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Abstract

Numerous recent works aim to enhance the
efficacy of Large Language Models (LLMs)
through strategic prompting. In particular, the
Optimization by PROmpting (OPRO) approach
provides state-of-the-art performance by lever-
aging LLMs as optimizers where the optimiza-
tion task is to find instructions that maximize
the task accuracy (Yang et al., 2023). In this
paper, we revisit OPRO for automated prompt-
ing with relatively small-scale LLMs, such as
LLaMa-2 family and Mistral 7B. Our inves-
tigation reveals that OPRO shows limited ef-
fectiveness in small-scale LLMs, with limited
inference capabilities constraining optimization
ability. We suggest future automatic prompting
engineering to consider both model capabili-
ties and computational costs. Additionally, for
small-scale LLMs, we recommend direct in-
structions that clearly outline objectives and
methodologies as robust prompt baselines, en-
suring efficient and effective prompt engineer-
ing in ongoing research.

1 Introduction

Advancements in large language models (LLMs)
have catalyzed a shift towards prompting-based
learning, distinguishing models with capacities ex-
ceeding 100 billion parameters for their few-shot
learning abilities without extensive retraining (Ope-
nAI, 2020). In-context learning, facilitated through
the strategic use of prompts, enables these mod-
els to generate task-specific responses, marking a
departure from traditional pre-train and fine-tune
approaches (Liu et al., 2021; Wan et al., 2023).

The Chain of Thought (CoT) technique signifi-
cantly advances LLMs’ problem-solving capabili-
ties by incorporating intermediate reasoning steps,
facilitating effective zero-shot reasoning and per-
formance enhancements with prompts like "Let’s
think step by step" (Wei et al., 2022; Wang et al.,
2022; Yao et al., 2023; Kojima et al., 2022). While
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initially dependent on manual prompt creation,
recent developments in automated prompt engi-
neering, such as APE (Zhou et al., 2022) and
APO (Pryzant et al., 2023), leverage LLMs for dy-
namic prompt generation and refinement. This iter-
ative process enhances NLP task accuracy through
feedback and selection. Building on this, the propo-
sition of LLMs as optimizers (Yang et al., 2023;
Guo et al., 2023) presents the current state-of-the-
art in automated prompt design, framing prompt
refinement as an optimization challenge. This ap-
proach iteratively refines prompts to maximize task
accuracy, ceasing when performance plateaus or
iteration limits are met.

The motivation for OPRO is based on the LLMs’
self-optimization ability. However, our empiri-
cal results reveal that smaller-scale LLMs like
LLaMa-2 (Touvron et al., 2023) do not have suf-
ficient ability to support the self-optimization. We
demonstrate that such optimization strategies offer
marginal benefits for smaller-scale LLMs, demand-
ing considerable computational resources for slight
performance gains, particularly when contrasted
with zero-shot CoT prompts. We summarize our
contributions as follows:

• We demonstrate that the limited inference abil-
ities of small-scale LLMs, such as LLaMa-2
family and Mistral 7B, restrict their self-
optimization efficiency, rendering OPRO inef-
fective for these models. (Section 2, 4).

• Our findings reveal OPRO’s substantial re-
liance on manual prompt design in small-scale
LLMs, suggesting that its automation advan-
tage is minimal compared to traditional man-
ual prompting efforts. (Section 4)

• Based on empirical evidence and analysis,
we recommend future prompt engineering
efforts to account for the inference limita-
tions of small-scale LLMs and consider tradi-
tional CoT prompts as effective, adaptive, and
resource-efficient baselines. (Section 3.2, 4)
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2 Motivational Study: Can LLaMa 13B
Solve Linear Regression?

OPRO (Yang et al., 2023) and EvoPrompt (Guo
et al., 2023) framework have demonstrated the sig-
nificant potential of LLMs in automating prompt
design. However, the effectiveness appears to be
contingent upon the inherent optimization capabili-
ties of the LLMs themselves. Notably, evaluations
within the OPRO framework have predominantly
focused on large-scale models, such as GPT-4 and
text-bison, leaving the performance of smaller-
scale LLMs unexplored. This observation prompts
a critical inquiry: Can small-scale LLMs also
serve as optimizers?

To delve into this question, we attempt to repro-
duce the linear regression optimization experiment
with LLaMa-2-13B, the motivating example shown
in OPRO (Yang et al., 2023). We adopt the same
experiment setting as in OPRO. Specifically, our ex-
periment aims to optimize two parameters, w and b,
in a one-dimensional linear regression model with
an intercept b, using 50 data points generated from
predefined value of wtrue and btrue with standard
Gaussian noise ϵ. Starting from five initial random
pairs of (w, b), we engaged LLaMa-2-13B through
a meta-prompt strategy similar to OPRO, directing
the model to propose pairs that minimize the ob-
jective function, based on historical data of the top
20 performing pairs. A representative meta-prompt
and its output is shown in Figure 1.

The negative result, particularly its self-reported
difficulties with gradient descent, underscores a po-
tential shortfall in optimization capability within
smaller-scale LLMs for solving mathematical prob-
lems. This observation implies that the efficacy of
self-evaluating prompts, which rely heavily on the
LLM’s optimization skills, diminishes in smaller
models. Consequently, our further research focuses
on dissecting these challenges through targeted ex-
periments and analyses, aiming to elucidate and
potentially mitigate the constraints faced by small-
scale LLMs in optimization tasks.

3 Evaluation

In this section, we aim to replicate the OPRO frame-
work with small-scale LLMs to assess its efficacy
in identifying optimal instruction words. The in-
struction position is added to the beginning of the
LLM output.

Figure 1: An example of the meta-prompt and its output
for linear regression. For simplicity, we only show two
solution-score pairs in the example. The orange text are
meta-instructions; the blue text are solution-score pairs;
the green text are output by LLaMa-2-13B.

3.1 Experiment setup

Datasets and Models. We selected models from
two distinct categories: small-scale and large-
scale. Within the small-scale category, we fo-
cused on the Llama family, evaluating LLaMa-2-7b,
LLaMa-2-13b, and LLaMa-2-70b. We also conduct
experiments with Mistral 7B (Jiang et al., 2023)
to test the generalizability of the findings. For in-
sights into large-scale LLM performance, we con-
ducted parallel experiments on Gemini-Pro (Gem-
ini Team, 2023). Following the OPRO paper, all ex-
periments in this paper are conducted with GSM8K,
a benchmark of grade school math word problems,
with 7,373 training samples and 1,319 test samples.

Baselines and Implementations. We focus
on three well-adapted prompting designs in the
experiments, including Zero-shot-CoT (Kojima
et al., 2022), Few-shot-CoT (Wei et al., 2022), and
OPRO (Yang et al., 2023). We rigorously follow
the original OPRO paper (Yang et al., 2023) for
the implementation details. Specifically, we only
use the same model architectures for the optimizer
and scorer in the main experiment, but these are
two independent LLMs. More details about the
implementations are shown in the Appendix.
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Table 1: Evaluation performance on GSM8K using various prompting methods across models including LLaMa-2-7b,
Mistral 7B, LLaMa-2-13b, LLaMa-2-70b, and Gemini-Pro. The Instruction Words column details the specific
instructions used to achieve the reported test accuracy.

Model Method Accuracy Instruction Words

LLaMa-2-7b Zero-shot-CoT 24.26% Let’s think step by step
Few-shot-CoT 24.87% two exemplars + Let’s think step by step
OPRO 29.81% The correlation is present

Mistral 7B Zero-shot-CoT 37.52% Let’s think step by step
Few-shot-CoT 38.13% two exemplars + Let’s think step by step

OPRO 32.13%
Using the provided information, we can find the solu-
tion

LLaMa-2-13b Zero-shot-CoT 32.75% Let’s think step by step
Few-shot-CoT 37.15% two exemplars + Let’s think step by step
OPRO 31.24% Let’s think about

LLaMa-2-70b Zero-shot-CoT 39.35% Let’s think step by step
Few-shot-CoT 48.67% two exemplars + Let’s think step by step
OPRO 27.98% The correlation is present

Gemini-Pro Zero-shot-CoT 71.29% Let’s think step by step
Few-shot-CoT 69.67% two exemplars + Let’s think step by step

OPRO 76.92%

To attain the utmost precision in solving diverse
grade school mathematical problems, meticulously
adhere to this comprehensive and rigorously devel-
oped methodology:

3.2 Main Results

We evaluated various prompting strategies across
different LLM scales, detailed in Table 1, main-
taining consistent model architectures for both op-
timizer and scorer. The Gemini-Pro model demon-
strates OPRO’s effectiveness, notably surpassing
CoT baselines, in line with previous findings (Yang
et al., 2023). This underscores OPRO’s advantage
with large-scale LLMs in optimizing task perfor-
mance.

Conversely, OPRO’s results with Mistral 7B,
LLaMa-2-13B, and LLaMa-2-70B fall short of Zero-
shot-CoT and Few-shot-CoT benchmarks, reveal-
ing these models’ limitations in optimization and
their inability to outperform basic "Let’s think step
by step" prompts. Notably, the highest performance
is observed with Few-shot-CoT, suggesting that for
small-scale LLMs, direct instructions providing
clear guidance on both the objectives and method-
ologies are most effective. This aligns with earlier
discussions in Section 2, highlighting the insuffi-
cient self-optimization capabilities of smaller-scale
LLMs in generating optimal instruction words. The
results with Mistral 7B validate our argument
among different model architectures.

Analysis of Generated Instruction Words. A
closer examination of OPRO’s instruction genera-
tion reveals significant insights into its optimization
efficacy. In LLaMa-2-13B, the instructions gen-
erated by OPRO resemble the traditional "Let’s
think step by step" prompt, showcasing some op-
timization capacity but failing to yield the opti-
mal solution. This scenario underscores the in-
adequate self-optimization skills of smaller-scale
LLMs, contrasting sharply with OPRO’s perfor-
mance in Gemini-Pro. For Gemini-Pro, OPRO
crafts instructions that aptly include "grade school
mathematical problems", indicating superior op-
timization and understanding that aligns closely
with the task. The disparity in output between the
smaller and larger-scale models corroborates the
preliminary hypothesis: OPRO’s optimization ap-
proach falls short in smaller-scale LLMs due to
their limited self-optimization abilities.

4 Limitations of Self-Optimization
Prompting in Small-Scale LLMs

Small-scale LLMs could not support self-
optimization. Our analysis, presented in Table 1,
assesses how small-scale LLMs fare when serving
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(a) Gemini-Pro optimizer (scorer:
Gemini-Pro)

(b) LLaMa-2-13b optimizer (scorer:
Gemini-Pro)

(c) LLaMa-2-13b optimizer (scorer:
LLaMa-2-13b)

Figure 2: Prompt optimization curve on GSM8K using Gemini-Pro and LLaMa-2-13b.

dual roles in optimization and scoring. Further, Fig-
ure 2 illustrates the prompt optimization trajectory
for LLaMa-2-13b and Gemini-Pro. OPRO’s effi-
cacy in large-scale LLMs like Gemini-Pro (Fig-
ure 2a), consistent with previous studies (Yang
et al., 2023). Notably, transitioning the scorer from
LLaMa-2-13b to Gemini-Pro, while maintaining
LLaMa-2-13b as the optimizer, yields a 5% accu-
racy increase (Figures 2c and 2b). This highlights
LLaMa-2-13b’s inadequacy as a scorer to formulate
effective optimization targets, thereby constraining
optimal solution discovery.

This finding is in line with recommendations
from existing literature (Hsieh et al., 2023), where
leveraging outputs from larger LLMs to enhance
smaller models reflects our experimental observa-
tions. Furthermore, recent literature indicates that
without additional inputs, LLMs struggle to self-
improve (Huang et al., 2023). Interestingly, up-
grading the scorer model only minimally affects
performance, implying the optimizer may not fully
leverage the advanced capabilities of a superior
scorer in OPRO’s context, leading to suboptimal
prompt generation. As a result, due to the limited
inference ability, small-scale LLMs could not sup-
port self-optimization for prompting paradigms.

Human-Crafted Elements and Their Impacts.
OPRO aims to automate instruction word discov-
ery, minimizing human intervention through LLM
capabilities. Yet, our findings indicate significant
variability in performance tied to manually de-
signed meta-instructions within OPRO, especially
in small-scale LLMs. We evaluated four distinct
meta-instruction texts as shown in Table 4 in the
Appendix with LLaMa-2-13b, with results detailed
in Table 2. Huge variance on accuracy underscores
the critical influence of human-crafted elements
on OPRO performance. Despite OPRO’s goal of
streamlining prompt optimization, it remains re-
liant on human-crafted meta-instructions, the same

as the traditional Zero-shot-CoT approaches. This
reliance is echoed in previous research (Zhou et al.,
2023), which found that manual prompting typi-
cally surpasses automated approaches, a conclusion
consistent with our observations in Table 1.

Table 2: OPRO evaluation performance with different
meta instructions using LLaMa-2-13b as optimizer. The
detailed texts are shown in Table 4 in Appendix.

Meta Instruction Accuracy Instruction Words

Text 1 17.59% Congratulations!
You’re a math genius!

Text 2 10.39% Now, let’s try another
problem:

Text 3 22.82% The precise answer is

Text 4 31.24% Let’s think about

Table 3: Approximate input and output tokens with
Gemini Pro until optimal instruction words was
reached, and approximate computation time in hours.

Zero-shot-CoT Few-shot-CoT OPRO

Input 6 130 96,289
Output 0 0 170,448
Time (hrs) 4 5 21

Analysis of System Efficiency. Recent auto-
matic prompt works (Fernando et al., 2023; Yang
et al., 2023; Ma et al., 2024) have largely over-
looked system efficiency for searching instructions.
In Table 3, we examine the efficiency of using
Gemini Pro API across three methodologies by
comparing input and output tokens and compu-
tational time required to achieve the accuracies
listed in Table 1. The token counts are based on
a word-based tokenization approach. OPRO in-
curs a notably higher token count, attributed to the
scorer’s evaluation process in each meta-prompt
generation cycle. Additionally, OPRO’s computa-
tional time far exceeds that of alternative methods.
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These results suggest that the efficiency trade-offs
associated with OPRO, given its extensive compu-
tational demands, may not align with the marginal
performance enhancements it offers.

5 Conclusion

With empirical results, we demonstrate that small-
scale LLMs are limited in self-optimization capac-
ity, which causes OPRO is not effective for small-
scale LLMs. In addition, our findings underscore
OPRO’s dependency on scorer performance and
manually designed prompts, despite the effort to
automate the process. We suggest the future auto-
matic prompting engineering consider both model
capabilities and system efficiencies.

Limitation and Future Study. Our study’s
scope was limited by computational resources, ex-
cluding other self-optimization strategies like Evo-
Prompt and APO due to their extensive prompt
generation time. Our future research will extend
to enhancing the interpretability and depth of er-
ror analysis, alternative optimization metrics, bias
considerations, or hyperparameter tuning impacts
based on our current findings.
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A Experimental Details

A.1 Models and Test Environment
We implemented the experiments using PyTorch (Paszke et al., 2019), and conducted our experiments on
two NVIDIA A100 GPUs. We tested LLaMa-2-7b, LLaMa-2-13b, LLaMa-2-70b, and Gemini-Pro in the
experiments. We downloaded LLaMa models from Hugging Face and tested them locally on GPUs. For
Gemini-Pro, we referenced the model via the Gemini API. The links for the models are shown below.

LLaMa-2-7b link:
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

LLaMa-2-13b link:
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

LLaMa-2-70b link:
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf

Gemini-Pro link:
https://ai.google.dev/models/gemini

A.2 Prompting Methods
1. Zero-shot-CoT: The zero-shot instruction "Let’s think step by step" (Kojima et al., 2022) would be

added before each answers.

2. Few-shot-CoT: We randomly select two samples with procedures (Wei et al., 2022) from the training
set serving as the problem description before the test question.

3. OPRO: We rigorously follow the original paper (Yang et al., 2023) for the implementation details.
Our experiment utilized a meta-prompt, as illustrated in Figure 3, with the optimization process
spanning 100 iterations. In each iteration, we sampled 3.5% of GSM8K training examples as a
validation set for scorer LLM. We used the meta-prompt to generate eight new instructions with the
optimizer LLM, updating the trajectory with these instructions and their scores in each interaction.
The meta-prompt included the top 20 instructions and three random training exemplars.
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B Meta-Prompt Design

Figure 3 shows an example of the meta-prompt used in our implementation of OPRO. We rigorously
followed the original open source code provided by Google Deep Mind (https://github.com/google-
deepmind/opro). The two example problems are exemplars randomly selected from the training set of
GSM8K to support the meta-prompt as the problem description.

Figure 3: An example of the meta-prompt and its output for GSM8K dataset. The orange text are meta-instructions;
the blue text are solution-score pairs; the purple text are exemplar questions and optimization targets; the green text
are output by LLM.
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C Meta-Instruction Design

To test the robustness of meta-prompt, we experimented with several slightly adjusted meta-instructions.
Text 4 strictly follows Yang et al.’s design (Yang et al., 2023). To prevent human invention on the prompt
design, we input Text 4 into ChatGPT (https://openai.com/chatgpt) to generate the three other prompts.
Precision scores are replaced with the scores produced by the scorer in the later evaluation steps during
the computation of OPRO. Table 2 shows the results of the different meta-instructions on performances.

Table 4: Meta instructions used in OPRO

Meta Instruction Text

Text 1

Create a new piece of text as an instruction at the beginning of the answer to enhance
the precision in solving diverse grade school math problems. We want the precision
of the text to be higher as possible. Range of Precision is 0 to 100. For example,
Precision: 4 <Text>A dime</Text>, Precision: 17 <Text>The answer is a function. It
is</Text>.

Text 2

Write a new text for instruction use before the answer in the Q&A pair to help solving
the grade school math problems. We want to precision of the text to be as high as
possible, ranging from 0 to 100. For example, Precision: 4 <Text>A quarter</Text>,
Precision: 25 <Text>Now find the answer.</Text>.

Text 3

Create a line of instruction, with precision 0 to 100. The text will be placed at the
start of the answer, to assist in solving grade school mathematical problems. Some
example text and score pairs are: Precision: 29 <Text>The numeric answer to this
question is:</Text>

Text 4

Your task is to generate the answer starting sentence <Start>. Below are some previous
starting sentences with their scores. The score ranges from 0 to 100. Precision: 37
<Start>The solution to this involves</Start>, Precision: 39 <Start>The number asked
for is</Start>
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