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Abstract

Figurative language in media such as memes,
art, or comics has gained dramatic interest re-
cently. However, the challenge remains in accu-
rately justifying and explaining whether an im-
age caption complements or contradicts the im-
age it accompanies. To tackle this problem, we
design a modal-supplement framework MAP-
PER consisting of a describer and a thinker.
The describer based on a frozen large vision
model is designed to describe an image in detail
to capture entailed semantic information. The
thinker based on a finetuned large multi-modal
model is designed to utilize description, claim
and image to make prediction and explana-
tion. Experiment results on a publicly available
benchmark dataset from FigLang2024 Task 2
show that our method ranks at top 1 in over-
all evaluation, the performance exceeds the
second place by 28.57%. This indicates that
MAPPER is highly effective in understand-
ing, judging and explaining of the figurative
language. The source code is available at
https://github.com/Libv-Team/figlang2024.

1 Introduction

Figurative language in media has gained much
interests recently. By understanding similes and
metaphors in the figurative language, it is possi-
ble to deepen the understanding of specific cul-
tural contexts and social phenomena (Hwang and
Shwartz, 2023). This task is challenging because it
involves abstract reasoning about images, as well
as it involves understanding social common sense
and cultural contexts.

Traditional solutions extract features from im-
ages using CNNs and encode textual descriptions
with RNNs (Mo et al., 2023; Chen et al., 2024),
employ multi-modal fusion for inference (Karpa-
thy and Fei-Fei, 2015; Vinyals et al., 2015), and
determine and elucidate their interrelations through
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Figure 1: A typical method uses zero shot prompts to
induce responses from a multi-modal large language
model.

classification and explanation generation. With
the development of Multi-modal Large Language
Models (MLLM) in image captioning and Visual
Question Answering (VQA), it turns to be a visual
entailment task. The task first predicts whether an
image caption entails the image or not and provide
a text explanation for labeling prediction. New
ideas also involve using formulated prompts ac-
cording to heuristic rules to guide a large model in
producing a relevant answer. The main framework
of a typic method utilizing large model and prompt
is shown in Figure 1.

Despite the progress made by these methods in
dealing with visual entailment tasks, when faced
with specific cultural and social contexts, the model
ability to explain and reason is limited due to the
lack of relevant context. Subsequently, the incon-
sistency between images and texts may make the
models more challengeable to determine the entail-
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ment relationships. Thereby, their performance is
much worse than that of human beings.

To that end, we propose MAPPER (textual
ModAl suPPlement framEwoRk), a figurative lan-
guage understanding model. It consists of a de-
scriber and a thinker. The describer provides a
textual model of the image as a modality supple-
ment for further prediction and explanation by the
thinker. Experiment result indicated that MAPPER
is effective in understanding, judging and explain-
ing of the figurative language. It shows that a sim-
ple fine-tuning method can significantly enhance
the model performance in figurative language un-
derstanding with just minor prompt adjustments.

2 Related work

In recent years, advances in language modeling no-
tably improved model comprehension of metaphor-
ical language. Chakrabarty et al. proposed a model
that fine-tuned T5 to understand metaphorical lan-
guage through textual interpretation. Chakrabarty
et al. introduced a knowledge augmentation model
employing human strategies for explaining types
of figurative language: inferring meaning from
context and drawing on the literal meanings of
constituent words. This knowledge augmentation
model enhanced performance on discriminative
and generative tasks, further narrowing the gap
with human performance. Liu et al. created a
Fig-QA benchmark through crowdsourcing for a
broader study of metaphorical language. Their find-
ings indicated that although pre-trained language
models could achieve commendable performance
after fine-tuning, their performance on a limited
number of samples still fell significantly short of
human capabilities.

In addition, with the development of multimedia,
there had been an increased focus on generative un-
derstanding of multimodal metaphorical language.
Hessel et al. investigated visual language mod-
els and language-only models for understanding
multimodal metaphorical language and found that
both types of models had difficulties in all three
tasks. Desai et al. introduced an architecture based
on a multimodal Transformer, which included a
cross-modal attention mechanism focusing on the
distinctive features between images and captions.
This model obtained relatively high consistency
scores in human evaluations. Yosef et al. uti-
lized the state-of-the-art vision and language model
CLIP (Radford et al., 2021) to perform on a multi-

modal metaphorical language comprehension task
and found that it performed relatively poorly. The
experimental results showed that the best model
was only 22% accurate in the detection task, much
lower than the 97% accuracy achieved by humans.
This discrepancy was mainly due to the poor perfor-
mance of model in understanding the connection
between metaphorical language and images, with
a tendency to prefer partially literal images over
metaphorical ones.

These studies have primarily improved per-
formance through methods such as model fine-
tuning and knowledge enhancement. However,
they still face challenges in understanding mul-
timodal metaphorical language. To enhance the
capability of visual language models to compre-
hend metaphorical language, we design prompts to
clarify task requirements and employ modal sup-
plement methods to boost the integration of mul-
timodal data, aiming to narrow the gap between
models and humans in multimodal metaphor com-
prehension.

3 The Method

The task of multimodal figurative language is de-
fined as follows: Given an image claim C and an
image I , a label L that indicate the caption entails
or contracts to the image need to be predict. A
corresponding explanation E of the predicted label
is needed to be generated.

This paper proposes a textual modal supplement
framework MAPPER, which is consisted of a de-
scriber and a thinker. The describer read the i-th
image Ii, and used self-knowledge to describe the
image as inherent thinking Di. The thinker uses
the inherent thinking Di, image Ii and claim Ci to
generate final predict Li iand explanation Ei. The
overview of the model is shown in Figure 2.

The Describer. To better understanding the
image content, a MLLM-based describer is de-
signed according the prompt instruction P1 from
the prompt template PTR1 and the i-th image Ii
to generate the image description Di, It is worth
noting that the parameter weights in MLLM are
frozen. Formally:

Di = MLLMfrozen (Prompt (Ii, Ci)) (1)

Here, P1 is designed as follows:

<Image> Please describe in detail what
you see in the provided image.
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Figure 2: The overall architecture of our MAPPER framework with a describer and a thinker.

Data
Train/Valid Test
Absolute Proportion Absolute Proportion

Nycartoons 520 11.7% 87 12.6%
IRFL 1322 29.9% 198 28.7%
Muse 1000 22.6% 150 21.8%
Mamecap 853 19.3% 128 18.6%
Vismet 731 16.5% 126 18.3%

Table 1: Dataset statistics.

The Thinker. A prompt template PTR2 is used
firstly to generate a prompt based on the image de-
scription Di and claim Ci. In this way, we unify
the original classification and the generation tasks
into one generation task. In this way, the thinker
generates the responses Si consisted of the con-
catenation of the label Li and explanation Ei. The
design of prompt template is shown as follows:

The description of this picture is
<Description>. The claim of this picture
is <Claim>. You need to predict the claim
of this picture is 'entailment' or
'contradiction' firstly according to the
picture and its description. Then you need
to give an explanation for the prediction.
The prediction and the explanation are
related to the meaning of the figurative
language expression. Your response must
follow the format shown as below:
"Prediction. Explanation".

Next, a vision encoder Encp is designed to en-
code the image Ii, and a text encoder Ence is used
to encode the prompt p2. f(•) is the projection
function. The process is as shown in Equation 2–4.

Hv = f(Encp(Ii)) (2)

Hl = Ence (Prompt (Ci, Di)) (3)

[Li;Ei] = si = LLM (Hv, Hl) (4)

Training. During training epoch, the model is
trained as a minimized negative log likelihood as
Equation 5.

L =
n∑

j

− log p
(
sji

∣∣∣s<j
i , Ii, Ci, Di

)
(5)

sji is the generated word output in the j-th time
step that generated by the system. n is the maxi-
mum response length.

4 Experiments

4.1 Datasets

The V-FLUTE (Saakyan et al., 2024) was used in
the experiments. It consisted of five small datasets,
with data compiled from a series of prior work
on visual metaphor and multimodal understanding,
supplemented with annotated explanations detail-
ing the implicit relationships (Yosef et al., 2023;
Chakrabarty et al., 2023; Hwang and Shwartz,
2023; Hessel et al., 2023b; Jain et al., 2020; Shahaf
et al., 2015). The statistical details of these datasets
weres presented in Table 1. We followed datasets
splits from the competition “UNDERSTANDING
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Type Method
Metrics
F1@0 F1@50 F1@60

Zero Shot

LLava-7B-v1.6 (offical baseline) 44.82 37.38 19.99
LLava-7B-v1.5 43.40 40.42 20.30
Gemini-Pro-Vision 59.57 58.61 42.36
Gemini (Text only) 57.24 56.30 36.09
GPT-4V 69.56 63.78 48.89

Fine-tune
TinyLLava-1.5B 72.56 71.39 59.24
TinyLLava-3.1B 86.12 85.40 71.56
MAPPER (Ours) 89.67 89.09 74.15

Table 2: Performance comparison of the models on the V- FLUTE datasets. The best performance is bolded and the
second is underlined.

OF FIGURATIVE LANGUAGE THROUGH VI-
SUAL ENTAILMENT” 1 for training, validation,
and testing.

4.2 Evaluation Metrics

The evaluation metrics were primarily F1 scores
for the label prediction. In addition, we used BERT-
score (Yuan et al., 2021) to assess the quality of the
explanation. Thus, the evaluation metrics were
F1@0 (only F1 scores), F1@50 (computed F1
scores where only instances whose interpretations
matched a reference with BERT-score higher than
50 were treated as correct), and F1@60 (computed
F1 scores where only instances whose interpreta-
tions matched a reference with BERT-score higher
than 60 were treated as correct). These metrics
were based on previous work in FigLang2022.

4.3 Baseline

Three categories of baseline models were evalua-
tion in this experiment. 1) The origin multi-modals
models: Gemini-Pro-Vision (Team et al., 2023),
and GPT-4V. 2) The models consisted of an image
encoder and a large language model: LLava-7B
(Liu et al., 2023), TinyLLava (Zhou et al., 2024).
3) The large language model: Gemini-Pro.

4.4 Hyperparameters

A frozen parameter LLava-7B-v1.5 model was
used for the describer, while a finetuned LLava-
7B-v1.5 model with Lora (Hu et al., 2021) for the
thinker. The training epoch was set to 3. The batch
size was set to 4 and the learning rate was set to
2.5e−5. The rank of the Lora model was set to

1https://www.codabench.org/competitions/1970/#/pages-
tab

128. The learning rate scheduler type was used "co-
sine", and the max length of model was constraint
to 2048. The vision tower of MAPPER used CLIP.
The warm up ration was set to 0.03. All experi-
ments were conducted in a NVIDIA 4090 GPU
with 24GB memory.

5 Results and Analysis

5.1 Main Result

The results of comparing with the baseline models
were shown in Table 2. It could be seen that our
MAPPER achieved the highest scores on all three
metrics through the supervised fine-tuning method.
Specifically, F1@0 reached 90.06, F1@50 reached
89.49, and F1@60 reached 76.33. Compared with
the Prompt-based Zero Shot method, our method
improved the performance of these three indicators
by 28.57%, 34.33%, and 50% respectively after
supervised fine-tuning compared with the method
without fine-tuning. These high F1 scores indicated
that MAPPER could effectively understand the in-
formation in images and give accurate predictions
and explanations. Moreover, some interesting phe-
nomena were identified. The Gemini-Pro-Vision
model performed better than the Gemini (Text only)
model in zero-shot conditions. This might indicate
that replacing images with their descriptions could
cause information losing in predication, resulting
in worse performance.

5.2 Ablation Study

To explore the effectiveness of each component,
an ablation study was conducted. We removed
describer and PTR2 of the MAPPER one by one
and then analyzed the performance changes. The
result was shown in Table 3. From the table result,
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Method F1@0 F1@50 F1@60

Ours 89.67 89.09 74.15
- Describer 89.20 (0.47 ↓) 89.04 (0.05↓) 75.58 (1.43 ↑)
- PTR2 51.16 (38.51 ↓) 50.46 (38.63 ↓) 41.45 (32.70 ↓)

Table 3: The ablation experiment with/without two main modules Describer and PTR2.

Figure 3: MAPPER and two baseline generated explanations in the V-FLUTE dataset.

we could draw the following observations:

The describer had relatively little impact on
model performance. Without "Describer", the
model performance scores on F1@0 and F1@50
dropped by 0.47 and 0.05 respectively, which were
a relatively small change. However, it was worth
noting that the F1@60 score increased by 1.43,
which might indicate that the describer might had
limitations when dealing with complex or difficult-
to-classify cases.

The PTR2 had a large impact on model perfor-
mance. When we removed PTR2, the model per-
formance scores on all three metrics dropped sig-
nificantly, especially on F1@0 and F1@50, where
the scores dropped by 38.51 and 38.63 respectively.

This indidated that the PTR2 component played a
key role in the model and had a significant impact
on the model performance.

Overall, these results indicated that the perfor-
mance of our MAPPER relied heavily on the PTR2,
while the describer component had a relatively less
impact. This provided us with important guidance
when improving the model and optimizing perfor-
mance in the future.

5.3 Case Study
Figure 3 presents a case study demonstrating the
comparesion between MAPPER and two baselines.
The data of this case study was sourced from the
V-FLUTE dataset. The label predictions and ex-
planations were generated by MAPPER and two
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baseline methods, TinyLLava-1.5B and TinyLLava-
3.1B. The input consisted of an image and a claim.
The image showed a cat working in front of a com-
puter accompanied by the claim "That cat is busy
as a bee". All three methods accurately predicted
the labels. However, the explanation generated by
MAPPER achieved the highest BERT-score com-
pared to the baseline methods. There were some
biased words using in the baseline explanations in
contrast to the ground truth. Our MAPPER explic-
itly indicated the "busy" and generated explanation
more closely resembling the ground truth, resulting
in the highest BERT-score. This case exemplifies
capacity of MAPPER to generate explanations that
closely align with the ground truth.

6 Conclusion

This paper proposed a textual modal supplement
method MAPPER for figurative language under-
standing. The MAPPER used a frozen LLava as
the describer to generate a description of the im-
age and a finetuned MLLM as the thinker to make
predictions and explanations for the figurative lan-
guage within image and claim. Experiment results
on the public datasets indicated that our MAPPER
achieved the state-of-the-art performance. The re-
sults illustrated that a finetune in small dataset
about understanding of figurative language could
highly improve MLLM model performance.

Limitation

Due to competition time constraints, we did not
explore clearly in this experiment why the textual
modal supplement generated by describer can have
a negative impact on F1@60. Although our method
ranked first in the competition, this paper did not
design different prompts to test the robustness of
our method. In addition, we did not further ex-
plore whether a MLLM with a larger number of
parameters can learn more accurate judgment and
understanding of figurative language in pictures.

Acknowledgments

The work is supported by grants from Na-
tional Natural Science Foundation of China (No.
62372189) and the Research Grants Council of the
Hong Kong Special Administrative Region, China
(UGC/FDS16/E09/22).

References
Tuhin Chakrabarty, Yejin Choi, and Vered Shwartz.

2022a. It’s not Rocket Science: Interpreting Fig-
urative Language in Narratives. Transactions of the
Association for Computational Linguistics, 10:589–
606.

Tuhin Chakrabarty, Arkadiy Saakyan, Debanjan Ghosh,
and Smaranda Muresan. 2022b. FLUTE: Figurative
language understanding through textual explanations.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7139–7159, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Tuhin Chakrabarty, Arkadiy Saakyan, Olivia Winn,
Artemis Panagopoulou, Yue Yang, Marianna Apid-
ianaki, and Smaranda Muresan. 2023. I spy a
metaphor: Large language models and diffusion mod-
els co-create visual metaphors. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 7370–7388, Toronto, Canada. Association for
Computational Linguistics.

Guanhua Chen, Qiqi Xu, Choujun Zhan, Fu Lee Wang,
Kai Liu, Hai Liu, and Tianyong Hao. 2024. Im-
proving open intent detection via triplet-contrastive
learning and adaptive boundary. IEEE Transactions
on Consumer Electronics.

Jack Hessel, Ana Marasovic, Jena D. Hwang, Lillian
Lee, Jeff Da, Rowan Zellers, Robert Mankoff, and
Yejin Choi. 2023a. Do androids laugh at electric
sheep? humor “understanding” benchmarks from the
new yorker caption contest. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
688–714, Toronto, Canada. Association for Compu-
tational Linguistics.

Jack Hessel, Ana Marasović, Jena D. Hwang, Lillian
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