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Abstract

Research on metaphor detection (MD) in a
multilingual setup has recently gained momen-
tum. As for many tasks, it is however unclear
how the amount of data used to pretrain large
language models affects the performance, and
whether non-neural models might provide a rea-
sonable alternative, especially for MD in low-
resource languages. This paper compares neu-
ral and non-neural cross-lingual models for En-
glish as the source language and Russian, Ger-
man and Latin as target languages. In a series
of experiments we show that the neural cross-
lingual adapter architecture MAD-X performs
best across target languages. Zero-shot classi-
fication with mBERT achieves decent results
above the majority baseline, while few-shot
classification with mBERT heavily depends on
shot-selection, which is inconvenient in a cross-
lingual setup where no validation data for the
target language exists. The non-neural model,
a random forest classifier with conceptual fea-
tures, is outperformed by the neural models.
Overall, we recommend MAD-X for metaphor
detection not only in high-resource but also in
low-resource scenarios regarding the amounts
of pretraining data for mBERT.

1 Introduction

Song titles such as Life is a Highway are prominent
examples of how we use metaphors in our every-
day life. But songs are by far not their only habi-
tats: on average and across domains, metaphors
can be found in every third sentence (Shutova and
Teufel, 2010). Lakoff and Johnson (1980) define
a conceptual metaphor as “understanding one con-
ceptual domain [A] in terms of another conceptual
domain [B]” (Kövecses, 2010). In the above exam-
ple, the domain Life (A) is understood in terms of
the domain Journey (B). Detecting whether or not
a word or expression is a metaphorical linguistic
expression (i.e. whether or not it is used metaphor-
ically) is vital for many NLP applications, such as

sentiment analysis, machine translation, informa-
tion extraction, and dialog systems, cf. Tsvetkov
et al. (2014). Metaphor detection (MD) can fur-
ther support automatic essay scoring (Beigman Kle-
banov et al., 2018), schizophrenia detection (Gutiér-
rez et al., 2017), and propaganda identification
(Baleato Rodríguez et al., 2023).

Many efforts have been made to tackle the task
of metaphor detection (MD),1 and successfully so:
close-to-human performance was reached by sys-
tems using large pretrained language models like
BERT (Devlin et al., 2019) for English datasets con-
taining single sentences with a metaphorical expres-
sion (Ma et al., 2021). For a long time, Tsvetkov
et al. (2014) were the only ones to perform MD
cross-lingually, namely for Spanish, Russian and
Farsi. Only recently, Aghazadeh et al. (2022) and
Lai et al. (2023) addressed metaphor detection in
a multilingual setup with the same languages as
Tsvetkov et al. (2014). Whereas Aghazadeh et al.
(2022) focused on probing metaphoricity within
the transformer layers, Lai et al. (2023) used a
template-based prompt learning approach to MD.
These multilingual MD approaches focus on lan-
guages where large amounts of data are available
for pretraining. Insights are missing, however, on
whether or not large language models are also suit-
able for MD in languages with small amounts of
pretraining data.

The current study addresses this bottleneck and
compares neural and non-neural cross-lingual mod-
els for detecting metaphors in languages with vary-
ing degrees of pretraining data, including the low-
resource language Latin.

Our metaphor detection focuses on word-based
classification, as in the following example from the
metaphor dataset by Tsvetkov et al. (2014):

(1) Actions talk even louder than phrases.

1See Shutova (2015), and Tong et al. (2021) for two promi-
nent surveys.
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Language # Wikipedia articles
English (source) ≈ 6.7m

German ≈ 2.8m
Russian ≈ 1.9m
Latin ≈ 0.1m

Table 1: Amount of articles in millions (m) regarding the
four languages used in the current study. The numbers
are taken from https://meta.wikimedia.org/wiki/
List_of_Wikipedias, accessed 25 Sep. 2023. Alto-
gether, mBERT was pretrained on Wikipedia articles
from 104 languages.

We define a binary classification task to detect
whether or not the underlined target word is used
metaphorically in the given context. For zero- and
few-shot classification we apply multilingual BERT
(mBERT) (Devlin et al., 2019) and the adaptation
method MAD-X (Pfeiffer et al., 2020b), which
have shown state-of-the-art results for e.g. named
entity recognition and question answering. As our
non-neural model, we apply a random forest classi-
fier (Breiman, 2001), as random forest classifiers
generally perform well in low-resource scenarios
(Tsvetkov et al., 2014). Our model utilizes a vector
space model and conceptual features (abstractness
and supersenses) – similarly to the model intro-
duced by Tsvetkov et al. (2014).

As for target languages, we investigate mod-
elling performances for German, Russian and Latin,
because the amount of data used to pretrain mBERT
varies greatly across these three languages (see
Table 1). Whereas German and Russian are not
considered low-resource languages in terms of pre-
training data, we simulate low-resource conditions
and explore the influence of different amounts of
pretraining data by using as little as 20 instances or
no labelled data at all from the target languages for
training, and no data at all for validation. Latin, on
the other hand, is a low-resource language in terms
of pretraining data and in terms of labelled training
data. English as a high-resource language was used
as the source language for cross-lingual transfer.

Contributions. The main contribution of this
paper is a comparison and a series of insights re-
garding cross-lingual neural and non-neural models
for MD in languages with high-to-low degrees of
pretraining data, i.e., German, Russian and Latin.
More specifically, 1) we find that with default hy-
perparameters, zero-shot mBERT performs best:
results are above a majority vote baseline for all
three target languages. 2) MAD-X performs best

when hyperparameter-tuning is carried out or large
amounts of source language training data are used.
3) We show that few-shot mBERT depends largely
on shot-selection, which cannot be carried out in
a low-resource environment where no validation
data exists. 4) Overall, the non-neural model is
outperformed by the neural classifiers, and we rec-
ommend using MAD-X with suitable hyperparam-
eters for MD in languages with both large and little
amounts of data used for pretraining mBERT.2

2 Related Work

Metaphor Detection. Turney et al. (2011) were
among the first to apply insights from cognitive
linguistics to their MD model, i.e., exploiting that
metaphors transfer knowledge from a concrete do-
main to an abstract domain (Lakoff and Johnson,
1980). Since metaphoricity is correlated with the
degree of contextual abstractness, the authors used
abstractness scores of context words as features in
a logistic regression model.

The idea of “conceptual features” also inspired
Tsvetkov et al. (2014), who used abstractness
scores, imageability scores and semantic super-
senses as classification features. Whereas Turney
et al. (2011) focused on English data only, Tsvetkov
et al. (2014) trained on English data and then eval-
uated the model cross-lingually on Spanish, Farsi
and Russian. Their model represents the basis for
the random forest classifier used in our experiments.
Köper and Schulte im Walde (2016) focused on
MD for German particle verbs. They also used
1) abstractness and imageability ratings as well as
2) scores indicating the distributional fit of particle
verbs with regard to base verb contexts. In addition,
they used 3) unigram context words and 4) noun
clusters as features.

Do Dinh and Gurevych (2016) were the first to
use a neural model architecture for MD, namely
a multilayer perceptron with word embeddings.
Their approach performed comparable to exist-
ing models without requiring feature engineering.
Dankers et al. (2019) explored the relationship be-
tween metaphors and emotions by building several
multi-task learning models. The best performing ar-
chitecture made use of BERT embeddings used as
input to a multilayer perceptron or to additional at-
tention layers. They reached state-of-the-art results
in 2019 for both metaphor and VAD prediction.

2The code can be accessed here: https://github.com/
AnHu2410/MD_crosslingual.
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Su et al. (2020) transformed word-based
metaphor detection into a reading comprehension
problem; their approach, DeepMet, was the most
successful model in the 2020 metaphor detection
shared task (Leong et al., 2020). Ma et al. (2021)
fine-tuned BERT for MD. To perform word-based
binary metaphor classification, they copied the in-
put sentence and masked the target word. The orig-
inal sentence and the masked copy were used as
input for a sequence classification task. The BERT
model then predicted whether the two sentences
appeared in the same context; if yes, they predicted
a literal usage of the masked word; otherwise they
predicted a metaphorical usage. They also per-
formed sentence-level classification and sequential
labelling of metaphorical expressions. Their results
showed an increase over previous state-of-the-art
models. We use their word-based classification
approach for the mBERT-based classifiers in our
experiments. While their focus was on English, we
use it in a multilingual setup.

Li et al. (2023) exploited the fact that many
datasets are based on the Metaphor Identification
Process (MIP; Pragglejaz Group, 2007), where a
word is annotated as metaphorical if its contextual
meaning is dissimilar to its “more basic meaning”
(among further criteria). While prior models (such
as MelBERT by Choi et al. 2021) grounded on MIP
use decontextualized representations of the target
word, Li et al. (2023) successfully gathered the
representation of the target word from sentences
where it was used literally.

Cross-Lingual Representations. Vulić and
Moens (2013) proposed a bootstrapping method
to create bilingual vector spaces from non-parallel
data. Usually, a high-dimensional vector in a fea-
ture vector space uses context features as dimen-
sions. For the proposed bilingual vector space,
these features consisted of translation pairs. This
method can be applied to any language pair.

Multilingual BERT (Devlin et al., 2019) was pre-
trained on data from 104 languages. Lauscher et al.
(2020) pointed out limitations of large multilingual
pretrained language models by demonstrating that
these models do not transfer knowledge well for
low-resource target languages (i.e. languages with
small pretraining corpora) and for distant language
pairs. They showed that first fine-tuning on large
amounts of data and then continuing fine-tuning
with very few examples from the target language
considerably improves results across all languages
and tasks. The current paper investigates whether

these findings also apply to MD. Pfeiffer et al.
(2020b) tried to mitigate problems of multilingual
language models targeting low-resource languages
by using an adaptation method, i.e. by inserting
small amounts of trainable weights into an existing
pretrained model (see Section 4). We also apply
these Multiple ADapters for Cross-lingual transfer
(MAD-X) to MD in our experiments.

3 Datasets and Preprocessing

Source Language. We used the dataset from
Tsvetkov et al. (2014) as our basic English training
dataset. It is based on the TenTen3 Web Corpus,
contains 222 instances, and is balanced. This basic
training dataset was previously used by Tsvetkov
et al. (2014) for evaluation. In the course of our
experiments we augmented the amount of train-
ing data by adding the imbalanced dataset by Mo-
hammad et al. (2016), which consists of 1,639 in-
stances. The augmented version comprises 1,861
instances.4

Target Languages. Tsvetkov et al. (2014) also
provide the Russian dataset that we used for evalu-
ation, which is balanced, consists of 240 instances,
and is based on the TenTen Web Corpus. For
evaluation in German, we used the MD dataset
provided by Köper and Schulte im Walde (2016),
which is based on the web corpus DECOW14AX
(Schäfer and Bildhauer, 2012) and where the target
words are particle verbs. To balance the dataset,
we reduced the original dataset from Köper and
Schulte im Walde (2016) to 896 metaphorical and
896 literal instances.

For our Latin dataset we used the Lexham Fig-
urative Language of the New Testament Dataset
(Westbury et al., 2016), which is published in the
Logos5 Bible Software. It shows passages from the
New Testament (we used the American Standard
Version of the Bible), and highlights the metaphors
in each verse. We extracted 100 sentences, of
which 50 were annotated as metaphorical and 50
were annotated as literal. As the metaphors were an-
notated in the English Bible text, we then manually
searched for the Latin translations in the Vulgate6.

3https://www.sketchengine.eu/
4For the random forest classifier, only a subset of the

dataset by Mohammad et al. (2016) was used for augmen-
tation, because lemmatized subjects, verbs and objects had to
be annotated, but this annotation was available only for 100
instances.

5https://www.logos.com
6https://vulgata.info/index.php?title=

Kategorie:BIBLIA_SACRA.
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The first author of this paper, a classical philologist,
ensured that the metaphors found in the English
texts correspondingly occurred in the Latin texts,
i.e. that the American Standard Version did not
introduce metaphors that were not present in the
Vulgate.7

Below we provide two example sentences for each
dataset, together with the respective categorization
into metaphorical vs. literal.

• English (Tsvetkov et al., 2014, source):

(2) The twentieth century saw intensive
development of new technologies.
→ metaphorical

(3) The young man shook his head.
→ literal

• English (Mohammad et al., 2016, source):

(4) This young man knows how to climb
the social ladder.
→ metaphorical

(5) Did you ever climb up the hill behind
your house? → literal

• Russian (Tsvetkov et al., 2014, target):

(6) Бедность давит на людей.8 (trans-
lation: “Poverty weighs on people.”)
→ metaphorical

(7) Повар варит суп на кухне.9 (trans-
lation: “The cook cooks soup in the
kitchen.”) → literal

• German (Köper and Schulte im Walde, 2016,
target):

(8) Dort wird das Wasser aufgestaut und
an Nimroz verkauft. (translation:
“There, the water is dammed up and
sold to Nimroz.”) → literal

(9) Über die Zeit hatte sich in ihnen
Sehnsucht und Verlangen aufgestaut.
(translation: “Over time, longing and
desire had dammed up inside them.”)
→ metaphorical

• Latin (Westbury et al., 2016, target):

(10) Et venerunt, et impleverunt ambas
naviculas, ita ut pene mergerentur.

7The German and Latin dataset are available here: https:
//github.com/AnHu2410/MD_crosslingual

8Transliteration: Bednost’ davit na lyudey.
9Transliteration: Povar varit sup na kukhne.

(“And they came, and filled both the
boats, so that they began to sink.”)
→ literal

(11) Et dixerunt ei: Quia heri hora sep-
tima reliquit eum febris.(“They said
therefore unto him, Yesterday at the
seventh hour the fever left him.”)
→ metaphorical

We preprocessed all datasets such that the orig-
inal sentence was available, as well as a copy of
the original sentence, where we replaced the target
word by the [MASK]-token. These two sentences
were then further preprocessed by the Hugging-
Face10 tokenizer pipeline. In addition, the random
forest classifier required the target word (a verb)
and its dependent subject and object as lemmas,
which we annotated in cases where the information
was missing. Figure 1 illustrates an example of
input and output across models.

zero-shot 
mBERT

few-shot 
mBERT

MAD-X
random 
forest

Actions talk even louder than phrases.
Actions [MASK] even louder than phrases.

action, talkInput:

Output: metaphorical

Figure 1: Example input and output of our models.

4 Models

For zero-shot and few-shot classification, we used
mBERT (Devlin et al., 2019). For zero-shot clas-
sification, we fine-tuned the pretrained language
model for MD on the source language data and
used this model for predictions in all three tar-
get languages. For few-shot classification, we
first fine-tuned mBERT on source-language train-
ing data, and then fine-tuned it again on a small
amount of target language data (see Lauscher et al.,
2020). Additionally, we applied MAD-X (Pfeif-
fer et al., 2020b), which consists of three types of
adapters: language adapters, task adapters and in-
vertible adapters. For this method, the pretrained
model was frozen and two language adapters were
trained on a masked language modelling task: one
adapter was trained on unlabelled data from the
source language, and one on unlabelled data from

10https://huggingface.co/docs/transformers/
main_classes/tokenizer
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the target language. Then, the source language
adapter was inserted in addition to the task adapter,
and the latter was trained on labelled data from the
source language. Finally, inference was performed
by plugging in the target language adapter and the
(language-agnostic) task adapter. The invertible
adapters were plugged in simultaneously with the
language adapters, but come with a slightly differ-
ent architecture because they adapt the embeddings,
while the language and task adapters were inserted
into each transformer layer. For all neural models
we utilized the word-based MD method by Ma et al.
(2021), where the original sentence and a copy of
that sentence with the masked target word were
used as input for sequence classification.

As our non-neural model we replicated the ran-
dom forest classifier by Tsvetkov et al. (2014). This
model contains three feature types: 1) abstract-
ness and imageability scores, which Tsvetkov et al.
(2014) generated on the basis of the MRC ratings
by Wilson (1997), 2) supersenses, i.e., “coarse se-
mantic categories”, where a word can belong to
several synsets in WordNet (Fellbaum, 1998), each
of which is associated with several supersenses.
We created a feature vector with these supersenses
as dimensions, e.g., the noun “head” occurs in 33
synsets, 3 of which are related to the supersense
noun.body. The dimension corresponding to the
supersense noun.body then receives 3/33 (example
taken from Tsvetkov et al., 2014). 3) Further fea-
tures were produced with the vector space model by
Faruqui and Dyer (2014). This model utilizes mul-
tilingual information in order to generate similar
vectors for synonymous words. All these features
were extracted from the target word – in our case,
a verb – and from its dependent subject and ob-
ject. For cross-lingual inference, the model relies
on one-to-many translations: all translations were
given for a target language word, and the scores
obtained for the translations were averaged (see
Tsvetkov et al., 2014). For translation, we used
Word2Word by Choe et al. (2020).

5 Experiments and Results

5.1 Experimental Setup with Basic and
Augmented Training Data

We used the basic English dataset by Tsvetkov et al.
(2014) for training, and the target language datasets
for Russian, German and Latin for evaluation (see
Section 3). Then we explored how each of the
following cross-lingual classifiers performed on

each of the target languages: zero-shot mBERT
(mB0); few-shot mBERT with a second fine-tuning
on 20 instances of target language data (mB20)11;
MAD-X; and the random forest classifier (RF).

As hyperparameters for zero- and few-shot
mBERT in this basic experimental setup we used
the default hyperparameters from Huggingface
(Wolf et al., 2020), namely a batch-size of 8, a
learning rate of 5e-5, and 3 training epochs. As
hyperparameters for MAD-X we used those men-
tioned by Pfeiffer et al. (2020b): a learning rate of
1e-4, a batch-size of 8 and 100 training epochs. As
hyperparameters for the random forest classifier we
used those from scikit-learn 1.2 (Pedregosa et al.,
2011), namely 100 estimators, no max-depth limit,
and Gini as split criterion. We repeated the runs
for three different seeds in order to simulate the
variance of results achieved on different GPU ma-
chines, and report the mean F1-scores as well as the
standard deviation (SD). We ran the experiments
on an AMD EPYC 7282 16-Core Processor with
32 threads and NVIDIA RTX A6000 GPUs12. Our
baseline predicts all instances to be metaphorical.

The results for the basic training dataset are
presented in the left panel of Table 2. Zero-shot
mBERT (mB0) outperformed the baseline for all
three languages, while the results for the other three
models were all similar or lower (with the excep-
tion of mB20 for Russian), and the results for Latin
even dropped below the baseline. The random for-
est classifier produced results lower than mB0.

In order to investigate whether or not the small
amount of training data (222 instances) could be re-
sponsible for the partly low results, we augmented
the basic training data with data from Mohammad
et al. (2016) to 1861 training instances, and re-
peated the experiments. The results are presented
in the right panel of Table 2. For mB0, Russian
showed slightly higher F1-scores, while the other
two languages showed lower F1-scores compared
to the basic training dataset. mB20 only achieved a
performance comparable to the baseline (except for
German). For the random forest classifier the re-
sults improved for Russian but remained the same
for German and Latin. MAD-X clearly profited
from the augmented training data.

11The 20 instances are taken from the test datasets for mB20,
so here the test datasets are slightly reduced in comparison to
the test datasets used for the other experiments.

12Training times were for the most part shorter than 10
minutes. The only exception was the training with augmented
training dataset for MAD-X with 100 epochs (<30 minutes).
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basic training dataset
ru ge la

baseline 66.7 66.7 66.7
mB0 81.1 ±6.9 77.1 ±1.6 69.6 ±1.9
mB20 82.0 ±2.3 67.3 ±1.2 62.1 ±0.0
MAD-X 68.3 ±10.5 64.2 ±10.7 42.0 ±21.3
RF 78.6 ±0.7 71.2 ±0.7 66.7 ±1.5

augmented training dataset
ru ge la

66.7 66.7 66.7
82.8 ±14.0 72.5 ±5.2 66.1 ±1.0
66.9 ±37.3 70.9 ±3.9 62.2 ±0.8
87.6 ±2.1 75.2 ±0.3 63.3 ±3.6
86.2 ±0.7 71.3 ±0.5 66.5 ±0.3

Table 2: Mean F1-scores for verbal MD across three runs with different seeds (± SD) for hyperparameters with the
basic and the augmented training dataset and across our target languages Russian (ru), German (ge) and Latin (la).

5.2 Few-Shot Classifier: Shot-Selection

Even though Lauscher et al. (2020) showed that
few-shot fine-tuning improves the performance of
using zero-shot mBERT, the results obtained in our
experiments did not improve with a second round
of fine-tuning with 20 target language instances
(except for Russian when using the basic training
dataset). We therefore investigated shot-selection
by selecting five different randomly selected shots
instead of one randomly selected shot as in the pre-
vious experiments. The results for using default
hyperparameters13 and the basic training dataset
are shown in Table 3. While the mean scores are
lower than for the best-performing other models,
the maximum scores were competitive; SD was
rather high across all languages. We manually
checked whether the successful shots exhibit spe-
cific features in comparison to the non-successful
shots, but no pattern could be identified.

max. mean SD
ru 87.3 76.3 15.1
ge 80.9 75.2 6.0
la 66.7 51.8 29.0

Table 3: Maximum and mean F1-scores as well as
SD for using five different shots of the target language
datasets for the second fine-tuning of mBERT (default
hyperparameters, basic training dataset).

5.3 MAD-X: Hyperparameter-Tuning

As preliminary experiments have shown that MAD-
X heavily relies on suitable hyperparameters, as a
next step hyperparameter-tuning14 was carried out.
Given that in the cross-lingual setup no validation

13We only used one seed (42) to produce the results, be-
cause our aim is to show variance across shots, not seeds.

14Hyperparameter-tuning was carried out for the task
adapter, the language adapter was taken off-the-shelf from
AdapterHub, see Pfeiffer et al., 2020a.

data for the target language exists, we explored
whether using a dataset from the source language
English for validation is a valid option. To do so,
we performed a grid search, where we fine-tuned
the task adapter on the basic English dataset for
different hyperparameter sets (see Table 4).

learning rates epochs batch size
1e-3, 1e-4, 1e-5 10, 50, 100 8, 16, 32

Table 4: Hyperparameter values used for the grid search
for MAD-X. We ran each combination, with a total of
27 hyperparameter sets.

We then used the English dataset by Moham-
mad et al. (2016) as our validation dataset, and
pretended that the datasets for German, Russian
and Latin were also validation datasets. We ob-
tained the F1-scores for each hyperparameter set
across all four validation datasets (see Appendix
A). We then calculated Spearman’s rank-order cor-
relation coefficient ρ between the F1-scores for the
English validation dataset and the target-language
validation datasets. I.e., we examined whether we
find a correlation between the hyperparameter sets
that lead to high (low) results for the English vali-
dation set and the hyperparameter sets that lead to
high (low) results for each of the target-language
datasets. If the same sets lead to high (low) F1-
scores for English and some target language, then
we could infer that fine-tuning the hyperparameters
on a source-language dataset is sufficient and no
target-language material is necessary for the vali-
dation. We however found no strong correlation
between English and any target language, see top
row in Figure 2.

What we did observe, though, was a strong corre-
lation between the target language datasets, which
indicates that a dataset from a language other than
the source or target language, i.e. from a third lan-
guage, can be used for validation. Accordingly, we
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Figure 2: Spearman’s rank-order correlations ρ between
the hyperparameter sets of the three target languages
with regard to the achieved F1-scores for MAD-X.

used the Russian dataset as a validation dataset for
the target languages German and Latin (batch-size:
32, learning rate: 1e-3, 50 training epochs), and the
German dataset as a validation dataset for Russian
(batch-size: 32, learning rate: 1e-3, 100 training
epochs).15 The results are presented in Table 5.
Russian shows a result that is comparable to the
best results of the other classifiers (except MAD-X
with default hyperparameters and the augmented
training dataset). The results for German and Latin,
in contrast, are the highest across all experiments,
and SD is rather low (< 2.5 F1-points).

ru ge la
MAD-X 82.7±2.5 77.3±0.4 73.8±0.9

Table 5: Mean F1-scores (± SD) for using the best
performing hyperparameter set from Russian validation
data for Latin and German, and the best performing
hyperparameter set from German validation data for
Russian with MAD-X across three different seeds.

5.4 Summary of Results
MAD-X showed the best performance. For Rus-
sian, using default hyperparameters and an aug-
mented training dataset led to the best performance
across all models, whereas for German and for
Latin hyperparameter-tuning with the basic train-
ing dataset led to the best results across all mod-
els. These two scenarios (i.e. augmented training

15We also applied this hyperparameter-tuning to the other
neural and non-neural models, but observed no improvement.

dataset, hyperparameter-tuning) also show a small
SD across different seeds, which means that the
results are robust in terms of different hardware.
The results that we obtained with hyperparameter-
tuning were generated by using data from a third
language (i.e. neither from the source nor from
the target language) as validation data. The use of
a third language dataset for validation should be
confirmed by more experiments for other high- and
low-level tasks, as well as for other languages.

When using the basic training dataset (which
covers very few training instances) and default hy-
perparameters, mB0 performed best (only for Rus-
sian mB20 showed slightly higher results). mB0
was even able to produce significantly16 better re-
sults than the baseline for Latin, which no other
model achieved besides MAD-X. Even though
mB20 achieved high results for Russian when us-
ing the basic training dataset, all other results are
worse or only slightly better than the baseline. As
the SD across different shots is very high (see Ta-
ble 3), it is important to select an appropriate shot.
This is inconvenient in a cross-lingual setup, since
no validation data in the target language is avail-
able. Finding a solution for this problem would be
beneficial, since the best shot for German led to
results even higher than the results from MAD-X.

Overall, we reach an F1-score of 86.2 for Rus-
sian, comparable to Tsvetkov et al. (2014) with an
F1-score of 86.0, but the random forest classifier
was not able to outperform the neural models.

6 Qualitative Analysis

It was expected that the models perform better on
German than on Russian. Afterall, more German
than Russian data was used to pretrain mBERT, and
German is typologically closer to the source lan-
guage English than Russian. This expectation was
not confirmed. Therefore, we carried out a qualita-
tive analysis. Here, possible sources of errors were
identified for German by looking at the predictions
of zero-shot mBERT with default hyperparameters
and basic training dataset. One hypothesis as to
why the models performed worse for German than
for Russian is that the target words consist of “com-
putationally challenging” particle verbs (Köper and
Schulte im Walde, 2016), i.e. combinations of a
base verb (e.g. “schminken”) with a prefix parti-

16According to χ2-testing for the model with seed 42 and
p<0.05.
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cle (e.g. “ab-”)17. They are highly productive and
notoriously ambiguous. Also, the particle may be
separated from the base verb. In contrast, the target
words in the Russian dataset are frequent verbs.

Another hypothesis as to why the models per-
formed worse on the German dataset than on the
Russian dataset is that the German dataset contains
many idioms. For example:

(12) Da wird der Teufel mit dem Beelzebub
ausgetrieben. (translation: “One evil is
replaced by another.”)

Interestingly, similar variants of this idiom were
classified inconsistently. While the target word in
(12) was misclassified as literal, it was correctly
classified as metaphorical in (13):

(13) Denn die Elite und die USA werden den
Teufel nicht mit einem Beelzebub aus-
treiben. (translation: “For the elites and
the U.S. will not replace one evil with an-
other.”)

In total, three out of seven sentences that con-
tain the idiom “den Teufel mit dem Beelzebub aus-
treiben” were classified incorrectly. Similar be-
haviour was also observed for other highly conven-
tionalized expressions, such as “Dampf ablassen”
(translation: "let off steam"). In order to test
whether the classifier indeed struggles with idioms,
the dataset from Ehren et al. (2020) was used. This
dataset consists of sentences from 34 preselected
verbal idioms. For each sentence the information
is given whether it contains a figuratively used id-
iom or not. In order to make it comparable to our
version of the dataset by Köper and Schulte im
Walde (2016), it was balanced and reduced to 2000
instances.

All neural models were applied to this dataset.
As can be seen in Table 6, the results for the dataset
by Ehren et al. (2020) were lower than the results
for the dataset by Köper and Schulte im Walde
(2016) across all models. This suggests that the
neural methods for word-based MD do not work as
well on idioms as they do on less conventionalized
metaphors, especially since the target words (non-
complex German verbs) are less computationally
challenging in this dataset than the particle verbs
in Köper and Schulte im Walde (2016).

A third hypothesis attributes classifier weakness
17The literal translation of the particle verb “abschminken”

is “to remove makeup”.

Ehren Köper
baseline 0.67 0.67
mB0 69.7±3.3 72.5±5.2
mB20 66.9±0.7 70.9±3.9
MAD-X 67.9±2.2 75.2±0.3

Table 6: Mean F1-scores (± SD) for detecting metaphor-
ical usage in the dataset by Ehren et al. (2020) using
three seeds (default hyperparameters, augmented train-
ing set); results for dataset by Köper and Schulte im
Walde (2016) shown in gray.

to instances where the target verb is part of an
extended metaphor:

(14) In der Gerüchteküche wurde tagelang
deftig aufgekocht. (translation: “For days
the gossip factory was working overtime.”)

Here, not only the target word is used metaphori-
cally, but also most context words. This and compa-
rable sentences were misclassified; apparently, too
little evidence hinted at the metaphoricity. From
1792 sentences in the balanced dataset (Köper and
Schulte im Walde, 2016) that we used for our ex-
periments, 398 were misclassified. We analysed
all 398 misclassifications. Our possible explana-
tions regarding idiomatic rather than metaphorical
expressions, and regarding larger metaphorical con-
texts, however, only account for roughly 26 mis-
classifications. We conclude that the vast majority
of instances were misclassified either due to the
structural difficulty of particle verbs, or that further
reasons for the misclassifications still have to be
identified. Additionally, the sentences in the Rus-
sian dataset are shorter, which makes it easier for
the neural models to make correct predictions: the
sentences in the Russian dataset contain an average
of nine tokens, while the average sentence length
for the German dataset is 13 tokens.

7 Conclusion

While research on MD has focused on languages
with comparably large amounts of data used for pre-
training large language models, our experiments
have shown that neural cross-lingual methods are
suitable for languages with relatively large (Rus-
sian and German) and small amounts of pretraining
data (Latin). Especially MAD-X performed very
well, with the highest results across all experiments
for German and Latin using a small training dataset

29



and tuned hyperparameters, and for Russian using a
large training dataset and default hyperparameters.

Zero-shot classification with mBERT performed
decently on a small training dataset and default
hyperparameters across all three languages. Few-
shot classification with mBERT as applied in our
experiments was not successful, as it relies on vali-
dation data for shot-selection, which is not possible
in the cross-lingual setup. The non-neural random
forest classifier, even though it yielded competitive
results for Russian and German, was generally out-
performed by the neural models – even for Latin,
where small amounts of data were used to pretrain
the neural models. It is unclear, however, why per-
formance was better for Russian than for German
across experiments. A qualitative analysis revealed
a range of possible explanations, namely the in-
herent difficulty of particle verbs, idioms, and rich
metaphorical contexts in the German dataset.

Whereas for the few-shot experiments we con-
ducted sequential fine-tuning on source and target
language data, Schmidt et al. (2022) showed that
joint (instead of sequential) fine-tuning leads to
few-shot models that yield higher results and are
more robust in terms of hyperparameters (e.g. num-
ber of training epochs). We plan to employ this
method for MD in future work, because few-shot
fine-tuning showed promising results but still de-
pends on target-language validation data. Another
next step will be to compare our models’ perfor-
mance for Latin to their performance for Romance
languages, in order to minimize the typological
differences between the target languages. We will
also investigate how the models presented in this
paper perform in contrast to newer multilingual
large language models such as mT518 (Xue et al.,
2021).

8 Limitations

The MD methods described in this paper were in-
vestigated only for individual, curated sentences.
Optimally, however, MD should be carried out
on the basis of longer sequences from authentic
data; here, also sequence-based metaphor detec-
tion should be applied to detect entire metaphorical
phrases.
The target languages chosen for the experiments
only cover a small subset of languages that were
used to pretrain large language models; they should

18mT5 was pretrained on modern languages as well as on
Latin data (Xue et al., 2021).

be repeated for other target languages with low
amounts of pretraining data, especially those that
do not belong to the Indo-European language fam-
ily. Finally, English is studied as the only source
language for the cross-lingual transfer, but it is pos-
sible that other languages with rather large amounts
of pretraining data might be better suited as source
languages.
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Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual Transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499, On-
line. Association for Computational Linguistics.

Chee Wee (Ben) Leong, Beata Beigman Klebanov,
Chris Hamill, Egon Stemle, Rutuja Ubale, and Xi-
anyang Chen. 2020. A report on the 2020 VUA and
TOEFL metaphor detection shared task. In Proceed-
ings of the Second Workshop on Figurative Language
Processing, pages 18–29, Online. Association for
Computational Linguistics.

Yucheng Li, Shun Wang, Chenghua Lin, and Frank
Guerin. 2023. Metaphor detection via explicit basic
meanings modelling. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 91–100,
Toronto, Canada. Association for Computational Lin-
guistics.

Weicheng Ma, Ruibo Liu, Lili Wang, and Soroush
Vosoughi. 2021. Improvements and extensions on
metaphor detection. In Proceedings of the 1st Work-
shop on Understanding Implicit and Underspeci-
fied Language, pages 33–42, Online. Association for
Computational Linguistics.

Saif Mohammad, Ekaterina Shutova, and Peter Tur-
ney. 2016. Metaphor as a medium for emotion: An
empirical study. In Proceedings of the Fifth Joint
Conference on Lexical and Computational Seman-
tics, pages 23–33, Berlin, Germany. Association for
Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
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A Hyperparamter-Tuning for MAD-X:
Additional material

Table 7 reports the sets of hyperparameters that
were used during hyperparameter search for the
MAD-X classifier. Figure 3 shows which hyper-
parameter set led to which F1-score for each of
the four languages. This figure hints at the fact
that the correlations between English and each of
the three languages Russian, German and Latin
are low, while the correlation for language pairs
not including English are high. We quantified this
assumption by calculating Spearman’s rank-order
correlations presented in Figure 2 (see Section 5.3).

index learning rate epochs train batch size
1 1e-3 10 8
2 1e-3 10 16
3 1e-3 10 32
4 1e-3 50 8
5 1e-3 50 16
6 1e-3 50 32
7 1e-3 100 8
8 1e-3 100 16
9 1e-3 100 32

10 1e-4 10 8
11 1e-4 10 16
12 1e-4 10 32
13 1e-4 50 8
14 1e-4 50 16
15 1e-4 50 32
16 1e-4 100 8
17 1e-4 100 16
18 1e-4 100 32
19 1e-5 10 8
20 1e-5 10 16
21 1e-5 10 32
22 1e-5 50 8
23 1e-5 50 16
24 1e-5 50 32
25 1e-5 100 8
26 1e-5 100 16
27 1e-5 100 32

Table 7: Index to hyperparameter sets for MAD-X.
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Figure 3: Result for using both the data from Mohammad et al. (2016) (black line) and the different test sets for
target languages Russian, German and Latin as dev sets for the grid search on zero-shot classification with MAD-X.
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