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Abstract

Owing to the scarcity of labeled training data,
Spoken language understanding (SLU) is still
a challenging task in low-resource languages.
Therefore, zero-shot cross-lingual SLU attracts
more and more attention. Contrastive learning
is widely applied to explicitly align representa-
tions of similar sentences across different lan-
guages. However, the vanilla contrastive learn-
ing method may face two problems in zero-shot
cross-lingual SLU: (1) the consistency between
different languages is neglected; (2) each utter-
ance has two different kinds of SLU labels, i.e.
slot and intent, the utterances with one different
label are also pushed away without any discrim-
ination, which limits the performance. In this
paper, we propose Cyclical Contrastive Learn-
ing based on Geodesic (CCLG), which intro-
duces cyclical contrastive learning to achieve
the consistency between different languages
and leverages geodesic to measure the simi-
larity to construct the positive pairs and neg-
ative pairs. Experimental results demonstrate
that our proposed framework achieves the new
state-of-the-art performance on MultiATIS++
and MTOP datasets, and the model analysis fur-
ther verifies that CCLG can effectively transfer
knowledge between different languages'.

1 Introduction

Spoken Language Understanding (SLU) holds the
central position in the task-oriented dialogue sys-
tems (Tur and De Mori, 2011; Qin et al., 2019;
Xing and Tsang, 2022; Song et al., 2022). The
primary objective of SLU is to comprehend and
extract relevant information from user utterances.
This capability enables the system to discern the
user’s current objective and generate appropriate re-
sponses. SLU comprises two critical sub-tasks: in-
tent detection, which focuses on identifying users’
intentions, and slot filling, which entails extracting
semantic elements from user queries.

'Our source code and models will be released after review.

However, the effectiveness of traditional SLU
models is intrinsically linked to the availability of
extensive annotated data, which poses challenges
in scalability. This challenge is particularly evi-
dent in the case of low-resource languages, where
the lack of substantial labeled datasets exacerbates
scalability issues, hindering the seamless deploy-
ment and advancement of SLU models. With the
demand for language processing solutions extend-
ing across diverse linguistic landscapes, the ne-
cessity for scalable SLU models that can operate
effectively in resource-constrained environments
becomes increasingly critical.

To tackle these constraints, the concept of zero-
shot cross-lingual SLU generalization has emerged
as a central focus of interest and investigation. Re-
cently, mBERT (Devlin et al., 2019) has demon-
strated significant advancements in zero-shot cross-
lingual SLU. Building upon this work, Liu et al.
(2020) introduces an attention-informed mixed-
language training approach for cross-lingual SLU.
In addition, the exploration of multilingual code-
switched settings has been extended by Qin et al.
(2020a), which entails aligning a source language
with target languages. GL-CLEF (Qin et al., 2022)
employs contrastive learning, leveraging bilingual
dictionaries to construct multilingual views of the
same utterance, then encouraging their representa-
tions to be more similar than those negative exam-
ple pairs. LAJ-MCL (Liang et al., 2022) proposes
to model the utterance-slot-word structure using a
multi-level contrastive learning framework to facil-
itate explicit alignment, further enhancing perfor-
mance. Although existing zero-shot cross-lingual
SLU methods have made promising strides by con-
trastive learning, we identify two main issues:

(1) The consistency between different lan-
guages is neglected. Although the code-switching
method has been applied to construct positive sam-
ples in contrastive learning, we find that the con-
sistency between different languages has not been
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effectively established. Specifically, the distances
between the corresponding samples in different lan-
guages are inconsistent, which affects the transfer
of knowledge across different languages.

(2) The utterances with one different label are
also pushed away without discrimination. Tra-
ditional contrastive learning methods utilize code-
switching to construct the positive samples and neg-
ative samples, bringing tokens with the same label
and intent label closer together while pushing other
the tokens away. However, this can result in a side
effect where tokens with only one different label
(slot or intent) can be also indiscriminately pushed
away, which undoubtedly hampers the representa-
tion modeling of contrastive learning, leading to
the suboptimal performance.

In this paper, we propose Cyclical Contrastive
Learning based on Geodesic (CCLG) to solve these
two problems. For the first problem, we introduce
two consistency losses, including the cross-lingual
consistency loss and the intra-language consistency
loss, aiming to boost consistency between different
languages. For the second problem, we abandon
the conventional approach of directly employing
code-switching to construct positive samples and
negative samples in contrastive learning. Instead,
we utilize geodesic to reconstruct positive and nega-
tive samples and employ geodesic-based similarity
instead of the traditional similarity metrics, thereby
facilitating the learning of representations.

We conduct experiments on MultiATIS++ (Xu
et al., 2020) and MTOP (Li et al., 2021), cover-
ing nine and six different languages, respectively.
The experimental results show that our framework
can outperform previous cross-lingual SLU base-
lines. The model analysis further indicates that our
method can transfer knowledge from high-resource
languages to low-resource languages. In summary,
our work makes three-fold contributions:

* We use cyclical contrastive learning to achieve
consistency between different languages.

* We apply geodesic to construct positive and
negative samples in contrastive learning, lead-
ing to improved representations of tokens.

» Experiment results show that our framework
achieves the new state-of-the-art performance
on MultiATIS++ and MTOP datasets.

2 Related Works

The related works are introduced from zero-shot
cross-lingual SLU and contrastive learning.

2.1 Zero-shot Cross-lingual SLU

Traditional SLU usually focuses on languages with
abundant resources, which limits their widespread
use. This limitation has sparked growing interest in
a novel approach known as zero-shot cross-lingual
SLU. The essence of success in this approach lies
in tapping into the linguistic insights present in lan-
guages with ample resources. By doing so, it opens
up exciting possibilities for overcoming challenges
posed by limited data in cross-lingual scenarios.
Moreover, it extends the reach of SLU to languages
that have been previously overlooked, thereby con-
tributing to a more inclusive and adaptable frame-
work in the field of multilingualism.

In recent years, many cross-lingual embeddings,
such as mBERT (Devlin et al., 2019), have shown
promising results. Liu et al. (2020) propose code-
mixing to construct training sentences containing
both the source and target phrases, implicitly fine-
tuning mBERT. Building upon it, Qin et al. (2020a)
proposes multilingual code-switching data augmen-
tation to better align the source language with all
target languages. Additionally, van der Goot et al.
(2021) suggests three non-English auxiliary tasks to
boost cross-lingual transfer. More recently, SoGo
(Zhu et al., 2023) highlights the limitations of the
conventional code-switching method and proposes
a saliency-based substitution approach for extract-
ing keywords as substitutions. In our method, we
use cyclical contrastive learning based on geodesic
to further transfer the knowledge from the source
language to the target language.

2.2 Contrastive Learning

Contrastive learning aims to learn representations
of examples via minimizing the distance between
positive pairs and maximizing the distance between
negative pairs (Saunshi et al., 2019; Chuang et al.,
2020; Liu et al., 2022), a concept initially proposed
in the field of computer vision (Chopra et al., 2005;
Chen et al., 2020; Wang and Liu, 2021). In natural
language processing, contrastive learning is utilized
for learning the sentence embeddings (Giorgi et al.,
2021; Yan et al., 2021), translation tasks (Pan et al.,
2021; Ye et al., 2022), and summarization (Wang
et al., 2021; Cao and Wang, 2021). Owing to its
strong capability in achieving alignment across dif-
ferent languages, contrastive learning has also been
used in zero-shot cross-lingual SLU (Liang et al.,
2022; Qin et al., 2022). However, we find two main
issues with directly utilizing vanilla conservative
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Figure 1: The overview of our approach.

learning in zero-shot cross-lingual SLU. As a re-
sult, we propose cyclical contrastive learning based
on geodesic to tackle these two issues.

3 Background

SLU comprises two core subtasks, including intent
detection and slot filling. Given the input utterance
x = (x1,x2,...,x,), where n denotes the length
of z, intent detection is treated as a classification
task, producing the intent label o, and slot filling
is a sequence labeling task, mapping each utterance
x to a slot output sequence 0° = (o7, og, c,00).
Due to the intrinsic correlation between intent de-
tection and slot filling, it is common to train a uni-
fied SLU model capable of jointly handling both
tasks, which is formulated as follows:
(0',0%) = f(x)

where f denotes the trained model.

Zero-shot cross-lingual SLU task involves train-
ing an SLU model on a high-resource source lan-
guage, such as English, and seamlessly using it
on a low-resource target language, such as French.
In this scenario, when presented with an instance
Xtarget in the target language, the trained model f
can directly generate predictions for both intent and
slot values in the target language:

(O{argetv ngrget)

)

2

= f (Xtarget)
where target denotes the target language.
4 Method

In this section, we first introduce the Generic SLU
Module (Sec. 4.1) and the previous paradigm of

utilizing contrastive learning to enhance zero-shot
cross-lingual SLU (Sec. 4.2). Then, we introduce
the components of our proposed approach, includ-
ing Cyclical Contrastive Learning (Sec. 4.3) and
Geodesic (Sec. 4.4). At last, we introduce the final
Training Objective (Sec. 4.5). The overview of our
approach is demonstrated in Figure 1.

4.1 Generic SLU Module

Given the input sentence x = (x1, x2, ..., T ), the
construction of the input sequence is based on each
input utterance by incorporating the specific tokens
x = ([CLS], z1,z2, ..., xy, [SEP]) (Devlin et al.,
2019). [CLS] serves as the special symbol repre-
senting the entire sequence, and [SEP] is employed
to separate non-consecutive token sequences. Fol-
lowing Qin et al. (2020a), code-switching is applied
to leverage the bilingual dictionaries (Lample et al.,
2018) in generating multi-lingual code-switched
data as input for the model. The representation of
the whole utterance, denoted as H = (h¢s, h1, ...,
h,,, hsep), is obtained by utilizing the pre-trained
mBERT (Devlin et al., 2019) model.

For the intent detection task, we utilize the utter-
ance representation hcis as input to a classification
layer in order to derive the predicted intent:

o! = softmax (WIhCLS + bI) 3)
where W and b’ are two trainable matrices.

For the slot filling task, we follow the methods
proposed in (Wang et al., 2019; Qin et al., 2022),
wherein we use the representation of the first sub-
token as the whole word representation and lever-
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age the hidden states to predict each slot:

o0 = softmax (W*h, + b*) 4)

where h; is the representation of the first sub-token
of word x;, W* and b® are two trainable matrices.

4.2 Previous Contrastive Paradigm

Contrastive learning has been applied in zero-shot
cross-lingual SLU (Qin et al., 2022; Liang et al.,
2022). In general, previous methods aim to bring
tokens and the corresponding code-switched tokens
(positive pairs) closer together while pushing apart
tokens and the non-corresponding tokens (negative
pairs). And the previous contrastive loss L¢r, can
be formulated as follows:

his, h%irs)
Lé = Zlog S5 s(hi, o Bl ) (5)
h(JZLS7£h’CLS cLs cLs
N n i
1 s(h,]. h’ )
EgL——*ZZIOg B L2 : 7 (6)
iD= Zh#hg’ s(hi,h})
LoL = LL + 22 (7)

where s(-) denotes the cosine similarity function,
h{, s denotes the positive sample of heis, b de-
notes the positive sample of h;, B denotes the mini-
batch of original and code-switched tokens, and NV
denotes the total number of utterences.

4.3 Cyclical Contrastive Learning

Inspired by previous work (Goel et al., 2022), to im-
prove the consistency between different languages,
we introduce two additional consistency losses, in-
cluding the cross-lingual consistency loss and the
intra-language consistency loss.

The cross-lingual consistency loss EgCL is ap-
plied to reduce the discrepancy in similarity scores
between the representations of all mismatched pairs
of original tokens and code-switched tokens, which
can be formulated as follows:

Léo = ZZ —(H;, Hy))* ®)
] 1:=1
where (-, -) denotes the inner product function, and

H denotes the representation of the corresponding
code-switched utterance.

The intra-lingual consistency loss EéCL is em-
ployed to reduce the discrepancy in the similarity
scores between the representations of all the origi-
nal token pairs and corresponding code-switched

token pairs, which can be formulated as follows:

Lécr = NZZ — (Hi, H)))* 9)

7=11i=1

The final cyclical contrastive learning loss Lccr.
is the sum of L& and £ :

LccL = Lo + Lécr (10)

4.4 Geodesic

In the previous contrastive paradigm, only the to-
kens with the same two labels, including intent and
slot, are regarded as the positive pairs. Therefore,
the tokens with only one different label (slot or in-
tent) are also pushed apart without discrimination,
which limits the overall performance. To solve this
problem, we use geodesic to discriminate positive
pairs in contrastive learning.

The representations of tokens are often embed-
ded within a high-dimensional manifold, and our
objective is to gauge the geodesic distance between
two points along this manifold. However, calculat-
ing the precise geodesic distance proves challeng-
ing in the absence of explicit knowledge regard-
ing the manifold’s structure (Kimmel and Sethian,
1998). To address this, we resort to leveraging the
K-NN graph (Cover and Hart, 1967) as an approxi-
mation to the manifold structure (Surazhsky et al.,
2005; Chowdhury et al., 2022). Within this graph,
each token h; constitutes a node, and connections
are established between nodes such that each node
links to at most & other nodes.

Specifically, a directed edge is established from
the node h; to node h; if h; is one of the £ nearest
neighbors of h;. The weight of each edge d(h;, h;)
is defined utilizing the cosine similarity:

d(hi,hj) =1—hh] (11)

Finally, we employ the shortest path algorithm
Djikstra (Dijkstra, 1959) to compute the length of
the shortest path between the two token representa-
tions along the obtained weighted directed graph,
serving as the final geodesic distance G(h;, h;).

For a token h;, we define the k tokens with the
closest geodesic distance from the code-switched
tokens as its positive samples F;:

P = {pf} = arg topkG(h;, hj) (12)
k

In vanilla contrastive learning, for negative sam-

ples with only one different label and those with
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two different labels, the push operation for neg-
ative samples is indistinguishable, which clearly
undermines the model to learn the correct represen-
tations. As a result, we use the geodesic distance
to differentially push negative samples away. The
similarity Sc(h;, hj) between different tokens is:
1

xp(G(hi, hj) +1)
13)

By considering the relationships between neg-
ative samples while maximizing mutual informa-
tion, we believe S¢ (h;, h;) is more beneficial than
the conventional similarity function. The geodesic-
based contrastive learning loss Lgcr are as follows:

2

pQLSEPCLS

Z h, #hi Sa(h CLS?héLS)
(14)

> exp(h]pf)
piEP;

Sc(hi, hj) = exp(hh,; - log - )

eXP(h%Ls’ PléLs)

Lo = — Zl

E

7j=114i=1 ZhJ#hJ/ SG(h‘Z7h’z )
(15)
Loer = Loer + Lo, (16)

4.5 Trainig Objective

Following previous work (Qin et al., 2020b, 2022),
the intent detection objective Ly and the slot filling
objective Lg are computed as follows:

-3 5o o)
S )

Jj=11i=1

a7

(18)

where in denotes the gold intent label, yé’s denotes
the gold slot label for the j-th token, n; denotes
the number of gold intent labels, and ng denotes
the number of gold slot labels.

The final training objective L is as follows:

L=aly +(1—a)ls+ AccL +vLccL (19)

5 Experiments

5.1 Datasets and Metrics

We primarily conduct our experiments on two pub-
lic cross-lingual SLU benchmark datasets, includ-
ing the MultiATIS++ (Xu et al., 2020) dataset and
the MTOP (Li et al., 2021) dataset.

MultiATIS++2 dataset is the broadened version
of the Multilingual ATIS (Upadhyay et al., 2018)
dataset, whose statistics are shown in Table 1. This
extension includes human-translated data for an ad-
ditional six languages: Spanish (es), German (de),
Chinese (zh), Japanese (ja), Portuguese (pt), and
French (fr), complementing the original languages,
Hindi (hi) and Turkish (tr). The dataset comprises
4,478 utterances in the training set, 500 in the vali-
dation set, and 893 in the test set, with a total of 18
intents and 84 slots for each language.

Laneuage Utterances Intent Slot
BUAZE rain valid test types types
hi 1440 160 893 17 75
tr 578 60 715 17 71
others 4488 490 893 18 84

Table 1: Statistics of MultiATIS++ dataset.

MTOP? is compiled from interactions between
humans and assistant systems, with statistics pre-
sented in Table 2. MTOP comprises over 100,000
human-translated utterances in six languages (En-
glish (en), German (de), Spanish (es), French (fr),
Thai (th), Hindi (hi)) across eleven domains. For a
fair comparison, we Liang et al. (2022) to use the
flat version, divided into 70:10:20 percentage splits
for the training set, validation set, and test set.

Intent Slot
types types
117 78

Number of Total Utterances
en de fr es hi th

22288 18788 16584 15459 16131 15195

Table 2: Statistics of MTOP dataset.

Consistent with prior research (Qin et al., 2022;
Zhu et al., 2023; Cheng et al., 2023), accuracy
serves as the metric for evaluating intent detection,
and F1 score is applied to assess slot filling perfor-
mance. Moreover, overall accuracy is utilized for
sentence-level semantic frame parsing evaluation.

5.2 Implementation Details

Following Qin et al. (2022), we utilize the base
case of the multilingual BERT (mBERT)*(Devlin
et al., 2019), featuring N = 12 attention heads and
M = 12 transformer blocks. The learning rate is
set to 5 x 1077 and the total batch size is set to
Zhttps://github.com/amazon-science/multiatis
3https://fb.me/mtop_dataset

4https://github.com/google—research/bert/blob/
master/multilingual.md
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Intent Accuracy | en de es fr hi ja pt tr zh | AVG
ZSJoint* (Chen et al., 2019) 98.54 9048 9328 9451 77.15 76.59 94.62 7329 8455 | 87.00
CoSDA' (Qin et al., 2021) 95.74 9406 9229 77.04 8275 7325 93.05 8042 7895 | 87.32
GL-CLEF* (Qin et al., 2022) 98.77 9753 97.05 9772 86.00 82.84 96.08 83.92 87.68 | 91.95
LAJ-MCL* (Liang et al., 2022) 98.77 98.10 98.10 9877 8454 81.86 97.09 8545 89.03 | 9241
DiffSLU* (Mao and Zhang, 2023) | 98.86 98.17 98.21 9893 86.66 82.65 9721 8598 89.46 | 92.90
SoGo* (Zhu et al., 2023) 98.89 9845 98.15 9774 83.87 8475 97.73 8553  89.10 | 92.69
FC-MTLF¥* (Cheng et al., 2023) 98.97 9821 9836 99.01 86.72 8295 97.34 86.02 89.53 | 93.01
CCLG (ours) | 99.35 9851 9894 9943 8732 8553 9879 8648 89.97 | 93.81
Slot F1 | en de es fr hi ja pt tr zh | AVG
ZSJoint* (Chen et al., 2019) 9520 7479 7652 7425 5273  70.10 7256  29.66 6691 | 68.08
CoSDA' (Qin et al., 2021) 9229 8137 7694 7936 64.06 66.62 75.05 48.77 77.32 | 73.47
GL-CLEF* (Qin et al., 2022) 95.39 8630 8522 8431 7034 73.12 81.83 6585 77.61 | 80.00
LAJ-MCL* (Liang et al., 2022) 96.02 86.59 83.03 82.11 61.04 6852 8149 6520 82.00 | 78.23
DiffSLU* (Mao and Zhang, 2023) | 96.16 86.72 8548 8426 73.04 74.12 8252 68.14 83.12 | 81.51
SoGo* (Zhu et al., 2023) 9542 8746 87.01 8445 7425 76.69 8391 67.04 7853 | 81.64
FC-MTLF* (Cheng et al., 2023) 96.21 86.87 85.66 84.62 73.18 7424 82.68 6822 83.16 | 81.65
CCLG (ours) | 96.83 88.01 8745 8522 7497 7719 84.17 6898 83.82 | 82.96
Overall Accuracy | en de es fr hi ja pt tr zh | AVG
ZSJoint* (Chen et al., 2019) 87.23 4143 4446 43.67 16.01 3359 4390 1.12 30.80 | 38.02
CoSDA' (Qin et al., 2021) 77.04  57.06 4662 5006 2620 28.89 4877 1524 4636 | 44.03
GL-CLEF* (Qin et al., 2022) 88.02 66.03 5953 57.02 3483 4142 6043 2895 50.62 | 54.09
LAJ-MCL* (Liang et al., 2022) 89.81 6775 59.13 57.56 2329 2934 6193 2895 5476 | 52.50
DiffSLU* (Mao and Zhang, 2023) | 90.06 68.02 59.84 58.08 35.12 43.06 63.04 2932 55.08 | 55.74
SoGo* (Zhu et al., 2023) 90.54 7226 61.05 5788 3990 4695 6423 29.14 5131 | 57.02
FC-MTLF* (Cheng et al., 2023) 91.58 69.54 6143 59.62 36.86 44.64 6455 30.86 56.52 | 57.29
CCLG (ours) | 91.97 7491 6243 5999 4043 4798 6495 3156 57.83 | 59.12

Table 3: Experiment Results on the MultiATIS++ dataset. We report both individual and average (AVG) results.
Results with “*” are obtained from the respective published paper, results with “1” are cited from Qin et al. (2022),
and results with “}” are cited from Liang et al. (2022). The symbol “~” indicates missing results from the published
work. Results in bold denote our framework significantly outperforms baselines with p < 0.01 under t-test.

16. During the training process, the value of la-
bel smoothing is set to 0.1, and the dropout rate is
set to 0.1. We train the model for 40 epochs, and
to avoid overfitting, the training will early-stop if
the loss on the development set does not decrease
for 10 epochs. We use Adam optimizer (Kingma
and Ba, 2015) with 8; = 0.9, 8, = 0.98, and 4k
warm-up updates to optimize parameters. Follow-
ing the zero-shot setting, we choose the model with
the highest overall accuracy based on the English
development set and subsequently evaluate on test
datasets. For all hyper-parameters, we perform sev-
eral experiments and select the values with the best
performance. « is set to 0.9, A is set to 0.5, v is
set to 1, and k is set to 5. The experiments are
conducted on an NVIDIA A100. Our code is based
on PyTorch (Paszke et al., 2019) and Transform-
ers’ (Wolf et al., 2020) framework.

5.3 Baselines

We compare our proposed approach with the fol-
lowing baselines, including ZSJoint (Chen et al.,

Shttps://github.com/huggingface/transformers

Methods Intent Acc Slot F1 Overall Acc
ZSJoint® 85.31 67.26 52.15
CoSDA' 90.72 73.34 58.77
CL-CLEF® 88.94 79.86 61.24
LAJ-MCL* 91.04 74.50 60.11
CCLG (ours) | 92.42 82.24 64.36

Table 4: Average results of all the languages on MTOP.
Results with | are cited from Liang et al. (2022), re-
sults with * are from the corresponding published paper,
results with <> are obtained by our re-implementation,
and results in bold denote our framework significantly
outperforms baselines with p < 0.01 under t-test.

2019), CoSDA (Qin et al., 2021), GL-CLEF (Qin
et al., 2022), LAJ-MCL (Liang et al., 2022), Diff-
SLU (Mao and Zhang, 2023), SoGo (Zhu et al.,
2023), and FC-MTLF (Cheng et al., 2023), whose
details are provided in Appendix A.

5.4 Main Results

The results on MultiATIS++ are shown in Table 3
and the results on MTOP are listed in Table 4. From
them, we have the following observations:
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Intent Accuracy ‘ en de es fr hi ja pt tr zh ‘ AVG
CCLG (ours) ‘ 99.35 9851 98.94 9943 8732 8553 9879 86.48  89.97 ‘ 93.81
w/o Cyclical Contrastive Learning 98.21 97.76  97.11 97.74 86.14  84.15 96.01 84.23 88.13 92.16
w/o Geodesic 98.05 9723 9654 97.12 8522 8205 9533 8324 8742 | 91.36
Slot F1 ‘ en de es fr hi ja pt tr zh ‘ AVG
CCLG (ours) ‘ 96.83  88.01 8745 8522 7497  77.19 8417 6898  83.82 ‘ 82.96
w/o Cyclical Contrastive Learning | 96.13  87.11 86.82  84.75 7423  76.65 8376 6833  83.08 | 82.32
w/o Geodesic 95.13  86.04 8503 8376 6997 7244 81.03 6498 77.01 79.49
Overall Accuracy ‘ en de es fr hi ja pt tr zh ‘ AVG
CCLG (ours) ‘ 9197 7491 6243 5999 4043 4798 6495 3156 57.83 ‘ 59.12
w/o Cyclical Contrastive Learning | 91.13 7422 62.01 59.56  39.64 4745 6433 31.02 56.76 | 58.46
w/o Geodesic 87.62 6573 59.14 56.62 3444  41.02 60.11 28.63 50.14 | 53.72

Table 5: Ablation study of difference components on the MutliATIS++ dataset.

(1) The methodologies employed in CoSDA, GL-
CLEeF, LAJ-MCL, and FC-MTLF all incorporate
code-switching, and it is evident that they outper-
form models that do not use this technique, show-
casing its effectiveness in enhancing model perfor-
mance compared to those that do not utilize such
strategies. Moreover, our proposed approach goes
beyond these established approaches by introduc-
ing a novel framework that achieves even greater
performance gains. With the relative enhancement
of 1.83% in average overall accuracy over the pre-
vious state-of-the-art model, our method stands out.
This notable improvement can be attributed to our
innovative approach based on cyclical contrastive
learning based on geodesic.

(2) CCLG obtains notable and consistent ad-
vancements across all subtasks, particularly show-
casing significant improvements. Its impact is par-
ticularly pronounced in low-resource languages
compared to high-resource ones. The substantial
improvement achieved in these languages surpasses
gains observed in other high-resource languages.
The success of CCLG in low-resource languages
aligns with the original intent of the zero-shot cross-
lingual SLU task, which aimed to address chal-
lenges in languages with limited training data.

5.5 Ablation Study

To validate the advantages of CCLG from different
perspectives, we conduct several ablation studies
on the MixATIS++ dataset, the results of which are
demonstrated in Table 5.

5.5.1 Effect of Cyclical Contrastive Learning

CCLG makes a pivotal contribution through its in-
novative cyclical contrastive learning, strategically
achieving consistency across different languages.

Methods ‘ Intent Acc  Slot F1 Overall Acc
ChatGPT 73.25 61.57 39.16
Vicuna 1.3 (7B) 7291 60.40 37.05
LLaMA 2 (7B) 72.86 61.20 37.28
CCLG (ours) ‘ 93.81 82.96 59.12

Table 6: Results of LLMs on the MutliATIS++ dataset.

To meticulously evaluate the impact of this module,
we conduct an ablation study by excluding LccL
in Eq. 19, as denoted by "w/o Cyclical Contrastive
Learning" in Table 5. A discernible degradation
in performance emerges across all metrics for ev-
ery language when the cyclical contrastive learning
module is omitted. We contend that this observed
improvement stems from the module’s capability to
model the consistency between different languages,
particularly beneficial for low-resource languages
facing the data scarcity challenges.

5.5.2 Effect of Geodesic

To bolster the effectiveness of geodesic, we con-
duct an ablation study by excluding Lgcr. in Eq. 19.
This configuration is denoted as "w/o Geodesic"
in Table 5. Significantly, our findings reveal a de-
cline in performance across all metrics for each
language, underscoring the importance of geodesic
in constructing positive and negative samples in
contrastive learning. This ensures a robust and reli-
able model performance in real-world applications.

5.6 Comparison with Large Language Models

As demonstrated in Table 6, we utilize the evalu-
ation methodology introduced by He and Garner
(2023) to assess the performance of ChatGPT (Ope-
nAl, 2023), Vicuna 1.3 (7B) (Zheng et al., 2023),
and LLaMA 2(7B) (Touvron et al., 2023). In this
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Text (En): | show flights from burbank to st. louis on monday
Ref. Intent: atis_flight
: Slot: (0] O O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name
Intent: atis_flight
GL-CLrF Slot: (0] (0] O B-fromloc.city_name O O (0] O B-depart_date.day_name
Intent: atis_flight
FC-MTLF Slot: (0] (0] O B-fromloc.city_name O B-toloc.city_name (0] O B-depart_date.day_name
CCLG Intent: atis_flight
Slot: (0} (¢} (¢} B-flight_stop (6] (¢} B-fromloc.city_name O B-toloc.city_name
Text (De):|Zeige Fliige von Burbank nach St. Louis fiir Montag
Ref. Intent: atis_flight
: Slot: (0] (6] O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name
Intent: atis_airline
GL-CLrF Slot: (6] (0] O B-fromloc.city_name O (0] (0] (0] (0]
Intent: atis_airline
FC-MTLF Slot: (0] (6] O B-fromloc.city_name O B-toloc.city_name 0] O (6]
CCLG Intent: atis_flight
Slot: (0] O O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name

Table 7: Case study on MultiATIS++ dataset. Text in red denotes the incorrect predictions.

evaluation, the models are presented with 20 ex-
amples each. Despite the impressive performance
demonstrated by Large Language Models (LLMs)
in few-shot and zero-shot learning tasks, a signifi-
cant performance gap of approximately 20% per-
sists between these models and CCLG in terms
of overall accuracy on the MultiATIS++ dataset.
This performance disparity is consistently observed
across other datasets as well. The observed perfor-
mance degradation highlights the persistent chal-
lenges that language models encounter in under-
standing spoken language, despite their advanced
few-shot and zero-shot learning capabilities. This
underscores the urgent need for dedicated efforts
in designing effective zero-shot cross-lingual SLU
frameworks. Addressing these challenges is not
only crucial but also remains an ongoing and vital
task for the NLP community. Further exploration
and investigation into innovative approaches are
warranted to advance state-of-the-art performance.

5.7 Case Study

To further verify the advancements of our model
compared to previous methods in zero-shot cross-
lingual SLL.U, we present a case study across differ-
ent languages. Specifically, we examine English
and German as two representative examples. The
results in Table 7 reveal notable distinctions in the
performance of GL-CLeF, FC-MTLF, and CCLG.

In the case of English, all these models correctly
predict the intent. However, as the linguistic com-
plexity increases in German, errors become more
pronounced in GL-CLeF and FC-MTLF, while
CCLG maintains correct predictions. It exemplifies
the robustness and cross-lingual generalizability of

CCLG, outperforming its counterparts in accurately
predicting intents across diverse languages, with-
out succumbing to increased linguistic complexity,
thereby enhancing overall performance.

In terms of slot filling accuracy, GL-CLEF and
FC-MTLF show some errors in English, whereas
CCLG maintains accuracy. Moving to German, the
errors in GL-CLeF and FC-MTLF become more
pronounced, while CCLG continues to maintain a
high performance. This observed trend highlights
the robust nature of CCLG, showcasing its consis-
tent superiority in accurately predicting slots.

6 Conclusion

In this paper, we propose a novel framework CCLG
for zero-shot cross-lingual spoken language under-
standing (SLU), which utilizes cyclical contrastive
learning to achieve consistency across different
languages and applies geodesic to construct posi-
tive samples and negative samples in contrastive
learning. Experiments on the MultiATIS++ dataset
and the MTOP dataset show that CCLG outper-
forms the previous best model and achieves a new
state-of-the-art performance. Further analysis also
demonstrates that our method can indeed transfer
knowledge between different languages effectively.

Limitations

While our approach achieves state-of-the-art per-
formance by modifying the traditional contrastive
paradigm, we recognize the potential for further en-
hancements through the incorporation of external
knowledge. Given the recent successes observed
with LLMs, we anticipate that harnessing LL.Ms
could yield additional improvements in our model’s
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performance. Exploring the integration of LLMs
into our framework represents a promising avenue.
We leave this aspect for future work.

Ethics Statement

We conducted all experiments using publicly avail-
able datasets that are free from offensive content or
information with negative social impact. The main
objective of this paper is to enhance the model’s
capacity for understanding, and our model does
not generate any uncontrollable output. Hence, we
took measures to ensure that our paper adheres to
ethical review guidelines. By prioritizing ethical
considerations, our aim is to contribute responsibly
to the advancement of NLP technology.
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A Details of Baselines

Here we provide the details of basslines:

(1) ZSJoint: We have re-implemented the zero-
shot joint model (Chen et al., 2019) (referred to as
ZSJoint), trained on the English training set and
directly applied to the test sets of target languages.

(2) CoSDA: Qin et al. (2021) introduces a dy-
namic code-switching method involving random
multilingual token-level replacement. For a fair
comparison, we utilize both English training data
and code-switching data for fine-tuning.

(3) GL-CLEF: Qin et al. (2022) proposes a
global-local contrastive learning framework for ex-
plicit alignment, achieving the different granularity
alignments, including sentence-level local intent
alignment, token-level local slot alignment, and
semantic-level global intent-slot alignment.

(4) LAJ-MCL: Liang et al. (2022) introduces
a multi-level contrastive learning framework de-
signed for zero-shot cross-lingual SLU.

(5) DiffSLU: Mao and Zhang (2023) introduces
a diffusion model and applies knowledge distil-
lation for zero-shot cross-lingual SLU, achieving
mutual guidance between intent and slots.

(6) SoGo: Zhu et al. (2023) proposes a semantics-
coherent and grammar-coherent method to enhance
code-switching method for zero-shot cross-lingual
SLU, effectively boosting the performance.

(7) FC-MTLF: Cheng et al. (2023) introduces a
framework for cross-lingual SLU, utilizing code-
switching for coarse-grained alignment and ma-
chine translation for fine-grained alignment.

1816



