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Abstract

Euphemisms are words or phrases used instead
of another word or phrase that might be consid-
ered harsh, blunt, unpleasant, or offensive. Eu-
phemisms generally soften the impact of what
is being said, making it more palatable or appro-
priate for the context or audience. Euphemisms
can vary significantly between languages, re-
flecting cultural sensitivities and taboos, and
what might be a mild expression in one lan-
guage could carry a stronger connotation in
another. This paper uses prompting techniques
to evaluate GPT-4 for detecting euphemisms
across multiple languages as part of the 2024
FigLang shared task. We evaluate both zero-
shot and few-shot approaches. Our method
achieved an average macro F1 of .732, ranking
first in the competition. Moreover, we found
that GPT-4 does not perform uniformly across
all languages, with a difference of .233 between
the best (English .831) and the worst (Spanish
.598) languages.

1 Introduction

A euphemism is a term or expression substituted
for another that may be deemed too direct, harsh,
or offensive. Euphemisms play a nuanced role in
linguistic expression, serving as a polite or softer
alternative to potentially sensitive or direct lan-
guage (Danescu-Niculescu-Mizil et al.; Magu and
Luo). However, their inherent ambiguity chal-
lenges Natural Language Processing (NLP) sys-
tems in comprehending meaning because they must
pick up on subtle contextual cues (Bisk et al.;
Carbonell and Minton). This difficulty is mag-
nified in multilingual contexts, where the same
euphemism could have different meanings across
cultures. Hence, this paper describes an approach
for the 2024 FigLan shared task for multilingual
euphemism detection.

Much of the recent research on euphemism de-
tection has focused on fine-tuning transformer-
based models (Zhu and Bhat, 2021; Maimaitituo-

heti et al., 2022; Wang et al., 2022). For instance,
Wang et al. (2022) combined a BERT-based trans-
former with a relational graph attention network
and fine-tuned it for euphemism detection. How-
ever, recent advancements in the development of
large language models (LLMs) like GPT-4 have
been shown to be successful in similar tasks such as
offensive and abusive language detection (OpenAI
et al.; Wu et al.; Matter et al., 2024; Li et al., 2023).
GPT-4 is supposedly trained on extensive datasets
of multilingual text containing wide variations of
linguistic styles, which would be very helpful in un-
derstanding and interpreting euphemistic language.
The tool’s ability to generate human-like dialogue
and adapt itself to nuanced language suggests that
it could be used to distinguish between literal and
euphemistic language use.

Recent research has shown limitations of GPT-4
and related models in multi-lingual settings (Zhang
et al., 2024; Ahuja et al., 2023). For example, Qiu
et al. (2024) report substantial differences in medi-
cal applications performance of GPT-4 across dif-
ferent languages. Hence, understanding how GPT-
4 performs for multilingual classification, particu-
larly for tasks that involve figurative language, can
provide unique insights into its limitations.

In this paper, we explore the application of
prompting techniques (Ouyang et al.; Lester et al.;
Liu et al.) to detect euphemisms using GPT-4.
We note that recent work has explored prompting-
based euphemism detection (Maimaitituoheti et al.,
2022). However, the system still required fine-
tuning model parameters. Here, we explore zero-
shot and few-shot prompting strategies without any
fine-tuning. We analyze a various number of in-
context examples. Moreover, we performed a small
error analysis to understand the limitations of GPT-
4 for euphemism detection and to understand when
GPT-4 fails for multilingual euphemism detection.
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2 Related Work

Despite the general advancements in NLP, the au-
tomated detection of euphemisms remains a rela-
tively under-explored area. Early approaches to
identify euphemistic speech focused on rule-based
systems and statistical methods (Felt and Riloff).
Keh et al. (2022) explored kNN and data augmen-
tation for euphemism detection. Likewise, fine-
tuning pretrained transformer models is a popu-
lar approach. For instance, Wiriyathammabhum
(2022) fine-tune RoBERTa (Liu et al., 2019) mod-
els for euphemisim detection. Trust et al. (2022)
combined RoBERTa models with cost-sensitive
learning to handle class imbalance issues. Wang
et al. (2022) combined a BERT-based transformer
with a relational graph attention network and fine-
tuned it for euphemism detection. However, these
approaches cannot capture euphemisms’ nuanced
nature or how euphemisms change over time. With
the advent of models such as BERT and its suc-
cessors, researchers have been able to show the
potential for neural network models to understand
complex language phenomena like metaphors, sar-
casm, and idioms (Magu and Luo; Wang et al.; Zhu
and Bhat; Gavidia et al.).

While the LLMs have shown to be more capable,
researchers identified that not only the size of the
model and the training data used are important, but
how a task is presented to the LLM is equally im-
portant (Wei et al.; Li et al.). Prompting offers a few
benefits over fine-tuning a LLM. Prompting does
not require a model to undergo an additional round
of training, making it more resource-efficient and
accessible. Also, prompting leverages the model’s
pre-trained knowledge, enabling quick adaptation
to new tasks without the risk of overfitting. Prompt-
ing is particularly appealing for subtle language
tasks like euphemism disambiguation, allowing the
LLM to focus on the subtleties of euphemistic lan-
guage without extensive training.

A few researchers have used prompting in pre-
vious euphemism studies (Keh; Maimaitituoheti
et al.). Maimaitituoheti et al. used a RoBERTa
model and fine-tuned the model to improve its per-
formance using prompts. The most similar work to
this paper is by Keh (2022), which used an older
GPT-3 model and post-processing rules to classify
the evaluation as euphemistic or literal. Their work
found that fine-tuned models (e.g., RoBERTa) out-
performed zero-shot and few-shot methods using
GPT-3. In this work, we extend the idea of using

prompting in two ways. First, we use GPT-4, which
is more capable than GPT3-3. Second, this model
is evaluated on the new multilingual euphemism
dataset.

3 Methodology

In this section, we discuss the general task, dataset,
and our prompting strategy. Overall, we use a few-
shot prompting framework for our submission.

Task. The Multilingual Euphemism Detection
Shared Task for the Fourth Workshop on Figurative
Language Processing involves predicting whether a
substring within a sentence is a euphemism. Specif-
ically, given a string, “This summer, the budding
talent agent was <PET>between jobs</PET> and
free to babysit pretty much any time,” participants
need to detect whether the embedded Potential Eu-
phemistic Terms (PET) is a euphemism or not for
this specific context. This means that each PET can
be a literal (not a euphemism or a euphemism). The
participants’ results are collected and evaluated on
the shared task site at Codabench.1

Dataset. For this shared task, two sets of data
are provided, each consisting of samples in Chi-
nese, English, Spanish, and Yorùbá. The first sets
are the training datasets to help refine the partic-
ipants’ methodology, consisting of rows of sen-
tences, the embedded PET, and a classification la-
bel (euphemism or not). The composition of the
datasets by language is provided in Table 1. The
second set is the test dataset, which consists of only
sentences and the embedded PET without ground
truth labels. The composition of these datasets
by language is also provided in Table 1. It was ob-
served that the PETs in the training and test datasets
match relatively often. For instance, we may find
both “passed away” in the test and training data.
Only 47 of the 67 PETs from the test dataset are
in the training dataset for English. Each English
PET in the test data matched an average of 1.83
euphemisms and 1.54 literal PETS. For Spanish,
there are no PETs in the test dataset that are also in
the training dataset. The Chinese dataset has 7 of
the 48 PETs in both datasets (.38 euphemisms and
.29 literal PETs on average), and Yorùbá has 14 of
the 28 PETs in both datasets (0.41 euphemisms and
.30 literal PETs on average). We split the training
datasets into both a training and validation dataset,
with 20% used for validation and 80% used as train-

1https://www.codabench.org/competitions/1959
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Language-Set PETs Num Sent. Euph.

Chinese-Train 111 2005 1484
Chinese-Test 48 1226 —

English-Train 163 1952 1383
English-Test 67 1196 —

Spanish-Train 147 1861 1143
Spanish-Test 85 1091 —

Yorùbá-Train 133 1941 1281
Yorùbá-Test 28 669 —

Table 1: Dataset Composition for Training and Testing

ing examples (i.e., to find matching PETs).
Prompt Development. We use a few-shot prompt-
ing framework for our approach. Specifically, we
prompt GPT-4 using the OpenAI API to predict
whether a given PET is either a euphemism (True),
or not (False). We provide the prompt template
below:

Given the context, determine if the phrase ‘PET’ is
used as a Euphemism. Reply with the word ’True’
if it is used as a Euphemism in this context else

‘False’.

«context»

A euphemism is a mild or indirect word or expres-
sion substituted for one considered to be too harsh,
blunt, or offensive. Euphemisms are used to avoid
directly mentioning unpleasant or taboo topics,
and they are often employed to soften the impact
of the information being conveyed

«Euphemism examples»

Example - Is the phrase ’{PET}’ a Euphemism in
the following text. {text} — Answer - ‘True’

Example - Is the phrase ’{PET}’ a Euphemism in
the following text. {text} — Answer - ‘True’

«Literal examples»

Example - Is the phrase ’{PET}’ a Euphemism in
the following text. {text} — Answer - ‘False’

Example - Is the phrase ’{PET}’ a Euphemism in
the following text. {text} — Answer - ‘False’

«task»

Given the context, is the phrase ’{PET}’ used as a
Euphemism in the following text? Context: {Text}

The prompt has five main components: instruction,
context, examples of euphemism, and literal ex-
amples. The instruction provides the high-level
task (e.g., return True or False). The context de-
fines euphemisms. The euphemism and literal
examples are instances directly from the training

dataset. Each example is formatted in the form of
“Is the phrase [PET] a Euphemism in the following
text [text].” The PET is the substring of interest,
e.g., ‘between jobs.” The text is the actual context
that the PET appears in, e.g., “the budding talent
agent was <PET>between jobs</PET> and free
to babysit pretty much any time.” Each example
is followed by a “Label” token and either a “True”
or “False” value. Finally, the task is a single test
instance that we wish to classify as either the PET
being a euphemism or not.

For the study, five different styles of prompt-
ing were examined. The first style is “Zero-Shot,”
which only uses the instruction and the task. “Zero-
Shot with context” adds the context information.
Next is the “Few-Shot with Random Examples”
method, which uses only one random euphemism
and one literal example. Research suggests that
better prompt performance is achieved when sim-
ilar examples are provided to the LLM in the
prompt (Wei et al.; Brown et al.). Hence, we also
experiment with variations called “Few-Shot with
Targeted Examples,” where we use k euphemism
and k literal examples with the same PET as the
text instance. Specifically, if the text instance’s
PET is “between jobs,” then we will find both up
to k euphemism and k literal examples that also
have the “between jobs” PET. If there are no other
matching examples with the same PET, or there are
fewer than k matching examples, we choose the
remaining examples at random.

Experimental Details. The process to evaluate the
PETs used the GPT-4 APIs provided by OpenAI
(OpenAI, 2023). The GPT-4 model used in our
experiments is the “gpt-4-0125-preview” version
and the processing occurred between 2024-02-06
and 2024-03-07. The model temperature was set
at “0” to make the model less random. All other
model parameters were accepted at their default
values. The software developed to process each
sample using the APIs was written in Python based
on examples provided on the OpenAI developer
website.2

4 Results

In this section, we report the results on both the
validation and test datasets.

Validation Dataset Results. The validation dataset
results are shown in Table 2. In total, we executed

2https://platform.openai.com/docs/guides/
text-generation
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Technique Language F1 Precision Recall

Zero-Shot Chinese .650 .581 .962
Zero-Shot w context Chinese .748 .916 .795
Few Shot - Ran. Examples Chinese .760 .906 .832
Few Shot - Targ. Examples (2) Chinese .801 .941 .838
Few Shot - Targ Examples (8) Chinese .858 .957 .891

Zero-Shot English .707 .912 .675
Zero-Shot \w context English .732 .861 .805
Few Shot - Ran. Examples English .715 .841 .819
Few Shot - Targ. Examples (2) English .747 .877 .801
Few Shot - Targ. Examples (8) English .820 .907 .877

Zero-Shot Spanish .545 .794 .345
Zero-Shot + context Spanish .666 .800 .592
Few Shot - Ran. Examples Spanish .662 .772 .623
Few Shot - Targ. Examples (2) Spanish .698 .825 .632
Few Shot - Targ. Examples (8) Spanish .761 .911 .776

Zero-Shot Yorùbá .400 1.000 .181
Zero-Shot with context Yorùbá .610 .926 .498
Few Shot - Ran. Examples Yorùbá .674 .923 .61
Few Shot - Targ. Examples (2) Yorùbá .761 .911 .776
Few Shot - Targ. Examples (8) Yorùbá .872 .951 .916

Table 2: F1, Precision, and Recall for each prompting
technique for each language dataset from the Training
dataset.

20 experiments across each model and language
combination (i.e., five model comparisons for each
language). Overall, we make several findings. First,
we find that the Zero-Shot prompting style under-
performs all other methods. Interestingly, adding
the context information in the “Zero-Shot with Con-
text” method improves the results. This suggests
that including more information about the task (e.g.,
the definition of a euphemism) can improve perfor-
mance.

Next, we can find that adding in-context exam-
ples in the “Few-Shot - Random Examples” and
Few -Shot - Targeted Example” methods improves
the “Zero-Shot with context” methods. Further-
more, we find that using Targeted examples uni-
versally improves performance over random exam-
ples. When we add more in-context examples, the
performance continues to improve. For instance,
“Few-Shot - Targeted Examples” improves from
.801 with four in-context examples to .859 with
eight examples. From a language-to-language per-
spective, we obtained the worst in Spanish, which
is about 5% lower than the English results.

Test Dataset Results. The final competition results
for our best system (i.e., Few Shot - Targeted Ex-
amples (8)) on the test dataset are shown in Table 3.
The results indicate that the prompting with the En-
glish test cases performed substantially better than
the prompting with the Spanish test cases, while the
Chinese and Yorùbá test cases fell in between these
two extremes. For the test experiments, the source
of the sample cases to be included as random or

Language F1 Precision Recall

Chinese .776 .774 .780
English .831 .829 .834
Spanish .598 .622 .659
Yorùbá .723 .721 .733

Table 3: F1, Precision, and Recall for each prompt-
ing technique for each language dataset from the Test
dataset

targeted examples were pulled from the training
datasets. The prompting proved most effective for
the English dataset, and the results (F1=.831) were
slightly higher than those measured during train-
ing. The results for both the Chinese (F1=.776)
and the Yorùbá (F1=.723) datasets ended up falling
between the "few shot random" and "few shot tar-
geted (2)" prompt results for the training results for
each language. The performance for the Spanish
dataset fell (F1=.598) to only slightly better than
the original "zero-shot" results.

When we look at the potential number of ex-
ample cases to include with the targeted prompt,
we find that with the English test cases, there was
nearly 75% coverage. This means that 75% of the
test PETs were also included in the training dataset.
However, with the Spanish test cases, there was
no overlap between the training data set and the
test data set. The Chinese and Yorùbá data had test
coverage between these two extremes. This may ex-
plain why the results with the Spanish dataset were
so poor (0% coverage) and why the Chinese and
Yorùbá datasets fell between random and targeted
(some coverage).

Error Analysis. We analyzed a few of the errors
to better understand how the model performed. For
this analysis, we select one PET from the English
dataset and one PET from the Chinese dataset.

In the English training dataset, the PET “dis-
abled” showed good improvement by using the
prompts. With the simple zero-shot prompt, all 16
examples were evaluated as being classified as a eu-
phemism; however, seven of these examples were
labeled as being literal in the ground-truth annota-
tions. Adding context to the zero-prompt resulted
in no improvement. Only slight improvement was
realized when the few-shot prompt was used. How-
ever, with the few-shot prompt and eight examples,
the evaluation matched 100%. The additional ex-
amples appeared to have given the model good
context to discern between the nine euphemisms
and seven literal cases. Overall, one potential cause
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for these findings is that certain terms, such as dis-
abled, can appear in many contexts (euphemistic
and not). The model is unable to understand which
applies in a given context without strong examples.
Other terms mostly used in euphemistic settings
are easier for the system to detect.

In the Chinese training dataset, one of the PETs
that showed improvement with each new prompt
technique was the PET “环卫工人,” which trans-
lates to “sanitation worker.” GPT-4 sometimes
translates this to "city beautician," which would
be a euphemism. There are 30 examples in the
training dataset, and each one is classified as a eu-
phemism.

Only 5 of the 30 examples were included in
the evaluation. With zero-shot prompting, all five
failed to be classified as euphemisms. With each
subsequent prompt technique, the performance im-
proved to the last prompt, where four cases were
identified correctly based on the label. This would
indicate that the prompting added contextual data
that influenced GPT-4. We believe that the term
sanitation worker may not be a strong euphemism
and needs substantial evidence from examples to
change the prior of the model.

5 Future Work

While demonstrating the viability of our approach
in identifying euphemisms, we also uncovered sev-
eral research directions to pursue that could fur-
ther enhance our understanding of the euphemistic
speech capabilities of LLMs.

OpenAI’s Chat GPT-4 model is a high-
performing LLM trained on multi-lingual data. The
LLM demonstrated its capability of translating the
training datasets from the original language into En-
glish without additional fine-tuning. Limited test-
ing during the development phase was performed
using Mistral (Jiang et al.) and Llama-2 LLMs
(Touvron et al.) but both exhibited zero-shot per-
formance below Chat GPT-4. The main focus of
the study was on improving performance using
prompting strategies, so the team directed its ef-
forts to refine the prompts. As highly capable LLM
models are being released frequently, evaluating
a variety of these models is an area of focus for
future studies.

Our approach utilized only the model’s inher-
ent knowledge and a subset of the training data
as additional knowledge to identify euphemisms.
This additional knowledge was shown to signif-

icantly improve performance during the training
phase. For the cases in which there were multi-
ple samples to choose from, the current approach
randomly selected the samples to include and the
order they were listed. A future research direction
is to determine if the selection of examples using
those that are more closely related to the test case
improves the performance. Also, does the order the
samples are listed in the prompt affect the results?

When reviewing the test performance (Table 3),
we noticed that not all languages performed com-
parably between training (Table 2) and test. When
investigating the results for the lowest-performing
dataset during the test phase (Spanish), we iden-
tified that no samples from the training dataset
matched the PET in the test dataset. As noted, this
additional knowledge was shown to be beneficial.

There are two approaches we could pursue to
address this. One would be to locate additional
datasets online or create datasets from open-source
language repositories. A second approach would be
to use a language model to generate the additional
samples. The attraction to this approach is that we
could generate samples of a new PET being used
in a previously unseen manner and assist the model
in recognizing the new usage of a phrase.

6 Conclusion

In this paper, we presented our approach for the
2024 FigLang Shared Task for multilingual Eu-
phemism detection. We introduced a method using
GPT-4 and in-context learning. This adjustment
would be beneficial in a scenario in which the us-
age of a euphemism has changed over time, but
the model has not yet been learned, or the model
does not have a strong indication of being a eu-
phemism without strong evidence. Future areas
to research include 1) using the LLM to generate
samples to include as examples to include in the
multi-targeted prompt 2) improving the selection
of targeted examples to identify those examples
that are more closely related to the test case. 3)
using the LLM to identify potential euphemisms
from the text in question without being supplied
with this information.
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