
Proceedings of the 4th Workshop on Figurative Language Processing (FLP), pages 92–98
June 21, 2024 ©2024 Association for Computational Linguistics

FigCLIP: A Generative Multimodal Model with Bidirectional
Cross-attention for Understanding Figurative Language via Visual

Entailment

Qihao Yang
School of Computer Science

South China Normal University
Guangzhou, China

charlesyeung@m.scnu.edu.cn

Xuelin WangB
College of Chinese Language and Culture

Jinan University
Guangzhou, China

wangxuelin@stu2022.jnu.edu.cn

Abstract

This is a system paper for the FigLang-2024
Multimodal Figurative Language Shared Task.
Figurative language is generally represented
through multiple modalities, facilitating the ex-
pression of complex and abstract ideas. With
the popularity of various text-to-image tools, a
large number of images containing metaphors
or ironies are created. Traditional recognizing
textual entailment has been extended to the task
of understanding figurative language via visual
entailment. However, existing pre-trained mul-
timodal models in open domains often struggle
with this task due to the intertwining of coun-
terfactuals, human culture, and imagination. To
bridge this gap, we propose FigCLIP, an end-
to-end model based on CLIP and GPT-2, to
identify multimodal figurative semantics and
generate explanations. It employs a bidirec-
tional fusion module with cross-attention and
leverages explanations to promote the align-
ment of figurative image-text representations.
Experimental results on the benchmark demon-
strate the effectiveness of our method, achiev-
ing 70% F1-score, 67% F1@50-score and 50%
F1@60-score. It outperforms GPT-4V, which
has robust visual reasoning capabilities.

1 Introduction

Figurative language is typically divided into
metaphor, simile, and sarcasm (Saakyan et al.,
2022). It serves as an implicit way for us to con-
vey complex and imaginative expressions. In re-
cent years, researchers have focused on developing
neural networks through mining contextual infor-
mation. They also aim to construct large-scale
figurative datasets to facilitate in-depth research
on recognizing textual entailment (Gu et al., 2022;
Bigoulaeva et al., 2022; Phan et al., 2022). Despite
increasing in parameter size, pre-trained language
models (Devlin et al., 2018; Liu et al., 2019) are
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Figure 1: Illustration of the Multimodal Figurative Lan-
guage Shared Task.

still unable to fully comprehend cultural knowledge
and the social context within figurative language.

With the prevalence of social media, individuals
sometime use images with visual metaphors (i.e.,
figurative images) to convey counterfactual or hu-
morous meanings, particularly in the advertising
industry (Yosef et al., 2023). Various text-to-image
AI tools can also be used to create a vast number of
figurative images (Chakrabarty et al., 2023). To pro-
mote the research on figurative language, the Mul-
timodal Figurative Language Shared Task1 (named
Understanding of Figurative Language Through
Visual Entailment) is first introduced by FigLang-
20242. Given an <image, text> pair, the goal of
this task is to 1) predict whether the image entails
or contradicts the text, where the text is referred
to as "claims"; 2) generate an explanation for the
entailment or contradiction. The illustration of this
task is shown as Figure 1.

Different from previous research that focused

1https://www.codabench.org/competitions/1970
2https://sites.google.com/view/figlang2024/

home
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Figure 2: Examples of visual entailment between images and claims.

on recognizing textual entailment (Chakrabarty
et al., 2022b), the Multimodal Figurative Language
Shared Task introduces an image modality to in-
terpret figurative language. Empirically, images
can carry richer contextual information than words.
Awareness of abstract implications beyond literal
and intuitive meanings is the most significant chal-
lenge for this task. Even CLIP (Radford et al.,
2021), a state-of-the-art architecture in image-text
understanding, achieves only 62% accuracy in mul-
timodal entailment test settings, which is far less
than the human accuracy of 94% (Hessel et al.,
2023). Moreover, existing vision-language models
(Radford et al., 2021; Li et al., 2023, 2022) and
generative language models (Raffel et al., 2020;
Radford et al.) are utilized separately to predict
image-text labels and generate explanations. This
results in a decoupling of the task, which is incon-
sistent with the widely accepted paradigm of end-
to-end training. Although many large multimodal
models (Liu et al., 2024; Jin et al., 2023) perform
well on diverse downstream tasks, the availability
of large-scale figurative image-text datasets and
the requirement for high computational resources
are prerequisites for fine-tuning them. Therefore,
developing a generic, low-cost, end-to-end multi-
modal model for multimodal figurative language
can potentially further advance the future associ-
ated research.

In this paper, we propose FigCLIP. It is built
upon CLIP and GPT-2 (Radford et al.) and can
jointly achieve the two requirements of label predic-
tion and explanation generation. The main contri-
butions of this work can be summarized as follows:

• A low-cost and end-to-end model is proposed,

which is competitive in multimodal figurative
language task.

• A bidirectional fusion module with cross-
attention is introduced, which enhances the
alignment of figurative image-text represen-
tations within the mapping space defined by
CLIP and GPT-2.

• We compare the model performance for un-
derstanding multimodal figurative language at
different resolutions.

2 Related Work

Understanding figurative language has been framed
as a recognizing textual entailment (RTE) task
(Chakrabarty et al., 2022b). Given a <premise,
hypothesis> pair, a RTE model is required to de-
termine whether the texts entail or contradict each
other. Pre-trained language models like BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019)
are used to encode both premise and hypothesis
texts. The deep representations of premise and
hypothesis texts are concatenated and then input
into a linear-layer classifier to output an entailment
or contradiction label (Chakrabarty et al., 2021,
2022a; Hu et al., 2023). However, these methods
cannot enable us to probe whether language models
are right for the right reasons. Thus, researchers
are committed to construct refined RTE datasets
to avoid spurious correlations and annotation arti-
facts and provide profound figurative knowledge.
Explanation-based RTE datasets such as e-SNLI
(Camburu et al., 2018) and FLUTE (Chakrabarty
et al., 2022b) are increasingly favored. Employ-
ing large language models (LLMs) has become
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Figure 3: Overview framework of the proposed FigCLIP model.

the mainstream approach to address the RTE task
(Kim et al., 2023). Premise and hypothesis texts
are combined into prompts to guide the LLMs for
generating answers. This implies that the RTE task
is simplified into a question-answering problem, al-
lowing the full utilization of the LLMs’ capabilities
in natural language inference.

Figurative language in images has recently re-
ceived increasing attention (Yosef et al., 2023; Hes-
sel et al., 2023). As shown in Figure 2, images
with claim texts can present metaphors, similes,
irony and humor. With the help of diffusion-based
text-to-image models such as DALL-E (Ramesh
et al., 2021), a number of comic-like figurative
images is created based on figurative texts. A
high-quality dataset is constructed by (Chakrabarty
et al., 2023), containing 6,476 visual metaphors
for 1,540 linguistic metaphors and their associated
visual elaborations. The Image Recognition of Fig-
urative Language (IRFL) dataset is developed by
(Yosef et al., 2023), with human annotation and
an automatic pipeline. Although the size of figu-
rative multimodal datasets is increasing, it is still
not enough for training a model with strong gen-
eralization ability. Thus, pre-trained multimodal
models can serve as the backbone and are used
to learn the fine-grained figurative image-text rep-
resentations by fine-tuning on limited figurative
multimodal datasets. They only perform the label
prediction. For generating explanation, captions
generated from images are concatenated with claim
texts into pure textual questions. The questions are
fed into language models such as GPT-2 and T5
(Raffel et al., 2020), then an explanations are out-
put. To meet the two needs of prediction and expla-
nation at the same time, several large multimodal

models, such as GPT-4V (Achiam et al., 2023),
MiniGPT4 (Zhu et al., 2023), Flamingo (Alayrac
et al., 2022), LlaVA (Liu et al., 2024), are used
to accept image and text input and then generate
labels and explanations. However, they are com-
monly evaluated by zero-shot or few-shot due to the
high training cost. Research on fine-tuning them
on figurative multimodal datasets is still scarce.

3 Method

3.1 Task formulation
The Multimodal Figurative Language (MFL)
Shared Task can be treated as a classification and
generation problem. Given an <image, claim> pair,
a MFL model is required to align image-claim rep-
resentations, learn a binary classification function
Fc to predict entailment or contradiction labels by
following Eq. 1, and learn a generation function
Fg to generate explanations by following Eq. 2.

label = argmaxFc (image, claim) (1)

explanation = argmaxFg (image, claim)
(2)

3.2 The FigCLIP model
Architecture. The proposed FigCLIP model em-
ploys 12-layer transformers as the text encoder and
24-layer vision transformers as the image encoder.
The text encoder and the image encoder are both
initialized by CLIP. A GPT-2 model is utilized to
generate explanations. The framework of the Fig-
CLIP model is shown in Figure 3.

Specifically, a given claim is input to the text en-
coder and a claim vector vclaim is output. A given
image is fed into the image encoder and an image
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vector vimage is output. For label prediction, the Fig-
CLIP model needs to consider whether the claim
is semantically entailed by the image. To fuse the
deep representations of the claim and the image,
a bidirectional fusion module with 8-layer cross-
attention is designed. The fusion process is divided
into two steps. The claim vector vclaim serves as
Q, and the image vector vimage serves as K and
V . They are fed into the fusion module and then
a claim-guided multimodal vector vclaim-gui

multi is cal-

culated by softmax
(
QKT
√
dk

V
)

, where dk denotes
the dimension of 768. This claim-guided multi-
modal vector achieves an effective interaction of
observing details in images based on text. Sim-
ilarly, the image vector vimage serves as Q, and
the claim vector vclaim serves as K and V . They
are fed into the fusion module and then a image-
guided multimodal vector vimage-gui

multi is calculated by
the same cross-attention calculation process. This
image-guided multimodal vector achieves an effec-
tive interaction of observing details in text based
on images. These two mentioned-above steps share
parameters, enhancing the alignment of figurative
image-text representations. After that, the vclaim-gui

multi
and the v

image-gui
multi are concatenated and input to a

binary linear-layer classifier to predict a label of
entailment or contradiction.

The original representation space of CLIP is
inconsistent with that of GPT-2. GPT-2 relies
on a 50257-dimensional vocabulary to generate
text, while the CLIP multimodal space is 768-
dimensional. For generating explanation, the Fig-
CLIP model needs to match the low-dimensional
multimodal representations to 50257 dimensions
in a mapping space. Inspired by ClipCap (Mokady
et al., 2021), we stack multiple linear layers of
different dimensions as a projector. This projec-
tor is composed of three sets of linear layers of
(768*2→2048), (2048→4096), (4096→50257). In
order to further compress the size of parameters
to reduce training costs, the parameters of this
(4096→50257) linear layer are frozen and treated
as a fixed matrix. This is the reason why FigCLIP
is more lightweight than ClipCap, despite their sim-
ilar model architectures. The multimodal represen-
tations after projector mapping is fed into GPT-2 to
generate an explanation about why the image and
claim are semantically entailed or contradicted.

Loss. Two cross-entropy losses are defined to
optimize the FigCLIP model jointly, comprising
a classification loss (Lcls) and a generation loss

Algorithm 1: Pseudocode of Training FigCLIP
data : a claim c, an image i;

a ground-truth label lgt , a ground-truth explanation egt;

1 while c, i, lgt , egt do
2 # the claim vector
3 vclaim ← Text-Encoder(c);
4 # the image vector
5 vimage ← Image-Encoder(i);
6 # the claim-guided multimodal vector
7 # the parameter order is Q, K, V

8 v
claim-gui
multi ← Fusion(vclaim , vimage , vimage);

9 # the image-guided multimodal vector
10 # the parameter order is Q, K, V

11 v
image-gui
multi ← Fusion(vimage , vclaim , vclaim);

12 # the concatenated multimodal vector

13 vmulti ← v
claim-gui
multi + v

image-gui
multi

14
15 # the classification loss
16 label← Classifier(vmulti);
17 Lcls ← CrossEntropyLoss(label, lgt);
18
19 # the generation loss

20 v
mapping
multi ← Projector(vmulti);

21 explanation← GPT-2(vmapping
multi );

22 Lgen ← CrossEntropyLoss(explanation, egt);
23
24 # the complete training objective
25 L ←Lcls +Lgen;

26 end

(Lgen). The predicted labels and the ground-truth
labels are used to calculate the classification loss,
which can promote semantic alignment between
images and claims to learn more fine-grained de-
tails of entailment or contradiction. The generated
explanations and the ground-truth explanations are
used to calculate the generation loss, which also
can facilitate the mapping of multimodal deep rep-
resentations to establish a reliable mapping space.
Finally, the sum of the Lcls and the Lgen is regarded
as the complete training objective.

The FigCLIP model enables end-to-end training
because it can jointly address the problems of label
prediction and explanation generation. The whole
training procedure of the PigCLIP model can be
abstracted in Algorithm 1.

4 Experiments and Results

4.1 Datasets

According to the official data description, the
training data is compiled from the following five
datasets about visual metaphors and multimodal
understanding:

(1) a subset of 731 Visual Metaphors dataset
(Chakrabarty et al., 2023);

(2) a subset of 1,322 textual metaphors with im-
ages (Yosef et al., 2023);

(3) a susbet of 853 memes with annotated claims
and explanations (Hwang and Shwartz, 2023);
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Data Source
Train/Valid Test

absolute proportion absolute proportion
nycartoons
(Hessel et al., 2023)

520 11.7% 87 12.6%

irfl
(Yosef et al., 2023)

1322 29.9% 198 28.7%

muse
(Desai et al., 2022)

1000 22.6% 150 21.8%

memecap
(Hwang and Shwartz, 2023)

853 19.3% 128 18.6%

vismet
(Chakrabarty et al., 2023)

731 16.5% 126 18.3%

total 4426 100% 689 100%

Table 1: The statistical details of the datasets for the
MFL task.

(4) a subset of 1,000 sarcastic captions with im-
ages (Desai et al., 2022);

(5) a subset of 520 unique images with cap-
tions accompanied with textual explanations (Hes-
sel et al., 2023).

The test data is available at huggingface3. Ta-
ble 1 displays the statistical details of the datasets
(named V-FLUTE (Saakyan et al., 2024)) for the
MFL task.

4.2 Settings

Our model is implemented on Pytorch 2.0.1 and
only one RTX 4090 GPU. Both the text encoder
and image encoder are initialized by CLIP-ViT-
L/14 or CLIP-ViT-L/14@336px (Radford et al.,
2021). All parameters of the text encoder and
GPT-2 are optimized, while the image encoder is
completely frozen for reducing the training costs.
The batch size is set to 32, and the epoch is set
to 20. AdamW is applied to optimize model pa-
rameters with a learning rate of 1e-04 and weight
decay of 0.05. The image resolution is specified as
224×224 or 336×336, and the maximum text length
is set to 77. Following previous work (Saakyan
et al., 2022), three metrics are used to evaluate
the model performance, including F1@0 (pure F1
score), F1@50 (F1 score computed where only in-
stances which had their explanation match the ref-
erence with BERTscore (Zhang et al., 2019) above
50 are counted as correct), and similarly F1@60.

4.3 Results

The official evaluation results are reported in Table
2. Our submission ranked second on the leader-
board, where the FigCLIP model was initialized
by CLIP-ViT-L/14@336px. The FigCLIP336×336
model achieved 70% F1-score, 67% F1@50-score

3https://huggingface.co/datasets/ColumbiaNLP/
V-FLUTE-test

Model
V-FLUTE test set (%)
F1 F1@50 F1@60

jalor 90 89 75
FigCLIP336×336 70 67 50
FigCLIP224×224 68 (-2) 65 (-2) 49 (-1)

GPT-4V (zero-shot) 70 64 49
mrshu 63 62 43
yangst 51 48 31

LlaVA (baseline) 45 38 21

Table 2: Evaluation results on the V-FLUTE test set.

and 50% F1@60-score on the benchmark test set.
LlaVA, the official baseline, only obtained 45% F1-
score, 38% F1@50-score and 21% F1@60-score
by zero-shot. This means that LlaVA can be ap-
plied to this task but it is not proficient in multi-
modal figurative language understanding. Never-
theless, the FigCLIP336×336 model outperformed
LlaVA by 25% F1-score, 29% F1@50-score and
29% F1@60-score respectively. Compared with
GPT-4V (a state-of-the-art model in image-text un-
derstanding), the FigCLIP336×336 model leaded by
3% and 1% in F1@50-score and F1@60-score re-
spectively, even though their F1-scores ware the
same. It is worth noting that calling GPT-4V’s API
for zero-shot on the test set took approximately
$19 and 2 hours, while training an epoch of the
FigCLIP model only took less than 1 minute on
one 24GB GPU. This demonstrates the low cost
and effectiveness of our method. Moreover, we ini-
tialized FigCLIP using CLIP-ViT-L/14 to explore
the impact of low resolution (224×224). We found
that all three metrics dropped slightly when under-
standing images at low resolution. This shows that
the FigCLIP336×336 model can capture more subtle
image semantics and facilitate the identification of
fine-grained implication relationships with claims.

5 Conclusion

This paper propose an end-to-end model FigCLIP
for the FigLang-2024 Multimodal Figurative Lan-
guage shared task. We introduce a shared bidi-
rectional fusion module with cross-attention to ad-
vance the alignment of figurative image-text pairs.
In the mapping space defined by CLIP and GPT-2,
we utilize a projector to bridge multimodal rep-
resentations and explanation representations and
make FigCLIP lightweight. Experimental results
on the benchmark test set demonstrates the effec-
tiveness of our method, which achieves competitive
performance and outperforms GPT-4V. Moreover,
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understanding images at high resolution has been
proven to be beneficial for capturing more fine-
grained details of figurative language.

Limitations

To alleviate the training burden and reduce training
costs, the image encoder was completely frozen.
This may prevent the model from learning richer
and more accurate knowledge of multimodal figu-
rative language. Limited by the short duration of
this task, we did not explore the impact of different
generative models on model performance. In fu-
ture work, we will optimize the different layers of
the image encoder to find the optimal trade-off be-
tween performance and cost. Furthermore, we will
replace the current generative model with several
large language models such as Llama and Vicuna
to enhance FigCLIP’s generalization ability in un-
derstanding and explaining multimodal figurative
language.
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