAG) system. We further fact-check and select
answered QA pairs. We check whether the selected
QA pairs fulfill the predefined conditions. If not,
we then repeat the process with another sampled
question set. The process is repeated at most two
times.

3.2.1 RAG-based QA
Retriever After generating questions for the
claims, we retrieve relevant evidence in the pro-
vided knowledge store to answer these questions.
Our system only uses the provided knowledge
store without querying further documents with the
Google search engine. For each claim, the rel-
evant documents are provided in the knowledge
store. Various retrieval methods have been applied
for documents and sentence retrieval in evidence-
based fact-checking, including TF-IDF (Thorne
et al., 2018), BM25 (Schlichtkrull et al., 2023), bi-
encoder (Karisani and Ji, 2024), ColBERT (Khat-
tab et al., 2021), cross-encoder (Soleimani et al.,
2020), etc. Due to the limited number of rele-
vant documents for each claim in the knowledge
store, we directly apply a cross-encoder, ms-marco-
MiniLM-L-12-v24 (Reimers and Gurevych, 2019),

4https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-12-v2

Figure 3: Input of the cross-encoder. The document
is split into multiple sentence chunks so that the total
length of the combination doesn’t exceed 512 tokens. A
sentence chunk includes about 400 to 500 tokens.

to select relevant evidence. Concretely, for each
generated question, we concatenate it with the
claim as the query. We then iteratively split each
document into chunks so that the total length of
the query and chunk pair does not exceed the maxi-
mum length of the cross-encoder, 512 tokens. Fig-
ure 3 illustrates the input of the cross-encoder. We
rank the chunks based on the relevance scores pre-
dicted by the cross-encoder. For each question, we
select the top 3 chunks for answering the question.

Generator With the retrieved top 3 chunks for each
question, we utilize a fine-tuned LLM, Llama3-
ChatQA-1.5-70B (Liu et al., 2024), to generate
answers given the question and corresponding top
chunks as the context. Besides the greedy gener-
ation, we sample 10 further answers with temper-
ature 0.7 to increase the probability that the gen-
erator correctly answers the question. We show
the prompt for answer generation in Appendix A.3.
The candidate pool for the answer is initialized with
the greedy answer. Further distinct answers from
sampling are iteratively added to the candidate pool
based on the similarity scores with an embedding
model, all-mpnet-base-v2 (Reimers and Gurevych,
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2019). In this step, one question can have multiple
distinct answers. This design choice is based on
our observation from experiments, that the correct
answer to the question can not always be generated
with the greedy decoding strategy by our generator.

3.2.2 Fact-check QA Pairs

Hallucination is a common problem of current
RAG systems and it can lead to the problem that
generated answers are not entailed in the source
chunks. Therefore, we further add an entailment
check step for generated answers. We first use
few-shot learning to convert QA pairs into state-
ments. The prompt is shown in Appendix A.4.
A pre-trained natural language inference (NLI)
model, bart-large-mnli5 (Lewis et al., 2019), is used
to check whether the statement is entailed in the
corresponding sentence chunks. The pre-trained
NLI model has three labels for (premise, hypothe-
sis) pairs, namely refuted, not enough information
(NEI), and entailed. Each statement corresponds
to three sentence chunks. As soon as the statement
is entailed in one sentence chunk, the correspond-
ing QA pair will be selected. Since one question
can have multiple entailed answers, i.e., statements,
we select the answer with the largest entailment
probability. We observe that our NLI model can-
not correctly handle the entailment relationship for
statements like No information regarding ... could
be found., which are often classified as NEI despite
being entailed (supported) in the sentence chunks.
So if a question has no entailed answer and there
are NEI answers like There is no information...,
Sorry, I cannot find the answer based on the con-
text, etc., we also select the question with a uniform
answer No answer could be found. for further pro-
cessing. The questions that have neither entailed
answers nor NEI answers are dropped.

3.2.3 Check Conditions & Aggragate

Since the fact-checking step has filtered some
QA pairs, it can make the verification step
difficult. We introduce two conditions to
check the completeness of answers to a set of
questions, namely #questions answered

#questions > 0.8

and #question answered with NEI
#questions answered < 0.3, where

#questions answered represents for the number
of answered questions and includes both the en-
tailed answer and the NEI answer. If the conditions

5https://huggingface.co/facebook/
bart-large-mnli

are not fulfilled, we repeat the steps in stage 2 with
another set of questions.

After the maximal two times repeat, we aggre-
gate all QA pairs for each claim. Each claim can
have from one to three rounds of question answer-
ing. There can be duplicated QA pairs after ag-
gregation. We first rank the QA pairs with a cross-
encoder model based on their relevance to the claim.
The QA pairs are iteratively selected with a further
embedding model so that the to-be-selected pair
does not exceed the similarity threshold to selected
pairs. Some claims do not have any entailed or NEI
answer after the third question answering round.
For these claims, we use the greedy set of ques-
tions and assign No answer could be found. as the
answer.

3.3 Claim Verification

We verify the claims with the aggregated QA pairs.
Similar to the question generation process, we uti-
lize the train and dev set to instruction-tune a pre-
trained LLM, Llama-3-70B-Instruct (AI@Meta,
2024), with LORA. We show an example of the in-
struction dataset in Appendix A.5. We also include
the justification in the target output before the veri-
fication label so that the model not only generates
the verification label but also the justification. This
mimics the chain-of-thought idea (Wei et al., 2022).
Studies (Wang et al., 2023; Liu and Thoma, 2024)
show that sampling instead of greedy decoding can
improve the reasoning performance of LLMs. We
sample 40 verifications for each claim and apply
majority voting to derive the final verification label.

4 Evaluation

In this section, we show the performance of our
proposed systems for the shared task. Besides the
system in the test phase, the FZI-WIM Test, we also
include the improved version in the after competi-
tion phase, FZI-WIM After Compet., for compari-
son. With the FZI-WIM After Compet. setup, each
claim has three sets of distinct questions without
conditional check described in Section 3.2.3.

4.1 Evaluation Metrics

For the shared task, both retrieved evidence and
veracity predictions are evaluated. For the evi-
dence evaluation, generated questions and answers
are compared to the reference (gold questions and
answers). The pairwise scoring function is de-
fined as f : S × S → R, where S is the set
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System Q Q+A AVeriTeC Score

FZI-WIM Test 0.32 0.21 0.20
FZI-WIM After Compet. 0.40 0.27 0.33

Baseline 0.24 0.20 0.11
Best scores 0.49 0.35 0.63

Table 1: Overview of our systems compared to the base-
line system and best scores in each category. FZI-WIM
Test is our proposed system in the test phase. We further
improve the system in the after competition phase with
the system FZI-WIM After Compet..

of sequence tokens. The scoring function adopts
the METEOR (Banerjee and Lavie, 2005) metric.
The Hungarian Algorithm (Kuhn, 1955) is applied
to find an optimal match between generated se-
quences and reference sequences (Schlichtkrull
et al., 2023). A boolean function X is defined
as X : Ŷ × Y → {0, 1} to denote the assignment
between the generated sequences Ŷ and the refer-
ence sequences Y . The final score u is calculated
(Schlichtkrull et al., 2023) as:

uf (Ŷ , Y ) =
1

|Y | max
∑

ŷ∈Ŷ

∑

y∈Y
f(ŷ, y)X(ŷ, y)

(3)

The evaluation of veracity prediction uses the
accuracy metric. A cut-off of f(ŷ, y) ≥ λ has
been applied to determine whether correct evidence
(concatenation of questions and answers) has been
retrieved. Claims with an evidence score lower
than the cut-off score λ receive veracity scores of
0. The AVeriTeC score in the shared task has a λ
value of 0.25 (Schlichtkrull et al., 2023).

4.2 Results

Table 1 shows the performance of our proposed
systems compared to the baseline system and the
best scores in each category. After the competition,
we further improved our system with more ques-
tions (FZI-WIM After Compet.). Concretely, we
remove the conditional check step and further re-
peat stage 2 twice for every claim. This means each
claim has three sets of questions and three rounds
of question answering. With more questions, we
can observe significant performance improvement
regarding three metrics. In the following, we give a
detailed analysis of our system regarding question
generation & answering and claim verification.

4.3 QA Analysis

Table 2 shows the statistics of three different setups
for selecting QA pairs. In the Greedy setup, the se-
lected QA pairs for each claim are aggregated only
with the greedy set of questions. In the FZI-WIM
Test setup, with the conditional check, 1405 claims
have utilized one set of questions, 365 claims with
2 sets of questions, and 445 claims with three sets
of questions to select QA pairs. In the FZI-WIM
After Compet. setup all 2215 claims have three sets
of questions to select QA pairs. From the results,
we can observe that more sets of different questions
improve the scoring of both question and QA pairs.
This is partly because we have not retrieved extra
documents outside the knowledge store, which can
cause questions to be not properly answered. There
are various ways to ask critical questions for each
claim, i.e., various reasoning possibilities. More
sets of different questions can increase the probabil-
ity of matching the gold questions. In the following,
we give a further analysis regarding each compo-
nent in our question-answering pipeline, with a
focus on the deficits that cause errors.
Retriever We have directly applied a cross-encoder
model to select relevant chunks from the docu-
ment corpus. Compared to other methods, e.g., TF-
IDF, dual-encoder, etc., the advantage of the cross-
encoder is the retriever performance, and the disad-
vantage is the computing time. Another limitation
of the cross-encoder model is the input length, in
our case a maximum of 512 tokens. The incom-
plete context information can lead to misleading
answers, especially adversarial information, i.e.,
misinformation or satire exists in the context.
Generator We have utilized Llama3-ChatQA-1.5-
70B (Liu et al., 2024) from Nvidia to generate an-
swers with a zero-shot setup. For a question, the
corresponding context combined of the top 3 sen-
tence chunks, normally includes around 1500 to-
kens. Hallucination and insufficient understanding
of questions and contexts are two major reasons
leading to wrong answers. We observe that with
the greedy generation, the model cannot always
come to the correct answer. We further sample 10
answers with a temperature of 0.7 for each question.
Table 3 shows the distribution of answer sources.
The statistics show the necessity of sampling be-
sides the greedy generation.
Fact-check The difference between the number of
total questions and answered questions in Table 3
reflects the number of dropped questions under
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Setup #Total Questions #Selected QA NEI (%) Q Q+A

Greedy Set of Questions 5004 3846 17.57 0.28 0.18
FZI-WIM Test 8212 5574 16.02 0.32 0.20
FZI-WIM After Compet. 16696 10048 18.68 0.40 0.27

Table 2: Comparison of different setups for QA pairs selection, including the numbers of total generated questions
and selected QA pairs, percentage of the NEI answer in selected QA pairs, and the resulting question scores,
question + answer scores.

Setup #Total Questions #Answered Greedy / Sampling (%)

Greedy Set of Questions 5004 4381 74.30 / 25.70
FZI-WIM Test 8212 7004 69.20 / 30.80
FZI-WIM After Compet. 16696 14512 68.54 / 31.46

Table 3: Distribution of answers, including entailed and
NEI answers, among greedy generation and sampling
under different setups.

System Greedy Sampling

FZI-WIM Test 0.1991 0.1959
FZI-WIM After Compet. 0.3314 0.3336

Table 4: Comparison of AVeriTeC scores under greedy
generation and sampling strategies for claim verification.
The same QA pairs are used for each system with two
strategies.

each setup. The dropped questions have neither en-
tailed answers nor NEI answers, which shows the
necessity of fact-checking the RAG system in the
pipeline. We have utilized a pre-trained discrim-
inative NLI model, bart-large-mnli (Lewis et al.,
2019), with a maximum input length of 1024 to-
kens. Existing pre-training datasets for NLI, i.e.,
MNLI, SNLI, etc., have normally short contexts.
Given the trend of growing context length in the
current RAG systems, reliable entailment-check at
the document level can be interesting for future
research.

4.4 Claim Verification

The claim is verified with an instruction-tuned
model. In the submitted systems, we have sampled
40 verifications for each claim and applied major-
ity voting to select the final label. With the same
instruction-tuned model and QA pairs, we generate
the verification greedily for comparison. Table 4
shows the verification performance of greedy gen-
eration and sampling. The performance difference
regarding the AVeriTeC score is negligible between
the two strategies. This can be partly attributed
to the final AVeriTeC scoring function. We can

only conclude the greedy generation and sampling
for claims, whose corresponding QA pairs com-
pared to gold QA pairs have exceeded the cut-off
threshold of 0.25, make a small difference. For
claims with QA scores smaller than 0.25, which
are not necessarily wrong, the effect of sampling
compared to the greedy generation is not reflected
in the AVeriTeC scores.

4.5 Open-source VS Proprietary Models

We have observed the current bottleneck of our
pipeline lies in the generator, which utilizes an
open-source LLM Llama3-ChatQA-1.5-70B (Liu
et al., 2024) as the backbone to answer ques-
tions. We conduct further experiments and replace
the open-source LLM with a proprietary model,
namely GPT4-Turbo from OpenAI 6. Concretely
we apply the same question generator, retriever,
and claim verifier as shown in Figure 2. Only the
generator is replaced with GPT4-Turbo. Due to
the budget constraint, we evaluate the model only
on the dev set and generate the answers greedily
(temperature 0) without sampling. We have not
fact-checked (entailment check) the answers from
GPT4-Turbo, which is generally wordy compared
to the open-source generator and makes the entail-
ment check difficult. We have utilized maximal
two sets of distinct questions. For comparison, we
select the FZI-WIM After Compet. system, which
utilizes three sets of distinct questions for each
claim. The results are shown in Table 5. The Q+A
scores in the table demonstrate significantly better
performance of GPT4-Turbo than the open-source
generator. Our manual investigation shows also
that GPT4-Turbo has better context understanding
and reasoning capabilities, especially in adversarial
cases.

6https://openai.com
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Setup #Selected QA Q Q+A AVeriTeC Score

FZI-WIM After Compet. 2266 0.41 0.26 0.29
GPT4-Turbo (1 Set Questions) 1096 0.32 0.22 0.24
GPT-4 Turbo (2 Sets Questions) 2372 0.42 0.30 0.45

Table 5: Comparison between open-source and propri-
etary LLMs as the generator for answering questions on
the dev dataset. FZI-WIM After Compet. utilizes all
three sets of questions.

5 Conclusion & Outlook

In this paper, we have described the FZI-WIM sys-
tem for the AVeriTeC shared task, which aims to
tackle the real-world claim verification problem.
The complex reasoning problem in fact-checking
is tackled via question-answering. For each claim,
we first generate relevant critical questions. Based
on the provided knowledge store, the questions
are answered with an RAG system. Considering
the hallucination problem in RAG systems, we fact-
check the generated QA pairs to ensure the answers
are entailed in the source texts. We show that more
questions, i.e., more question-answering rounds,
lead to better model performance. The claim verifi-
cation is based on the selected QA pairs.

Generally, our current systems need a large
amount of computing. The improvement of the
efficiency with open-source models is needed for
the real-world scenario. Compared to proprietary
models, our generator in the RAG system is not
robust enough against adversarial contexts, e.g.,
misinformation, satire, etc. Further enhancement
of the robustness can be a promising research di-
rection.
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Limitations

Due to the limited time for developing the sys-
tems in the test phase, our systems have only used
the provided knowledge store without searching
for extra relevant documents related to our ques-
tions. Extra search can make a big difference for
certain steps, e.g., the repeated processes in stage

2. With extra search, the times of repeats can be
reduced. To achieve the best performance our cur-
rent systems have always selected better-performed
open-source models, e.g., cross-encoder, LLMs,
etc., which normally have a larger size. This leads
to the fact that our systems require a large amount
of computing. In the future, we will focus on the
trade-off of performance and efficiency for real-
world fact-checking systems.
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A Appendix

A.1 Implementation details

Instruction-tuning We have applied Fully Shared
Data Parallel (FSDP) from Meta AI (Zhao et al.,
2023) for the instruction-tuning of question gen-
eration and claim verification models. The train-
ing script is based on llama-recipes7 with two
4×Nvidia-H100 nodes. The dev sets are included
for fine-tuning to make predictions on the final test
set. For question generation, we have fine-tuned
for 5 epochs and claim verification for 3 epochs.
Model inference We have applied transformers li-
brary8 for inference. For the greedy generation, we
set the parameter do_sample as false. For sampling,
we set temperature as 0.7 and top_k as 50.

A.2 Example for instruction-tuning question
generator

Figure 4 shows an example of the instruction-
tuning dataset for the question generator.

7https://github.com/meta-llama/
llama-recipes

8https://github.com/huggingface/
transformers
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You are a fact-checker and your task is to generate
critical questions for verifying the following claim.
Claim date: 25-8-2020
Claimer: Pam Bondi
Claim: Hunter Biden had no experience in Ukraine or in
the energy sector when he joined the board of Burisma.
Questions: Did Hunter Biden have any experience in the
energy sector at the time he joined the board of the Burisma
energy company in 2014? Did Hunter Biden have any
experience in Ukraine at the time he joined the board of
the Burisma energy company in 2014?

Figure 4: An example of the instruction dataset for fine-
tuning an LLM to generate questions. The prompt ends
with "Questions: ". The questions are the target output
for fine-tuning the LLM.

A.3 Prompt for question-answering
Figure 5 shows the prompt for question-answering.

System: This is a chat between a user and an artificial
intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the user’s questions
based on the context. The assistant should also indicate
when the answer cannot be found in the context.

GSK does not own Pfizer and or the Wuhan bio-
logical laboratory You have sent us an Instagram message
with these and other misleading and false relation ...

Disclosure: The Open Society Foundations and
Bill and Melinda Gates Foundation are among Africa
Check’s funders, which together provided 21% of our
income in 2019 ...

Rumor – Facts list shows that the Wuhan Labora-
tory is owned by Glaxo, Pfizer, has connections with
foreign companies and receives money from George Soros
and Bill Gates ...

User: Please give a full and complete answer for
the question. Who owns GlaxoSmithkline?

Assistant:

Figure 5: Prompt template for answering the question
given the top 3 chunks, adopted from Liu et al. (2024).
The top 3 chunks in the context are ordered reversely.

A.4 Few-shot prompt for converting QA pairs
to statements

Figure 6 shows the few-shot examples to convert
QA pairs to statements.

A.5 Example for instruction-tuning claim
verifier

Figure 7 shows an example of the instruction
dataset for the claim verification.

Your task is to convert question answer pairs into
statements. In the following there are some example
showing how to convert question answer pairs into
statements.

Question: What resolutions did Biden support in
favor of US intervention in Iraq?
Answer: He supported the H.J.Res.114 - Authorization
for Use of Military Force Against Iraq Resolution of 2002
107th Congress (2001-2002)
Statement: Joe Biden supported the H.J.Res.114 -
Authorization for Use of Military Force Against Iraq
Resolution of 2002 107th Congress (2001-2002)

Question: How much of their national budget did
the Kenyan judiciary receive in 2021?
Answer: Budget speeches for 2020/21 show the judiciary
received 0.6% of the national budget.
Statement: Budget speeches for 2020/21 show the Kenyan
judiciary received 0.6% of the national budget.

Question: Should counties be chasing the 10%
spending target or should it be done at a national level?
Answer: No answer could be found.
Statement: No answer could be found regarding whether
counties should be chasing the 10% spending target or if it
should be done at a national level.

Question: Did Hunter Biden have any experience
in the energy sector at the time he joined the board of the
Burisma energy company in 2014
Answer: No
Statement: Hunter Biden didn’t have any experience in
the energy sector at the time he joined the board of the
Burisma energy company in 2014.

Figure 6: Few-shot prompt for converting QA pairs to
statements.

Your task is to verify the claims based on the context
information in format of question answer pairs. Verify
the claim with justification using the following labels:
Supported, Refuted, Not Enough Evidence, Conflicting
Evidence/Cherrypicking.

Claim: Hunter Biden had no experience in Ukraine or in
the energy sector when he joined the board of Burisma.
Question 1: Did Hunter Biden have any experience in
the energy sector at the time he joined the board of the
Burisma energy company in 2014
Answer 1: No
Question 2: Did Hunter Biden have any experience in
Ukraine at the time he joined the board of the Burisma
energy company in 2014
Answer 2: No

Justification: No former experience stated.
Label: Supported

Figure 7: An example of the instruction dataset for fine-
tuning an LLM to verify the claims. The prompt ends
with "Answer 2: No ". The justification and label are
the target output.
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