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Abstract

We propose a new model for metaphor detec-
tion in which an expectation component esti-
mates representations of expected word mean-
ings in a given context, whereas a realization
component computes representations of tar-
get word meanings in context. We also in-
troduce a systematic evaluation methodology
that estimates generalization performance in
three settings: within distribution, a new strong
out of distribution setting, and a novel out-of-
pretraining setting. Across all settings, the
expectation-realization model obtains results
that are competitive with or better than previ-
ous metaphor detection models.

1 Introduction and Motivation

Metaphors enhance the communicative aspects of
language by connecting concepts from new do-
mains, often abstract, with more familiar ones,
usually concrete (Lakoff and Johnson, 1980).
Metaphorical expressions have many uses, from
helping frame an issue in order to emphasize some
aspects of reality (Boeynaems et al., 2017), to cre-
ating a strong emotional effect (Blanchette and
Dunbar, 2001; Citron and Goldberg, 2014). The
ubiquity of metaphors means their computational
treatment (Veale et al., 2016) has received signifi-
cant attention in the NLP community, as surveyed
by Shutova (2015) and more recently Tong et al.
(2021). Owing to its important communicative
function, metaphorical expression detection has
been approached over the years using a wide variety
of NLP techniques, ranging from models employ-
ing hand-engineered features (Shutova et al., 2010;
Bulat et al., 2017), to RNNs (Gao et al., 2018; Mao
et al., 2019), to more recently pre-trained language
models (Choi et al., 2021; Ghosh et al., 2022; Li
et al., 2023), to mention just a few.

Recent state of the art models for metaphor de-
tection rely on the Metaphor Identification Pro-
cedure (MIP) (Group, 2007), according to which

metaphors happen whenever the contextual mean-
ing of a word is different from its basic, literal
meaning. Implementations of MIP vary mainly
in how they estimate representations of the basic
meaning of a word: MelBert (Choi et al., 2021)
uses simply the BERT embedding of the word
without any context, whereas BasicBERT and Ba-
sicMIP (Li et al., 2023) use an average of all literal
uses of the word as marked in the training data.

In this paper we propose a new theory
of metaphor identification, the Expectation-
Realization model, that is motivated by the obser-
vation that the metaphorical use of a word, i.e. its
realization in context, leads to surprise due to a vi-
olation of a literal word expectation engendered by
the same context. Surprise offers a general mecha-
nism through which stories and music trigger emo-
tion (Meyer, 1961), and correlates with creative
uses of language, such as humor and metaphor
(Bunescu and Uduehi, 2022). Correspondingly, we
propose an architecture that is structured around
two modules: one module aims to estimate the lit-
eral meaning expectation through the use of a con-
text where the target word is masked, whereas the
other module aims to estimate the realized mean-
ing of the target word as used in context. The new
model is competitive with previous SoA in terms
of within distribution (WiD) generalization. We
further propose two new evaluation scenarios: a
strong out-of-distribution (OoD) setting that en-
sures target lexemes do not appear during training,
and a novel out-of-pretraining (OoP) setting that
aims to ensure that the metaphorical phrase was
not seen during pretraining. The large gap between
OoP and WiD results elucidates why pretrained
LMs struggle with metaphor identification.

2 The Expectation-Realization Model

The architecture of the Expectation-Realization
(ER) model for metaphor detection is shown in
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Figure 1: ER architecture: left branch for Realization embeddings, right branch for Expectation embeddings. The
high expectation for the literal meaning "a [bit] of hope" is confounded by the word "glimmer", causing surprise.

Figure 1. To compute the realized (R) meaning vS,t
of the target word in context, a copy of the Trans-
former encoder of a pre-trained language model
(shown on the left) processes the input text S where
the target word at position t is marked with a spe-
cial token. To compute the expectation (E) of the lit-
eral meaning vM,t induced by the context, the same
pre-trained language model (shown on the right)
process the same input text M where the target
word is masked. Additionally, global expectation
vM and realization vS representations are also com-
puted at the sentence level using the embeddings
for the special [CLS] token. The concatenation
of the local target word ER embeddings and the
sentence-level ER embeddings are passed through
non-linear layers f and g, respectively, to capture
interactions between expectation and realization
embeddings at word-level as hlocal = f [vM,t; vS,t],
and at sentence level as hglobal = g[vM ; vS ]. To
enable a fair comparison with previous models, we
instantiate the pre-trained Transformer encoder us-
ing RoBERTa base (Liu et al., 2019). The concate-
nated local and global ER representations are then
used as input features to a logistic regression model
that estimates the probability ŷ that the target word
is used metaphorically.

ŷ = σ(wT[hlocal;hglobal] + b)

The ER model parameters together with the pre-
trained LM parameters are trained and fine-tuned,
respectively, in order to minimize a loss function
Li = Li

CE − Li
Sim that contains a cross-entropy

loss Li
CE and a similarity loss Li

Sim computed as:

Li
CE = yi log ŷi + (1− yi) log(1− ŷi)

Li
Sim = α1 cos (uM,t, vM,t) + α2 cos (uM , vM )

where yi and ŷi are the ground truth and predicted
labels, respectively, for training sample i. The
embeddings u are obtained from the original pre-
trained LM with fixed parameters, whereas the
embeddigns v are obtained from the fine-tuned
LM. Importantly, the similarity loss encourages
the fined-tuned LM to learn expectation embed-
dings v that do not deviate much from the original
embeddings produced by the pre-trained LM. The
hyper-parameters α1 and α2 trade-off the global
and local components of the similarity term within
the overall loss. Given that most words in the vo-
cabulary are used with their literal meaning most
of the time, the similarity loss has the effect of an-
choring the fine-tuned LM such that its expectation
embeddings v reflect a literal meaning of words.

3 Experimental Evaluation

We run evaluations on three English metaphor
datasets: the VUA-18 Amsterdam Metaphor Cor-
pus (Chen et al., 2020), TroFi (Birke and Sarkar,
2006) and LCC (Mohler et al., 2016). Table 1
summarizes the statistics of the datasets used in
our evaluations. The VUA-18 dataset is split into
training, validation and test datasets denoted by
VUA-18tr, VUA-18dev and VUA-18te respectively.
The examples in the VUA-18 dataset are sentences
where selected words of the sentence are annotated
as metaphorical or not. The LCC Metaphor dataset
is a large, multilingual dataset of metaphor annota-
tions created by a team of researchers at the Lan-
guage Computer Corporation (LCC). Each target
word is annotated with a metaphoricity rating on a
four-point scale [0, 3]. In our experiments we use a
subset of the English dataset where examples with
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Dataset #words %M #Sent Len

VUA-18tr 116,622 11.2 6,323 18.4
VUA-18dev 38,628 11.6 1,550 24.9
VUA-18te 50,175 12.4 2,694 18.6

LCC 5,646 28.9 5,390 28.9

TroFi 3,737 43.5 3,737 28.3

Table 1: Detailed statistics of datasets. #words is the
number of target words to be classified, %M is the per-
centage of metaphorical words, #Sent is the number of
sentences, and Len is the average sentence length.

metaphoricity score of 3 are considered as positive
and examples with metaphoricity score of 0 as neg-
atives. The TroFi dataset consists of a collection of
literal and nonliteral usage of 50 verbs which occur
in 3,737 sentences selected from the WSJ corpus.

For the evaluations on VUA-18 dataset, we use
the same hyperparameter settings from (Choi et al.,
2021) for training all models. For the LCC and
TroFi experiments, the development dataset was
used for determining the best hyperparameter set-
tings. We use the same hyperparameter settings for
all the models. The batch size and max sequence
length were set at 32 and 150, respectively. We
train for 12 epochs without dropout, and linearly
increase the learning rate from 0 to 5e-5 in the
first two epochs, after which we decreased it lin-
early to 0 during the remaining 10 epochs. The
tuned similarity weights α1 and α2 were 1.0. for
the within-distribution experiments and 0.0 for out-
of-distribution experiments. Results are averaged
over 5 runs with different random seeds. The de-
tailed ranges used for hyperparameters tuning are
presented in Appendix A.

Given that VUA-18 is the only dataset on which
all 3 metaphor-detection baselines were previously
evaluated, we use it to compare their performance
against ER. As shown in Table 2, the ER model
outperforms both MDGI-Joint-S (Wan et al., 2021)
and MelBERT (Choi et al., 2021), and is competi-
tive with the more complex BasicBERT (Li et al.,
2023) that requires annotation of literal tokens.

3.1 Three Generalization Scenarios

The generalization performance of each of the 3
models is evaluated in three settings: within distri-
bution (WiD), strong out of distribution (OoD), and
out-of-pretraining (OoP) metaphor generalization.
For the WiD generalization, we randomly split the

dataset into 10 folds and run 10-fold evaluation,
where 9 folds are used for training and develop-
ment, and 1 fold is used for testing, with the proce-
dure repeated 10 times so that each folds gets to be
used as a test fold. For strong OoD generalization,
the 10 folds are created such that the lemmas of
target words are disjoint across the folds. For the
OoP generalization setting, we identify a subset of
237 positive examples within the LCC dataset that
are novel or unconventional metaphors. The crite-
ria for creating this subset were example with the
highest metaphoricity score of 3.0 that were also
rare according to a Google search, i.e. returning
fewer that 25 search results. To complete the novel
version of the dataset, negative examples are ran-
domly sampled from the LCC dataset such that the
ratio of positive to negatives for this novel dataset
is similar to that of the original LCC dataset. Note
that the OoP examples, which are novel to the pre-
trained LM, are different from the crowdsourced
novel metaphors from (Do Dinh et al., 2018), which
are novel to the average human annotator. For the
OoP evaluation we only compute the test perfor-
mance on the OoP subset of examples using the
models already trained on data from the within-
distribution setting, ensuring that no OoP test ex-
ample has been used during training.

Due to the imbalanced distribution of positive
and negative examples in the datasets, we report
only precision, recall and F1-score metrics. For
10-fold evaluation we report their micro-averages.

3.2 Generalization Results
Tables 3 and 4 show the results of comparison of
the ER Model against MelBERT and R-SPV on
the LCC and TroFi datasets. The R-SPV model
implements only the realization component of the
ER model, using as input the sentence with the tar-
get word marked, as shown on the left of Figure 1.
Note that even though this is equivalent with the
SPV component of the MelBERT model, it is found
to perform as well as MelBERT. Additionally, for
the LCC and TroFi datasets in the WiD setting we
also report the performance of a logistic regres-
sion model that trained on binary responses from
GPT-4 on 13 questions that are aimed at identifying
metaphors and also distinguishing metaphors from
other types of figurative language (Appendix B).

For the the within distribution (WiD) setting of
VUA-18, LCC and TroFi, the ER model statisti-
cally significantly outperforms R-SPV and Mel-
BERT, as determined through a one-tailed, paired
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Dataset Model Prec Rec F1

MDGI-Joint-S 81.3 73.2 77.0
VUA-18 MelBERT 80.1 76.9 78.5
(WiD) BasicBERT 79.5 78.5 79.0

ER 80.2 77.5 78.8

Table 2: Performance comparison of ER model with
baselines on the VUA-18 dataset.

Dataset Model Prec Rec F1

LCC
(WiD)

R-SPV 86.2 83.9 85.0
MelBERT 86.1 83.8 84.9

GPT-4 82.1 77.5 79.7
ER 86.9 84.3 85.5∗†

ER-Ens 87.7 85.3 86.5

LCC
(OoD)

R-SPV 83.6 79.8 81.6
MelBERT 83.4 79.8 81.5

ER 84.0 80.6 82.2∗†
ER-Ens 85.9 81.9 83.9

LCC
(OoP)

R-SPV 88.0 94.3 91.1
MelBERT 87.6 94.5 90.9

ER 88.8 95.1 91.8∗†
ER-Ens 89.3 95.7 92.4

Table 3: Performance comparison of ER model with
baselines on LCC dataset. * and †indicate significantly
better F1 than R-SPV and MelBERT, respectively.

t-test of significance at p < 0.05 level. The VUA-
18 results are notably lower than the LLC results
for all methods. Error analysis revealed that almost
any non-literal use of a word is annotated as a posi-
tive example in VUA, including idioms. Therefore,
the patterns are more complicated. Idioms, in par-
ticular, lack any clear pattern, hence they require
memorization, which may explain the much lower
VUA performance. The logistic regression model
on top of features from GPT-4 had the lowest WiD
F1 on LCC and TroFI, indicating that, despite its
language understanding capabilities, it still strug-
gles to accurately identify metaphors, a result that
can also be understood in light of insights drawn
from the OoP scenario below. The GPT-4 results
were obtained using binary answers to questions
in a zero-shot setting; it is expected that in-context
learning with few-shot examples or fine-tuning of
GPT models, while more computationally demand-
ing than using BERT-like models, will lead to better
results. We leave such experiments for future work.

Dataset Model Prec Rec F1

TroFi
(WiD)

R-SPV 70.2 71.8 71.0
MelBERT 69.5 73.3 71.3

GPT-4 63.5 60.9 62.1
ER 70.2 73.7 71.9∗†

ER-Ens 72.2 73.5 72.8

TroFi
(OoD)

R-SPV 57.4 69.6 62.8
MelBERT 57.1 69.8 62.7

ER 57.0 70.5 63.0
ER-Ens 58.1 71.8 64.2

Table 4: Performance comparison of ER model with
baselines on TroFi dataset. * and †indicate significantly
better F1 than R-SPV and MelBERT, respectively.

For the strong out-of-distribution (OoD) eval-
uation on the LCC and TroFi datasets, the ER
model on average performs better than both R-SPV
and MelBERT, with the comparison on LCC be-
ing statistically significant. The results from the
OoD settings show a significant drop compared
to the within distribution setup with the result be-
ing less worse for LCC than TroFi because of the
more diverse nature of the target words in the LCC
dataset. This drop in performance in the OoD sce-
nario suggests that the models rely on some form
of memorization, which is detrimental to identify-
ing metaphors that use unseen words. The nature
of the TroFi dataset makes the OoD generalization
even worse, as the dataset contains only 50 words
and thus the model has limited diversity in terms
of target metaphorical words.

In the out-of-pretraining (OoP) evaluation set-
ting conducted for the LCC dataset, the ER model
again outperforms both baselines, obtaining a 9.8%
relative error reduction over MelBERT. Note that
the OoP results are much higher than the WiD re-
sults for all methods, which seems to indicate that
the difficulty of metaphor detection comes from
the large number of conventional metaphors that
appear often in the pretraining data; that in turn
makes it hard for pretrained models such as BERT
or GPT to create embeddings that can discriminate
conventional metaphors from literal language.

Lastly, ensembles ER-Ens of 5 ER models fur-
ther improve metaphor detection in all settings.

4 Conclusion and Future Work

We introduced a new model for metaphor detection
rooted in the hypothesis that non-literal uses of
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words trigger surprise, or violation of expectations
given by the context. We further proposed two new
evaluation scenarios: strong out-of-distribution and
out-of-pretraining. Extensive experiments show
that the simple ER model is competitive with, and
often outperforms, state-of-the-art models.

In this work, expectations of literal meaning
were computed based on context words. In fu-
ture work, we plan to also compute expectations
of literal meanings of words by leveraging large
amounts of text where words are known to be
used literally, such as descriptions of physical, con-
crete concepts in Wikipedia. Furthermore, we plan
to generalize the ER approach from word-level
metaphors to phrase-level constructions, such as
idioms, which too violate expectations of literal
language use.
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A Hyperparameter Tuning

Details for the hyperparameter tuning for the mod-
els and dataset are presented in Table 5.

Hyperparameter Tuning values

learning rate [1e-5, 2e-5, 3e-5, 4e-5, 5e-5]
dropout ratio [0.0, 0.1, 0.2, 0.25, 0.4, 0.5]
similarity weight α [0, 0.5, 1, 2, 4]
hidden dims [[768], [768,768], [768,768,1]]
hidden activation [None, relu]
optimizer [Adam]
train batch size [32]

Table 5: Hyperparameters tuning range used in experi-
ments. For the similarity weight, α = α1 = α2.

B GPT-4 prompt template

The sample prompt we used to query GPT-4 is
shown below:

You are a professional linguist. For the text below,
answer precisely the following questions. Only
print out a Python list containing your answers.

text: The sun *walked* between the clouds.

1. What word is emphasized?
2. Is the emphasized word "walked" used literally
in the text? Yes or No?
3. Is the emphasized word "walked" used figura-
tively in the text? Yes or No?
4. Is the emphasized word "walked" used metaphor-
ically in this text? Yes or No?
5. Is the emphasized word "walked" used with its
literal meaning in the text? Yes or No?
6. Is the emphasized word "walked" used with its
most common literal meaning in this text? Yes or
No?
7. Is the emphasized word "walked" used with a
concrete meaning in the text? Yes or No?
8. Is the emphasized word "walked" used with a
physical meaning in the text? Yes or No?
9. Is the emphasized word "walked" used with its
conventional meaning in the text? Yes or No?
10. Is the emphasized word "walked" used with its
most common meaning in this text? Yes or No?
11. Is the emphasized word "walked" used with its
original (oldest) meaning in this text? Yes or No?
12. Is the emphasized word "walked" part of a
metaphorical expression in the text? Yes or No?
13. Is the emphasized word "walked" part of an
idiomatic expression in the text? Yes or No?
14. Is the emphasized word "walked" part of a
multiword expression in the text? Yes or No?
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