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Abstract

Despite LLMs’ recent advancements, they still
suffer from factual inconsistency and halluci-
nation. An often-opted remedy is retrieval-
augmented generation – however, there is no
guarantee that the model will strictly adhere
to retrieved grounding. Fundamentally, LLMs
need to be aligned to be more faithful to ground-
ing, which will require high-quality preference
annotations. This paper investigates whether
we can create high-quality grounded preference
data for model alignment without using anno-
tations from humans or large proprietary mod-
els. We experimented with existing entailment
data and proposed approaches to generate syn-
thetic grounded preference data, with which we
train a Grounded Preference Model(GPM). We
demonstrate through Proximal Policy Optimiza-
tion(PPO) training of Mistral-7B-Instruct that
our GPM model can successfully align pow-
erful LLMs to generate much better grounded
responses as judged by GPT4. Moreover, we
show that our GPM is also a great faithfulness
classifier, achieving SoTA in dialogue sub-tasks
of the TRUE faithfulness Benchmark. We re-
lease GPM under the Apache 2.0 license 1.

1 Introduction

Large Language Models (LLMs) have seen rapid
advancements, yet they continue to suffer halluci-
nations in both open-domain and grounded gen-
erations (Goodrich et al., 2019; Kryscinski et al.,
2019). This undermines the usability of LLMs
for high-stake applications. To address these chal-
lenges, we explore model alignment with Rein-
forcement Learning (RL) to emulate human prefer-
ences in model outputs (Ouyang et al., 2022b; Bai
et al., 2022; Touvron et al., 2023). More specif-
ically, we propose Grounded Preference Model

1https://huggingface.co/ibm/
grounded-preference-model
† equal contribution

Figure 1: GPM ablations results comparing Mistral and
its aligned versions with GPT-4 as a judge. The first bar
plot compares gold-GPM(trained only on entailment
data) aligned Mistral with the original Mistral. Subse-
quent plots use GPM-gold as a baseline; we find GPM
trained with model-gap synthetics plus entailment gold
outperform gold-GPM alignment by large margin.

(GPM) – a model trained to assess the overall qual-
ity of grounded responses, and leverage it to align
LLMs toward more faithful generation.

Training a preference model traditionally de-
mands substantial human annotation, which is ex-
pensive and labor-intensive. Moreover, there are
very few publicly available preference datasets for
content-grounded dialogues. Our proposed method
simplifies this process by utilizing existing entail-
ment datasets combined with synthetically gener-
ated preference data for model alignment. Specifi-
cally, we explore ways to reliably generate/curate
preference pairs for queries from existing content-
grounded datasets.

We demonstrate the effectiveness of GPM for
model alignment on a leading LLM, Mistral-7B-
Instruct-v0.12 (Jiang et al., 2023). The correctness
and helpfulness of Mistral responses, as judged by
GPT4, improves after PPO training for all variants
of GPM. Moreover, we evaluate GPM as a faith-
fulness metric on TRUE benchmark. Our model

2all mentions of Mistral refer to Mistral-7B-Instruct-v0.1
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performs comparably to the SoTA model on av-
erage, with clear gains in the dialogue sub-task –
establishing a new SoTA for the task.

2 Grounded Preference Model

2.1 Preference Data Creation

Grounded Preference Model(GPM) is trained to
prefer a faithful and high quality response over a
hallucinated and incoherent response. We can for-
malize the preference dataset as pairs (1 winning,
1 losing) of triplets, each comprising of three el-
ements: Document, Conversation, and Response
represented by D, Q, and R respectively. The Doc-
ument serves as the grounding knowledge. The
Conversation can be a single-turn or multi-turn
dialogue pertaining to the document and ending
in a user query. The Response is the generated
output. Each preference example is a triplet pair,
ewin = (D,Q,R), elose = (D,Q,R).

In the following, we describe various ways to
create grounded preference data:

Gold Entailment Data (Gold) Several human-
created entailment datasets have examples com-
prising a premise and a hypothesis along with an
entailment label. We can re-purpose entailment
data to be grounded preference data by the follow-
ing process: for each pair of entailment instance
that shares either the premise or the hypothesis, but
have different entailment labels, we combine them
to create one grounded preference instance; the ex-
ample with a positive entailment label is preferred
over the other.

We apply this process to six entailment datasets:
FEVER (Thorne et al., 2018), HoVer (Jiang
et al., 2020), MNLI (Bowman et al., 2015), SNLI
(Williams et al., 2018), SciTail (Khot et al., 2018),
and VitaminC (Schuster et al., 2021). The statistics
of each dataset is given in Table 5 in appendix A.

Inpage Query Swap (inpage-Q) This method
works on datasets where multiple query and re-
sponse pairs correspond to the same document. Ex-
amples of such datasets include Multi-Doc2Dial
and Wish-QA (Feng et al., 2021; Yehudai et al.,
2024). Given a document and multiple gold con-
versations/questions, {Qi

w}ni=1 along with their re-
sponses, {Ri

w}ni=1, we create negatives by swap-
ping Qj

w with Qk
w for k ∈ [n]; k ̸= j. This will

result in a triplets el = (Di, Qk, Ri) where both
response and query are related to the document but
the response does not address the question. We

refer to this type of synthetic preference data as
"inpage-Q" dataset.

Let the Best LLM Win (model-gap) In this
method, we hypothesized that the ranking of vari-
ous LLMs should translate into a ranking over their
generated output. Given a pair of LLMs where one
is superior (i.e. Falcon-180B and Falcon-40B), we
generate responses via each of them for the same
Dw and Qw. The response from the higher-ranked
model is treated as a positive response while the
other one, as negative. This approach is similar
to Kim et al. (2023), however, we explore its ef-
ficacy in content grounded setting. We apply this
method using the following LLMs listed in the or-
der of their ranking: Falson-180b, Falcon-40b, flan-
t5-xxl, flan-t5-xl and flan-t5-large (Penedo et al.,
2023; Wei et al., 2022). The source datasets for
this method come from SQuAD-v2, CoQA, Multi-
Doc2Dial, QUAC and FloDial (Raghu et al., 2021).
We refer to this type of synthetic preference data as
"model-gap" dataset.

Faith Score Distillation (distill) In this method,
for a gold faithful triplet ew = (Dw, Qw, Rw), we
generate multiple responses for query Qw and doc-
ument Dw at high sampling temperature (T=1.2),
encouraging hallucinative responses. To ensure
these generated responses can be treated as neg-
atives, we evaluate their faithfulness to the doc-
ument using an ensemble of faithfulness metrics.
Responses that score below a threshold are used
as negatives. Since this method distills knowledge
from faithfulness metrics to create synthetic data,
we refer to it as "distill" dataset. Flan-t5-xxl and
Flan-t5-xl are used to generate responses, while
faithfulness metrics ANLI, FactCC, and SummaC
are used for filtering responses. The source datasets
are SQuAD-v2, CoQA, Multi-Doc2Dial, QUAC
and FloDial (Raghu et al., 2021).

2.2 Preference Model Objective

The preference modeling objective is defined
via the Bradley-Terry (Bradley and Terry, 1952;
Rafailov et al., 2023) model of pairwise compar-
isons,

p(x ≻ y) =
exp (rx)

exp (rx) + exp (ry)

where ≻ indicates preference relation and ri is
the score (or reward) for i. When used in the con-
text of LLMs, the elements of the comparison are
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model-generated responses, and the scores are as-
signed with respect to a context (typically an in-
struction or a question). Following the Bradley-
Terry model, the objective would be,

L(rθ,D) = −E(ew,el)∼D[log σ(rθ(ew)− rθ(el)]

We implement this objective using an encoder-
only transformer model for rθ. In particular, we
use the DeBERTa large model3 and employ token-
type embeddings to distinguish D,Q from R. A
reward modeling head is added on top of the [CLS]
token’s output embedding in the form of a d × 1
linear layer, where d is the dimension of the final
hidden layer.

2.3 Preference Model Training

We train the GPM on 1.8 million gold and 0.7
million synthetically generated samples. For each
synthetic data type, the ratio between gold and
synthetic during training is 10:1 respectively. We
train for 100k steps with a batch size of 20 and a
learning rate of 1e-54. We run one experiment for
each setting and use the last checkpoint.

3 GPM for LLM Alignment

We use the standard RLHF procedure (Ouyang
et al., 2022a) for model alignment that optimizes:

E(x,y)∼D
πRL
ϕ

[
rθ(x, y)− β log

πRL
ϕ (y|x)

πBASE(y|x)

]

where rθ denotes the reward score, πRL
ϕ repre-

sents the RL policy and πBASE is the initial (in-
struct) model, serving as a baseline policy. β mod-
erates the Kullback-Leibler divergence to prevent
excessive deviation of πRL

ϕ from πBASE . We op-
timize the above objective using Proximal Policy
Optimization(PPO) (Schulman et al., 2017).

3.1 Experimental Setup

We use TRLX Library (Castricato et al., 2023) for
PPO training – modified to perform parameter ef-
ficient Quantized LoRA(QLoRA) (Dettmers et al.,
2023) fine-tuning. This allows us to fit the entire
PPO training pipeline on a single 80GB GPU.

3microsoft/deberta-v3-large
4we did not perform hyperparameter search, and used the

biggest batch that could fit in memory.

Figure 2: GPM vs. OA-RM and WeCheck for PPO (3.1)

Training Setup We curate 100k data as the dis-
tribution DπRL

ϕ
to sample prompts for PPO train-

ing. Train data are from the following sources
MultiDoc2Dial (Feng et al., 2021), QuAC (Choi
et al., 2018), SQuAD_v2 (Rajpurkar et al., 2016),
CoQA (Reddy et al., 2018), ASQA (Stelmakh et al.,
2022), ELI5 (Fan et al., 2019), DoQA (Campos
et al., 2020), FloDial (Raghu et al., 2021) (see
Appendix 7 for statistics). We chose Mistral-7B-
Instruct-v0.1 to be the policy model, and write tai-
lored system prompts and instructions to allow bet-
ter learning and exploration (see Appendix 8 for
details on the policy model and prompts).

Baselines We choose 2 external models as base-
lines for alignment reward: 1) WeCheck5 (Wu et al.,
2022) – the highest performing model for faithful-
ness on TRUE benchmark (Honovich et al., 2022)
2) OA-RM is an OpenAssiatant reward model
trained on publicly available helpfulness prefer-
ence datasets6. Similar to GPM both these models
depart from the deberta-v3-large. We also compare
GPM aligned models against the base LLM.

GPM-variants Five variants of GPM are de-
picted in Figure 1. gold is the GPM trained only on
the gold entailment data. +in-page-Q, +distill and
+model-gap are GPMs trained on combination of
gold entailment data plus the respective synthetic
data types. all is a GPM trained on all of the syn-
thetic preference data plus the gold entailment data.

GPT4 as a Judge We use GPT4 to evaluate
the correctness and helpfulness of response in a
grounded setting. The evaluation prompt is adapted
from (Zheng et al., 2023) and released in Appendix
9. For each comparison round, we randomly sam-
pled 50 instances from each of the 6 evaluation
domains (300 in total). Half of the evaluation data
is in-domain for PPO training, while the other half
is out of domain with details in Appendix E. The
ordering of the outputs given to GPT4 is shuffled
at instance-level to prevent ordering bias.

5nightdessert/WeCheck
6OpenAssistant/reward-model-deberta-v3-large-v2
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3.2 Ablation Results for Alignment

The first bar chart of Figure 1 shows that Grounded
Preference Model trained with only gold entailment
data already produces an better aligned Mistral for
grounded generation. Then, we set gold entailment
model as the baseline, and compare it with GPMs
trained with additional synthetic preference data,
to see if synthetic data adds value. It is clear from
the middle bar charts that entailment + synthetic
preference data makes better preference model for
alignment. In particular, GPM with added model-
gap data stood out to beat gold entailment model
62% to 23%. However, it’s worth noting that all-vs-
gold shows more modest improvements over gold,
displaying a diminishing returns effect rather than
a synergic effect when we combined all sources of
synthetic data.

3.3 Comparison with External Models

While our GPMs consistently outperform gold-
entailment model, we also compare best version of
GPM with the SoTA faithfulness model (WeCheck)
and a strong human-preference reward model OA-
RM. Despite the strong results by both OA-RM
and WeCheck, GPM still wins by a 7-9% margin.
Knowing that GPM-model-gap is not trained on
any human preference data, this alignment perfor-
mance is quite astonishing.

3.4 Qualitative Analysis

The two baseline reward models – OA-RM and
WeCheck – are trained with different goals and
training objectives. OA-RM is trained to judge
the helpfulness of non-grounded responses, while
WeCheck measures the faithfulness of a text to
another text. GPM aims to address both, the faith-
fulness of a response to the grounding document
as well as its adequacy to the user question. GPT4
judgments often found the responses of the LLM
aligned using GPM to be more directly answering
the questions while being consistent with the doc-
ument. On the other hand, OA-RM would some-
times allow the LLM to hallucinate (see Table 1),
trading faithfulness for helpfulness – and WeCheck
preferred responses that had a high overlap with
the grounding context even when they did not nec-
essarily answer user query (see Table 2).

limitations of GPM — for instance, currently,
GPM emphasizes greatly on faithfulness to the doc-
ument/passage, and as a result, sometimes does not
pay due attention to the adequacy of the response

[Document/Passage]
The river as far as Stamford was used by the
Romans for navigation, as it formed part of
a system including the Car Dyke, which ran
along the western edge of the Fens and
crossed the river near the modern Folly
River. Navigation to Stamford was improved
by the canal. Boats used on the canal were
small lighters, around wide, capable of
carrying from seven to fourteen tons, and
normally worked in trains of four vessels.
With the arrival of the railways, river
trade declined.

[User Conversation]
User: where does the river welland start and
finish
Agent: The river rises in the Hothorpe
Hills, at Sibbertoft in Northamptonshire,
then flows generally northeast to Market
Harborough, Stamford and Spalding, to reach
The Wash near Fosdyke
User: with reference to the mouth of the
river which you mentioned earlier, what is
its water temperature?

[Response after PPO with GPM]
The water temperature of the river Welland
at its mouth near Fosdyke is not provided in
the given document.

[Response after PPO with OA-RM]
15 degrees Celsius

Table 1: Hallucinated response after PPO with OA-RM

to the question. However, it is better in this aspect
than the purely faithfulness-based classifier such as
WeCheck.

4 GPM as Faithfulness Metric

While GPM combines preference and grounded-
ness, it should preserve its ability to discern un-
faithful responses and remain a reliable faithful-
ness metric. We evaluate GPM ’s performance
on the TRUE benchmark (Honovich et al., 2022) –
designed to comprehensively evaluate faithfulness
across 11 datasets from 4 tasks. We report per-
formance on dialogue sub-task as well as overall
scores. We use ROC-AUC as our evaluation met-
ric Honovich et al. (2022). We compare variants
of GPM against two top-performing models: T5-
11B fine-tuned on ANLI (Honovich et al., 2022;
Nie et al., 2020), and WeCheck (Wu et al., 2023).

4.1 Results on TRUE Benchmark
Table 3 shows that GPM delivers strong results
on TRUE benchmark, achieving new SoTA in the
Dialogue sub-tasks on which our GPM special-
izes. We observe the synergic effect(absent from
LLM alignment experiment) that GPM + all gives
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[Document/Passage] (removed for brevity)

[User Conversation]
User: where does this whale species get its
name from?

[Response after PPO with GPM]
The name "sperm whale" comes from the fact
that they are known for producing
spermaceti, a waxy substance that was once
used for a variety of purposes, including as
a lubricant and in the production of soap
and candles.

[Response after PPO with WeChek]
According to the provided document, the
sperm whale is the largest toothed whale,
with adult males measuring up to long and
weighing up to ... ... but mature males are
typically 30% to 50% longer and three times
as massive as females. Newborn sperm whales
are usually between ...

Table 2: Unhelpful response after PPO with WeCheck

TRUE (ROC AUC)
Model Data Dialogue Overall
ANLI ANLI 77.7 81.5

WeCheck 86.2 84.8
GPM Gold 86.4 83.1
GPM + inpage-Q 86.4 83.3
GPM + model-gap 86.7 80.7
GPM + distill 86.2 83.6
GPM + all 87.2 84.3

Table 3: Variants of GPM on TRUE benchmark.

the highest TRUE Benchmark scores. We also ob-
serve that the GPM + model-gap which gives the
best alignment performance do not display simi-
lar strength in the faithful benchmark. A plausi-
ble interpretation is that the model-gap data con-
tribute more towards preference than faithfulness,
thus resulting in greater improvement on prefer-
ence alignment. Overall, we do believe that a solid
faithful benchmark performance is the foundation
for GPM ’s success in Grounded Preference Align-
ment.

4.2 Effect of Model Architecture
We also explore transformer architectures other
than the bidirectional encoders – in particular, we
train auto-regressive and encoder-decoder trans-
former models with the same training setup as
GPM. The underlying model for GPM is deberta-
v3-large, which is a 435M parameters model. To
keep the model size comparable, we experiment
with gpt2-large (774M) (Radford et al., 2019) and
t5-large (770M) (Raffel et al., 2020) models. The
results in Table 4 show that the encoder only de-
berta model (GPM) outperforms these models on

TRUE (ROC AUC)
Model Params Dialogue Overall
gpt2-large 774M 72.4 68.6
t5-large 770M 81.3 77.4
deberta-v3-large 435M 87.2 84.3

Table 4: Different transformer architectures trained with
the same Gold+all, bottom row correponds to the GPM.

TRUE by a large margin. We conjecture that the
bi-directional attention makes this model more
context-aware and hence better suited for scoring
outputs. However, we note that the pre-training
setups of these models are different, which can be a
strong contributing factor in their final performance
after preference training.

5 Related Work

Various approaches have been proposed to make
LLMs more reliable. Prompting-based methods
prompt with counterfactual demonstrations (Zhou
et al., 2023) or employ chain-of-thought self-
verification (Dhuliawala et al., 2023). Prefix tuning
(Jones et al., 2023); tunes model’s system message
on a synthetic task where hallucinations are easy
to identify and then transfer them to abstractive
summarization tasks. On the other hand, there are
RL-based approaches that use automatic metrics
to reward faithful generation. Du and Ji (2023)
employ SacreBLEU and BertScore as reward sig-
nals, while Roit et al. (2023) use log-probabilities
from the ANLI-classifier (Nie et al., 2020). ; Un-
like previous works that rely on the existing auto-
matic metrics of faithfulnes, our major contribution
is a preference model trained specifically for the
grounded generation tasks. A significant body of
work models faithfulness as a classification task:
Nie et al. (2020), Wu et al. (2023) and Gekhman
et al. (2023). Our work is set apart in its modeling
approach as well as in its ability to leverage relative
preferences, obviating the need for hard labels.

6 Conclusions

This paper investigates the recipe for grounded pref-
erence alignment. We find that entailment data can
be repurposed to train good grounded preference
models, which align base policy towards faithful
generation. Moreover, by adding synthetic prefer-
ence data, we are able to train GPM that not only
achieves new SoTA in faithful, but also serves as a
reward model for LLM alignment. Our approach
is simple and has no reliance on proprietary AIs.
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7 Limitations

We use GPT4 as a judge for evaluation, which cor-
relates with human preferences, but it can not be
seen as a perfect substitute. We test our approach
on Mistral-7B-Instruct; testing on a few more mod-
els will strengthen the results and further establish
the generality of the method.
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A Statistic of Preferences from
Entailment Data

Dataset Number of Examples
FEVER 522,181
HoVER 9,072
MNLI 274,720
SNLI 51,485
SciTail 708,581
VitaminC 318,302

Table 5: Preferences from Entailment data.
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B QLoRA Tuning in Llama2-Based
Models

In tuning the LoRA parameters for Wiz-
ardLM, we chose a subset of modules for the
lora_target_module parameter. This subset in-
cludes:

• "up_proj"

• "q_proj"

• "down_proj"

• "o_proj"

• "v_proj"

• "k_proj"

This selection contrasts with the default set in
QLoRA, which typically encompasses all linear
layers in the model: [’up_proj’, ’q_proj’,
’gate_proj’, ’down_proj’, ’o_proj’,
’v_proj’, ’k_proj’]. Our tailored approach
reduces CUDA memory requirements, and allows
longer context lengths during training.

For the Mistral-7B model, we adhered to the
standard QLoRA configuration, incorporating all
linear layers as the lora_target_module.

C Hyper-Parameters for Model Training

To facilitate the replication of our results in Proxi-
mal Policy Optimization (PPO) experiments using
the TRLX (Castricato et al., 2023) library, we enu-
merate the key hyperparameters used. Our training
utilized the DeepSpeed engine, specifically lever-
aging its stage-2 configuration.

Training Hyper-Parameters The following ta-
ble 6 outlines the crucial hyperparameters em-
ployed during the training process, including the
quantization parameters:

Compute Each training run is performed on sin-
gle NVIDIA A100 GPU with 80GB memory. It
takes 38 hours to complete training for Mistral-7B
model for 1 epoch with 100k steps.

D Statistics of Training Dataset

Table 7 shows the PPO training set statistics.

Parameter Value
gradient_accumulation_steps 1
batch_size 1
max_input_length 900
max_output_length 150
optimizer adamw
num_rollouts 256
num_layers_unfrozen 2
init_kl_coef 0.05
num_training_steps 100000
chunk_size 8
gradient_checkpointing true
double_quant true
quant_type ’nf4’
load_in_4_bits true
torch_dtype torch.float32

Table 6: Training Hyper-Parameters and Model Quanti-
zation Parameters

Dataset-name NO. of Samples
MultiDoc2Dial (Feng et al., 2021) 16,723
QuAC (Choi et al., 2018) 11,009
SQuAD_v2 (Rajpurkar et al., 2016) 11,133
CoQA (Reddy et al., 2018) 11,102
ASQA (Stelmakh et al., 2022) 5,568
ELI5 (Fan et al., 2019) 22,216
DoQA (Campos et al., 2020) 5,481
FloDial (Raghu et al., 2021) 16,669

Sum: 99,901

Table 7: The sampling proportions for PPO training
dataset; up-sampling is applied to get desired propor-
tion.

E Details of Evaluation Dataset used in
GPT4 as a Judge

Evaluation Datasets We include both in-domain
and out-of-domain datasets for evaluation. In-
domain datasets include Multi-Doc2Dial, QuAC
and SQuAD-v2, which the model has seen dur-
ing PPO training7. Out-of-domain evaluation
set includes TopiOCQA (Adlakha et al., 2021),
FaithDial (Dziri et al., 2022), and Natural Ques-
tions (Kwiatkowski et al., 2019), which were ab-
sent from PPO training.

F System Prompts for Different Models

Mistral-7B-Instruct-v0.1: Mistral 7B (Jiang
et al., 2023) is an open-source model that outper-
forms Llama2 13B on LLM benchmarks, includ-
ing AGI Eval (Zhong et al., 2023) and BBH (Suz-

7Note, that in PPO-based RL training, the model never
uses gold responses from these datasets.
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gun et al., 2022). Mistral-7B-Instruct-v0.1 is the
aligned version of Mistral-7B. Training details are
not disclosed for the model.

Note, we use the same system prompt during
PPO training and model evaluation. The following
table 8 contains the prompts.

G Faithfulness Metrics Results

We use three faithfulness metrics: ANLI (Nie et al.,
2020), FactCC (Kryściński et al., 2019) and Sum-
maC (Laban et al., 2022). We also report stan-
dard generation evaluation metrics: RougeL, Bert-
Recall and Bert-KPrecision.

The evaluation is conducted on the development
set of 6 datasets: In-domain datasets include Multi-
Doc2Dial, QuAC and SQuAD-v2, which the model
has seen during PPO training8. Out-of-domain
evaluation set includes TopiOCQA (Adlakha et al.,
2021), FaithDial (Dziri et al., 2022), and Natural
Questions (Kwiatkowski et al., 2019), which were
absent from PPO training.

Results see Table 10

8Note, that in PPO-based RL training, the model never
uses gold responses from these datasets.
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Model Name Prompt Template
Mistral-7B-Instruct

<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical,
racist, sexist, toxic, dangerous, or illegal content.
Please ensure that your responses are socially unbiased
and positive in nature.
If a question does not make any sense, or is not factually
coherent, explain why instead of answering something not
correct. If you don't know the answer to a question,
please don't share false information.
<</SYS>>
[document]: <DOCUMENT-TEXT>
Answer the following questions based on the above document.
[/INST] [conversation]: </s>[INST] <USER-QUERY-TEXT>[/INST]
<AGENT-RESPONSE-TEXT></s>[INST]<USER-QUERY-TEXT> [/INST]

Table 8: Prompt for both RL-Alignment and Evaluation
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Model Name Prompt Template
GPT4-judge

Please act as an impartial judge and evaluate the
quality of the responses provided by the two AI
assistants to the user question displayed below.
Your evaluation should consider correctness and
helpfulness. You will be given a reference document,
a user conversation, assistant A's answer, and
assistant B's answer. Your job is to evaluate which
assistant's answer is better based on the information
in the reference document and the user conversation
so far. Begin your evaluation by comparing both
assistants' answers with the document and the user
conversation so far. Identify and correct any
mistakes. Avoid any position biases and ensure that
the order in which the responses were presented
does not influence your decision. Do not allow the
length of the responses to influence your evaluation.
Do not favor certain names of the assistants. Be as
objective as possible. After providing your
explanation, output your final verdict by strictly
following this format: "[[A]]" if assistant A is
better, "[[B]]" if assistant B is better, and
"[[C]]" for a tie.

[User Document]
...
[User Conversation]
...
[The Start of Assistant A's Answer]
...
[The End of Assistant A's Answer]

[The Start of Assistant B's Answer]
...
[The End of Assistant B's Answer]

Table 9: Prompt for GPT4 as a judge evaluation.

RM ANLI Factcc Summac RougeL B-Rec. B-KPrec.
base model 0.5 0.22 0.40 0.14 0.10 0.10
Gold 0.57 0.64 0.81 0.16 0.27 0.75
+inpage-Q 0.51 0.49 0.37 0.19 0.16 0.18
+distill 0.52 0.26 0.48 0.11 0.19 0.14
+model_gap 0.46 0.51 0.45 0.17 0.21 0.27

Table 10: PPO training of Mistral on variants of GPM with different synthetic data types.
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