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Abstract

We show that content on the web is often trans-
lated into many languages, and the low quality
of these multi-way translations indicates they
were likely created using Machine Translation
(MT). Multi-way parallel, machine generated
content not only dominates the translations in
lower resource languages; it also constitutes a
large fraction of the total web content in those
languages. We also find evidence of a selection
bias in the type of content which is translated
into many languages, consistent with low qual-
ity English content being translated en masse
into many lower resource languages, via MT.
Our work raises serious concerns about train-
ing models such as multilingual large language
models on both monolingual and bilingual data
scraped from the web.

1 Introduction

Modern AI is enabled by huge amounts of training
data, typically several hundred billion tokens to a
few trillion tokens (Sun et al., 2021; Chowdhery
et al., 2023; Touvron et al., 2023; Almazrouei et al.,
2023). Training at this scale is only possible with
web-scraped data.

We explore the effects that the long-term avail-
ability of low cost Machine Translation (MT) has
had on the web.1 We show that content on the
web is often translated into many languages, and
the quality of these multi-way translations indi-
cates they were primarily created using MT: see
Figure 1. Machine generated, multi-way parallel
translations not only dominate the total amount of
translated content on the web in lower resource lan-
guages where MT is available, it also constitutes

∗Corresponding author
†Work conducted during an internship at Amazon.

1Free MT has been available online since late 1997 (Gas-
pari and Hutchins, 2007), around the same time that MT re-
searchers began scraping the web for training data (Resnik,
1998), and commercial systems have been available since the
1970s (Hutchins, 1995).
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Figure 1: The more languages a sentence has been trans-
lated into (“Multi-way Parallelism”), the lower quality
the translations are, suggesting a higher prevalence of
machine translation. See § 4.4 for more details.

a large fraction of the total web content in those
languages. We also find evidence of a selection
bias in the type of content which is translated into
many languages, and therefore over represented in
lower resource languages: This content is shorter,
more predictable, and has a different topic distri-
bution compared to content translated into a single
language. A limited investigation suggests this se-
lection bias is the result of low quality content gen-
erated in English (likely produced to generate ad
revenue) and translated en masse into many lower
resource languages via MT (again, likely to gener-
ate ad revenue).

Our findings raise numerous concerns for multi-
lingual model builders: Fluency (especially across
sentences) and accuracy are lower for MT data,2

which could produce less fluent models with more
hallucinations, and the selection bias indicates the
data may be of lower quality, even before consid-
ering MT errors. Data quality is crucial in Large
Language Model (LLM) training, where high qual-
ity corpora like books and Wikipedia articles are

2MT technology has improved dramatically over the last
decade, but still falls short of human quality (Freitag et al.,
2023). MT content has been added to the web over many years
using MT systems available at the time, so much of the MT
on the web is likely very low quality by modern standards.
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typically upsampled several times (Brown et al.,
2020; Gao et al., 2020; Rae et al., 2021; Le Scao
et al., 2022).

Our findings also help to explain why low-
resource MT (Khan et al., 2017; Duh, 2018; NLLB
Team et al., 2022) is challenging, and why filtering
noise (Khayrallah and Koehn, 2018) from web-
scraped bitext (Junczys-Dowmunt, 2018; Chaud-
hary et al., 2019) is beneficial for MT training
(Koehn et al., 2018, 2019, 2020; Sloto et al., 2023).

To enable analysis, we create the largest multi-
way corpus to date, consisting of 6.4B unique sen-
tences in 90 languages. We release code to repro-
duce our corpus and analysis.3

2 Related Work

Our work is inspired by several recent efforts
which seek to understand the characteristics of
large scale corpora (Mehmood et al., 2017; Dodge
et al., 2021; Kreutzer et al., 2022; Brannon et al.,
2023). Many works have detected machine transla-
tion (Kurokawa et al., 2009; Arase and Zhou, 2013;
Aharoni et al., 2014), but we are not aware of prior
work using multi-way parallelism to do so. Freitag
and Firat (2020) explored multi-way parallelism
with the goal of improving multilingual MT.

Exploring multi-way parallelism on the web re-
quires a curated representation of translated content
from the web. We build upon ccMatrix (Schwenk
et al., 2021), which is in turn based on Com-
mon Crawl.4 Common Crawl is a long running
web-scraping project which maintains a free, open
source repository of web-scraped data. ccMatrix is
created by embedding Common Crawl sentences
into a multilingual space using LASER (Artetxe
and Schwenk, 2019) and then finding bilingual
translation pairs using fast approximate nearest
neighbor search (Johnson et al., 2019). We choose
ccMatrix over a corpus from a traditional bitext
mining process of document alignment (Resnik
and Smith, 2003; Buck and Koehn, 2016; Thomp-
son and Koehn, 2020) followed by sentence align-
ment (Gale and Church, 1993; Sennrich and Volk,
2010; Thompson and Koehn, 2019) because it is the
largest corpus available at the time of writing (in
both number of sentences and language coverage).

3https://github.com/amazon-science/
multi-way-parallel-ccmatrix/. Corpus creation
has been optimized to run in about one day on a single
i4i.32xlarge AWS instance.

4https://commoncrawl.org/

3 Corpus Creation: MWccMatrix

We create a multi-way parallel representation of
the web, consisting of translation tuples contain-
ing two or more sentences in different languages
which are translations of each other.5 As a trivial
example, (“hello”, “hola”) in English-Spanish and
(“hello”, “olá”) in English-Portuguese combine to
make (En:“hello”, Es:“hola”, Pt:“olá”). We denote
this corpus Multi-Way ccMatrix (MWccMatrix).

We iterate through all bitext in ccMatrix, from
highest to lowest LASER margin score, adding sen-
tence pairs as new tuples in MWccMatrix when
neither sentence is already in the new corpus, and
expanding tuples already in the new corpus when
one sentence or the other (but not both) is already
present. This deduplicates the corpus (i.e. adds
each unique sentence only once), but allows for
more than one sentence in the same language to
be added to a given tuple, which tend to differ
primarily in punctuation/capitalization (i.e. near
duplicates). Therefore, we remove all but the first
sentence added to each tuple in a given language.
Deduplication across language pairs brings the total
number of sentences down from 21.7B total sen-
tences (10.9B sentence pairs) to 7.9B unique sen-
tences in 2.2B tuples, and near duplicate removal
brings it down to 6.4B. Pseudocode and a descrip-
tion of the optimizations required to make corpus
creation tractable are provided in Appendix A.

4 Analysis

4.1 Much of the Web is Translated

We compared the total number of unique sentences
(before removing near-duplicates) in MWccMatrix
to the total number of unique sentences from the
Common Crawl snapshots that the data is based on,
as reported by Schwenk et al. (2021). They only
report the number of unique sentences for the 54
(of 90) largest resource languages, so we cannot
compute the fraction of sentences with one or more
translations in the 36 lowest-resource languages.
The percentage of unique monolingual sentences
which have at least one translation is quite high,
even for some high resource languages (e.g. 9.4%
of English, 17.5% of French): see Figure 2.

5Unless otherwise noted, we use the term “translation” to
mean a sentence which appears in a translation tuple – i.e.
we do not attempt to distinguish whether that sentence was
translated into or out of a given language.
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Figure 2: Fraction of the total monolingual data used to
create ccMatrix with one or more translation, in the 54
languages for which we can compute it. See Appendix B
for a larger plot with language codes.

Parallelism # tuples % tuples # sents % sents

2 1,368 62.5% 2,736 42.9%
3-4 573 26.2% 1,895 29.7%
5-7 177 8.1% 1,004 15.7%
8+ 70 3.2% 745 11.7%

Total 2,188 100.0% 6,379 100.0%

Table 1: MWccMatrix statistics. Numbers in millions.
37.5% of tuples are multi-way parallel, but 57.1% of all
sentences come from multi-way parallel tuples.

4.2 Translations on the Web are Highly
Multi-way Parallel

Of the 6.38B sentences in our 2.19B translation
tuples, 3.63B (57.1%) are in multi-way parallel6

(3+ languages) tuples: see Table 1. Lower resource
languages tend to be more multi-way parallel, with
the 10 highest-resourced languages in ccMatrix
having an average parallelism of 4.0, and the 10
lowest-resource languages in ccMatrix having an
average parallelism of 8.6 (see Appendix C for all
languages), and this increase is driven by an in-
crease in highly multi-way parallel (8+) sentences:
see Figure 3.

4.3 Multi-way Parallel Data is Shorter and
Simpler

We perform monolingual analysis to explore how
data varies with multi-way parallelism. We find
that more multi-way parallel sentences are shorter

6We use “multi-way parallelism” (or simply “parallelism”)
to refer to the size of the translation tuple that that sentence
is in. For example, a sentence with parallelism of 5 comes
from a tuple of size 5, which contains the given sentence plus
translations in 4 other languages.

Parallelism De En Fr Ja Zh

2 95.2 103.7 96.8 25.2 27.8
3-4 90.4 86.0 88.7 23.6 24.8
5-7 82.6 71.2 80.5 23.2 22.8
8+ 71.6 59.9 70.0 22.3 19.1

Table 2: Sentence length (in characters) as a function of
multi-way parallelism, in several languages. Multi-way
parallelism is associated with shorter content.

in length (see Table 2) and have lower perplexity
(i.e. are easier to predict) as measured by GPT-2
(Radford et al., 2019): see Figure 4.

4.4 Multi-way Parallel Translations are
Lower Quality

We evaluate the quality of translations on the web
using Quality Estimation (QE), with the CometQE
model (Rei et al., 2022), across different levels of
multi-way parallelism. Modern quality estimation
methods are nearly on par with reference-based
metrics (Freitag et al., 2023) and have been shown
to perform well on noisy web data (Peter et al.,
2023). As QE does not require human annotation
or human references, it allows us to evaluate a very
large data sample (1M samples per language pair)
and many language pairs.7

We find that highly multi-way parallel transla-
tions are significantly lower quality (6.2 CometQE
points worse) than 2-way parallel translations. This
trend is consistent across all 8 language pair direc-
tions we considered: see Table 3. Since length
could interact with cometQE scores, we verified
that these results also hold across sentence length:
see Figure 5.

We also investigate how LASER margin score
varies with multi-way parallelism. Multi-way par-
allel data tends to have higher margin scores: see
Figure 6. Further investigation reveals that LASER
has a strong bias for MT output over human transla-
tions (see Table 4), thus LASER margin scores for
more multi-way parallel content are consistent with
multi-way parallel data being MT. LASER’s prefer-
ence for MT is likely because LASER is based on
a small MT model. Similar phenomenon has been
observed (Freitag et al., 2021) in the Prism metric
(Thompson and Post, 2020a,b), which is also based
on an MT model.

7We select from WMT language pairs as CometQE is
trained on WMT annotations, thus we expect CometQE to be
most accurate in those language pairs.
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Figure 3: Fraction of parallel data in each language which is multi-way parallel (bar chart, right y-axis) and number
of unique sentences (solid black line, left y-axis, log scale) by language (x-axis). Low-resource languages exhibit a
dramatic increase in the amount of highly multi-way parallel data (hatched gray bars).

Parallelism En→De De→En Fr→De De→Fr En→Ja Ja→En En→Zh Zh→En AVG

2 76.5 76.1 73.3 74.6 73.6 71.9 74.8 75.4 74.5
3-4 74.3 74.2 72.3 73.7 72.0 70.6 72.1 72.5 72.7 (-1.8)
5-7 71.9 71.8 70.0 71.3 70.5 69.2 69.1 69.5 70.4 (-4.1)
8+ 69.7 69.8 67.5 68.6 69.7 68.6 66.1 66.6 68.3 (-6.2)

Table 3: Bitext quality (as measured by CometQE) as a function of multi-way parallelism, for random 1M subsets in
various language pairs. Multi-way parallel translations are lower quality. Average scores are visualized in Figure 1.
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Figure 4: Median perplexity (measured by GPT-2) vs
multi-way parallelism, in English. We stratify by sen-
tence length, as shorter content tends to have higher
perplexity, likely due to GPT-2 having no or little con-
text for predicting the first few words. More multi-way
parallel data has lower perplexity (i.e. easier to predict).
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Figure 5: CometQE score vs sentence length (average
of source and target, in characters), for Fr-De. Other
language pairs (not shown) are very similar. Quality dif-
ferences between levels of multi-way parallelism holds
across sentence length.
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Figure 6: LASER margin scores as a function of multi-
way parallelism and sentence length, in English. Trends
in other languages that we investigated (French, German,
Chinese, Japanese) were very similar (not shown).

Langs Ref MT ∆

En→De 86.7% 89.5% +/- 0.6% 2.8%
De→En 87.4% 90.1% +/- 0.4% 2.8%
Zh→En 82.3% 85.3% +/- 0.3% 3.0%
En→Zh 82.6% 85.8% +/- 0.4% 3.1%
En→Ja 78.8% 82.7% +/- 1.1% 3.9%
De→Fr 87.4% 90.1% +/- 0.4% 2.8%
Fr→De 90.5% 91.4% +/- 0.6% 0.9%

Table 4: LASER cosine similarity between source and
human reference (“Ref”) vs mean and standard devia-
tion for Online-Y, Online-G, Online-A, Online-W, and
Online-B (“MT”) from WMT 2022. In cases where
there is more than one human reference, we average the
cosine similarities. We find that LASER has a bias for
MT output, of about 2.8% on average. Note that Ja→En
was not included among the WMT language pairs.
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Parallelism
Topic 2 3-4 5-7 8+

Autos/Vehicles/Transit 2.2 2.0 1.6 1.6
Beauty/Fitness/Health. 6.5 7.2 6.4 6.4
Books/Arts/Entertainment 8.0 7.3 6.3 5.4
Business/Industry/Finance 10.6 7.6 6.0 6.6
Computers/Electronics 3.7 3.4 4.5 3.5
Conversation/Opinion 22.5 29.9 33.3 40.1
Food/Drink 1.7 1.8 1.7 0.9
Hobbies/Leisure 0.9 0.9 1.4 1.0
Home/Garden 0.9 0.7 0.9 0.5
Internet/Telecom 3.2 3.0 2.1 2.6
Jobs/Education 6.6 4.7 5.0 5.0
Law/Government 7.2 6.0 5.2 4.8
News/Information 12.2 11.8 10.5 9.5
Pets/Animals 1.2 1.4 1.2 1.0
Real Estate 1.3 0.8 0.5 0.5
Religion 3.4 4.7 5.6 5.4
Shopping 1.1 1.2 1.2 0.7
Sports/Games 3.2 2.9 3.7 2.2
Travel 2.9 2.6 2.5 1.9
Other/Cannot tell 0.2 0.1 0.5 0.7

Table 5: Percentage of corpus which human annotators
classified as each topic, for various levels of parallelism.

4.5 Multi-way Parallel Data has Topical Bias

We had professional linguists classify8 10,000 ran-
domly selected English sentences as one of the 20
topics given in Table 5, based on the high-level Top-
ics API categories.9 We observe a dramatic shift in
the distribution of topics when comparing 2-way
to 8+ way parallel data, with CONVERSATION &
OPINION increasing from 22.5% to 40.1%.

We manually inspected a random sample of 100
highly multi-way parallel sentences from the CON-
VERSATION & OPINION topic and found them hard
to characterize due to the isolated sentences being
very short (typically 5-10 words). However, search-
ing the web for the sentences was enlightening: the
vast majority came from articles that we character-
ized as low quality, requiring little or no expertise
or advance effort to create, on topics like being
taken more seriously at work, being careful about
your choices, six tips for new boat owners, decid-
ing to be happy, etc. Furthermore, we were un-
able to find any translationese or other errors that
would suggest the articles were being translated
into English (either by human translators or MT),
suggesting it is instead being generated in English
and translated to other languages.

8Full annotator guidelines are provided in Appendix D
9https://cloud.google.com/natural-language/

docs/categories

5 Discussion & Conclusion

Experiments with QE (see § 4.4) strongly suggest
that highly multi-way parallel translations are gen-
erated by MT. In lower resource languages, most
translations are multi-way parallel (see § 4.2), sug-
gesting that MT content dominates translation con-
tent. Furthermore, a large fraction of the total sen-
tences in lower resource languages have at least
one translation (see § 4.1), implying that a large
fraction of the total web in those languages is MT
generated.

Several observations point to a selection bias in
the type of data which is translated into many lan-
guages, compared to data translated into a single
language: it is shorter and more predictable (see
§ 4.3), and substantially more likely to be from
the CONVERSATION & OPINION topic (see § 4.5).
Since translations of this data constitute a substan-
tial portion of the total data in low-resource lan-
guages, this bias will also appear in low resource
languages.

An investigation into the increase in CONVERSA-
TION & OPINION data suggests that this selection
bias is the result of low quality content (likely pro-
duced to generate ad revenue) being translated via
MT en masse into many lower resource languages
(again likely for the purpose of generating ad rev-
enue). It also suggests that such data originates
in English and is translated into other languages.
Additional investigation would be required to un-
derstand if this finding generalizes to other topics,
languages, and levels of multi-way parallelism.

Our findings also suggest some ways to address
the problem of MT output in web-scraped training
data: MT detection, which has typically been pro-
posed to filter bitext, could also help to filter mono-
lingual text in lower resource languages. It also
suggests that multi-way parallelism is a promising
way to detect low quality, machine translated data,
especially in lower resource languages, to filter
both bilingual and monolingual data.

Limitations

Our study covers 90 of the most common languages
on the web, where MT tends to be available. We
would obviously not expect the trends we observe
regarding low resource languages to extend into
the long tail of low-resource languages that are not
currently supported by MT.

All our analysis is performed at the sentence
level, because ccMatrix is at the sentence level;

1767

https://cloud.google.com/natural-language/docs/categories
https://cloud.google.com/natural-language/docs/categories


this makes some analysis (e.g. topic analysis) diffi-
cult and/or ambiguous. We would have preferred to
use a corpus which is aligned at the document level
to enable document level analysis and evaluation
(Läubli et al., 2018; Toral et al., 2018; Vernikos
et al., 2022), but no such corpus is publicly avail-
able.

Similarly, our analysis does not take advantage
of any cues that might be present in a web page
to indicate its content is MT generated. However,
in personal communications with the authors of
Paracrawl (Bañón et al., 2020), they note that in
low-resource languages supported by popular MT
systems, simple rules10 to remove data from com-
mon translation plug-ins filter out most of their
scraped bitext. This observation is consistent with
our findings.

We use CometQE to evaluate translation qual-
ity. CometQE is trained on human annotations
of translation quality from many years of WMT
(Kocmi et al., 2023) evaluations. The web data in
our experiments likely has a very different domain
distribution than WMT data, and trained metrics
like CometQE have been shown to exhibit a per-
formance drop when moving from WMT to other
domains (Zouhar et al., 2024).

Our analysis of the web is based on bitext mined
from the web. As such, shortcomings or biases in
web scraping and bitext mining could affect our
results. Common Crawl provides only a sample
of the web, and biases have been demonstrated in
web scraping (Mehmood et al., 2017; Dodge et al.,
2021). Common Crawl follows links within web
pages to find new pages, and web pages sometimes
have links to translations of the same page in an-
other language, so Common Crawl may be more
likely to find web pages which are translations of
pages it has already found than other, new pages.
This should be mitigated at least in part by combin-
ing many Common Crawl snapshots, as is done in
ccMatrix.

The 32 snapshots of Common Crawl used in cc-
Matrix were collected between December 2017 to
February 2020 (Schwenk et al., 2021). We are not
aware of a more recent, publicly available corpus
that would enable this kind of analysis.

The ccMatrix corpus creation process relies on
LASER margin scores (as does our process to cre-
ate MWccMatrix). LASER is known to have lower

10https://github.com/paracrawl/cirrus-scripts/
blob/master/mt-filter-list.annotated

recall in lower-resource languages (Feng et al.,
2022) and as we show in this work (Table 4), has a
preference for MT over human translations. ccMa-
trix also uses approximate nearest neighbor search
(Johnson et al., 2019), which trades off some recall
performance in order to make searches computa-
tionally feasible.

Our analysis by language / language pair relies
on automatic language identification (LID). Short-
comings have also been noted in automatic LID, es-
pecially in low-resource languages (Caswell et al.,
2020; Kreutzer et al., 2022).
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A MWccMatrix Creation: Additional
Details

A simplified version of the algorithm used to create
MWccMatrix is provided in algorithm 1.

In practice, several optimizations were required
to make the process tractable. Instead of attempting
to sort 10.9B sentence pairs by margin score, we
approximate the search by binning margin scores
and sorting the data into buckets corresponding to
the (binned) margin scores, similar to a radix sort.
The sentences are too large to fit in memory, so we
represent the sentences as 64 bit hashes. Addition-
ally, our scripts are written in python but we use
the cykhash11 package, which provides a native C
int64 to int64 hashmap. Conversion from hashes
back to sentences is done in small shards, and the
hash→sent mappings required to reconstruct the
data are sharded such that only the mappings re-
quired for one shard are loaded in memory at one
time. Finally, we make extensive use of paralleliza-
tion (e.g. computing margin score bins, sharding
data by margin score bin, hashing sentence pairs,
etc).

B Larger Version of Figure 2

A larger version of Figure 2, which includes lan-
guage codes for each language, is provided in Fig-
ure 7. As previously noted, we only have total
data sizes for the 54 highest-resource languages, as
that is what was reported by Schwenk et al. (2021),
so we cannot compute this percentage for the 36
lowest-resource languages used in this study.

C Multi-way Parallelism by Language

Average parallelism for each language is shown in
Figure 8.

11https://github.com/realead/cykhash
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Algorithm 1: Algorithm (simplified for comprehension) used to create multi-way parallel corpus.

1 sent2row ← defaultdict(dict)
2 sort(bitext, key = marginScore, descending = True)
3 numRows← 0
4 for srcTxt, srcLang, tgtText, tgtLang, marginScore in bitext do
5 if srcTxt not in sent2row[srcLang] and tgtText not in sent2row[tgtLang] then
77 /* add new sentence pair */

8 sent2row[srcLang][srcTxt]← (numRows,marginScore)
9 sent2row[tgtLang][tgtTxt]← (numRows,marginScore)

10 numRows← numRows+ 1

11 else if srcTxt in sent2row[srcLang] then
1313 /* srcText in table, join on it */

14 srcRow ← sent2row[srcLang][srcTxt]
15 sent2row[tgtLang][tgtTxt]← (srcRow,marginScore)

16 else if tgtTxt in sent2row[tgtLang] then
1818 /* tgtText in table, join on it */

19 tgtRow ← sent2row[tgtLang][tgtTxt]
20 sent2row[srcLang][srcTxt]← (tgtRow,marginScore)

2222 /* else both sentences already in table (with higher marginScore), do nothing */

2424 /* Invert sent2row */

25 row2sent← defaultdict(dict)
26 for lang in langs do
27 for sent, (row, marginScore) in sent2row[lang].items() do
28 if row in row2sent[lang] then
29 _, oldMarginScore← row2sent[lang][row]

30 else
31 oldMarginScore← −1
3333 /* When we find duplicates/paraphrases, keep the sentence with the highest score */

34 if marginScore > oldMarginScore then
35 row2sent[lang][row]← (sent, score)

3737 /* Coalesce output translation tuples */

38 output← []
39 for row in range(numRows) do
40 translations← dict()
41 for lang in langs do
42 if row in row2sent[lang] then
43 translations[lang]← row2sent[lang][row]

44 output.append(translations)
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Figure 7: Percentage of unique monolingual sentences which have at least one translation, in each language for
which we have the data to compute it.
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Figure 8: Average multi-way parallelism (blue bars, right y-axis) and number of unique sentences (gray line, left
y-axis, log scale) by language (x-axis). Lower-resource languages tend to be more multi-way parallel.
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D Topic Analysis Annotation Guidelines

Task: Please identify the most relevant topic for
each sentence using the pre-defined list. Assign
the correct label to each sentence. Make sure to
familiarize yourself with the list before working on
the task.

Index Topic

1 Autos/Vehicles/Transit
2 Beauty/Fitness/Health.
3 Books/Arts/Entertainment
4 Business/Industry/Finance
5 Computers/Electronics
6 Conversation/Opinion
7 Food/Drink
8 Hobbies/Leisure
9 Home/Garden
10 Internet/Telecom
11 Jobs/Education
12 Law/Government
13 News/Information
14 Pets/Animals
15 Real Estate
16 Religion
17 Shopping
18 Sports/Games
19 Travel
20 Other/Cannot tell

Here is the list of sub-topics that may
help you develop a better idea of what
belongs to each of these topics: https:
//github.com/patcg-individual-drafts/
topics/blob/main/taxonomy_v2.md

Note:

1. Do differentiate between a domain and a topic.
A topic of the sentence is the main idea of the
sentence. Where this sentence belongs is the
domain. In this task we are classifying topics.

(a) “Aiden was once a warrior who placed
complete faith in his own abilities.” - this
belongs to literature/creative writing do-
main, but the topic of the sentence is
CONVERSATION & OPINION.

(b) “i keep telling you to leave me alone, this
forum is not the right place for hate” - the
domain is media, but the topic is CON-
VERSATION & OPINION.

2. If needed, please do a quick search of the
sentence to identify the topic. Do limit the
search to a quick scan of search results no
longer than 30 sec.

3. If a sentence fits more than one topic equally
and you cannot decide between the two, then
select a primary and a secondary topic. Add
a comment if needed to explain. Try not to
abuse this option and always try to choose
one.
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