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Abstract

Owing to the scarcity of labeled training data,001
Spoken language understanding (SLU) is still002
a challenging task in low-resource languages.003
Therefore, zero-shot cross-lingual SLU attracts004
more and more attention. Contrastive learning005
is widely applied to explicitly align representa-006
tions of similar sentences across different lan-007
guages. However, the vanilla contrastive learn-008
ing method may face two problems in zero-shot009
cross-lingual SLU: (1) the consistency between010
different languages is neglected; (2) each utter-011
ance has two different kinds of SLU labels, i.e.012
slot and intent, the utterances with one different013
label are also pushed away without any discrim-014
ination, which limits the performance. In this015
paper, we propose Cyclical Contrastive Learn-016
ing based on Geodesic (CCLG), which intro-017
duces cyclical contrastive learning to achieve018
the consistency between different languages019
and leverages geodesic to measure the simi-020
larity to construct the positive pairs and neg-021
ative pairs. Experimental results demonstrate022
that our proposed framework achieves the new023
state-of-the-art performance on MultiATIS++024
and MTOP datasets, and the model analysis fur-025
ther verifies that CCLG can effectively transfer026
knowledge between different languages1.027

1 Introduction028

Spoken Language Understanding (SLU) holds the029

central position in the task-oriented dialogue sys-030

tems (Tur and De Mori, 2011; Qin et al., 2019;031

Xing and Tsang, 2022; Song et al., 2022). The032

primary objective of SLU is to comprehend and033

extract relevant information from user utterances.034

This capability enables the system to discern the035

user’s current objective and generate appropriate re-036

sponses. SLU comprises two critical sub-tasks: in-037

tent detection, which focuses on identifying users’038

intentions, and slot filling, which entails extracting039

semantic elements from user queries.040

1Our source code and models will be released after review.

However, the effectiveness of traditional SLU 041

models is intrinsically linked to the availability of 042

extensive annotated data, which poses challenges 043

in scalability. This challenge is particularly evi- 044

dent in the case of low-resource languages, where 045

the lack of substantial labeled datasets exacerbates 046

scalability issues, hindering the seamless deploy- 047

ment and advancement of SLU models. With the 048

demand for language processing solutions extend- 049

ing across diverse linguistic landscapes, the ne- 050

cessity for scalable SLU models that can operate 051

effectively in resource-constrained environments 052

becomes increasingly critical. 053

To tackle these constraints, the concept of zero- 054

shot cross-lingual SLU generalization has emerged 055

as a central focus of interest and investigation. Re- 056

cently, mBERT (Devlin et al., 2019) has demon- 057

strated significant advancements in zero-shot cross- 058

lingual SLU. Building upon this work, Liu et al. 059

(2020) introduces an attention-informed mixed- 060

language training approach for cross-lingual SLU. 061

In addition, the exploration of multilingual code- 062

switched settings has been extended by Qin et al. 063

(2020a), which entails aligning a source language 064

with target languages. GL-CLEF (Qin et al., 2022) 065

employs contrastive learning, leveraging bilingual 066

dictionaries to construct multilingual views of the 067

same utterance, then encouraging their representa- 068

tions to be more similar than those negative exam- 069

ple pairs. LAJ-MCL (Liang et al., 2022) proposes 070

to model the utterance-slot-word structure using a 071

multi-level contrastive learning framework to facil- 072

itate explicit alignment, further enhancing perfor- 073

mance. Although existing zero-shot cross-lingual 074

SLU methods have made promising strides by con- 075

trastive learning, we identify two main issues: 076

(1) The consistency between different lan- 077

guages is neglected. Although the code-switching 078

method has been applied to construct positive sam- 079

ples in contrastive learning, we find that the con- 080

sistency between different languages has not been 081
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effectively established. Specifically, the distances082

between the corresponding samples in different lan-083

guages are inconsistent, which affects the transfer084

of knowledge across different languages.085

(2) The utterances with one different label are086

also pushed away without discrimination. Tra-087

ditional contrastive learning methods utilize code-088

switching to construct the positive samples and neg-089

ative samples, bringing tokens with the same label090

and intent label closer together while pushing other091

the tokens away. However, this can result in a side092

effect where tokens with only one different label093

(slot or intent) can be also indiscriminately pushed094

away, which undoubtedly hampers the representa-095

tion modeling of contrastive learning, leading to096

the suboptimal performance.097

In this paper, we propose Cyclical Contrastive098

Learning based on Geodesic (CCLG) to solve these099

two problems. For the first problem, we introduce100

two consistency losses, including the cross-lingual101

consistency loss and the intra-language consistency102

loss, aiming to boost consistency between different103

languages. For the second problem, we abandon104

the conventional approach of directly employing105

code-switching to construct positive samples and106

negative samples in contrastive learning. Instead,107

we utilize geodesic to reconstruct positive and nega-108

tive samples and employ geodesic-based similarity109

instead of the traditional similarity metrics, thereby110

facilitating the learning of representations.111

We conduct experiments on MultiATIS++ (Xu112

et al., 2020) and MTOP (Li et al., 2021), cover-113

ing nine and six different languages, respectively.114

The experimental results show that our framework115

can outperform previous cross-lingual SLU base-116

lines. The model analysis further indicates that our117

method can transfer knowledge from high-resource118

languages to low-resource languages. In summary,119

our work makes three-fold contributions:120

• We use cyclical contrastive learning to achieve121

consistency between different languages.122

• We apply geodesic to construct positive and123

negative samples in contrastive learning, lead-124

ing to improved representations of tokens.125

• Experiment results show that our framework126

achieves the new state-of-the-art performance127

on MultiATIS++ and MTOP datasets.128

2 Related Works129

The related works are introduced from zero-shot130

cross-lingual SLU and contrastive learning.131

2.1 Zero-shot Cross-lingual SLU 132

Traditional SLU usually focuses on languages with 133

abundant resources, which limits their widespread 134

use. This limitation has sparked growing interest in 135

a novel approach known as zero-shot cross-lingual 136

SLU. The essence of success in this approach lies 137

in tapping into the linguistic insights present in lan- 138

guages with ample resources. By doing so, it opens 139

up exciting possibilities for overcoming challenges 140

posed by limited data in cross-lingual scenarios. 141

Moreover, it extends the reach of SLU to languages 142

that have been previously overlooked, thereby con- 143

tributing to a more inclusive and adaptable frame- 144

work in the field of multilingualism. 145

In recent years, many cross-lingual embeddings, 146

such as mBERT (Devlin et al., 2019), have shown 147

promising results. Liu et al. (2020) propose code- 148

mixing to construct training sentences containing 149

both the source and target phrases, implicitly fine- 150

tuning mBERT. Building upon it, Qin et al. (2020a) 151

proposes multilingual code-switching data augmen- 152

tation to better align the source language with all 153

target languages. Additionally, van der Goot et al. 154

(2021) suggests three non-English auxiliary tasks to 155

boost cross-lingual transfer. More recently, SOGO 156

(Zhu et al., 2023) highlights the limitations of the 157

conventional code-switching method and proposes 158

a saliency-based substitution approach for extract- 159

ing keywords as substitutions. In our method, we 160

use cyclical contrastive learning based on geodesic 161

to further transfer the knowledge from the source 162

language to the target language. 163

2.2 Contrastive Learning 164

Contrastive learning aims to learn representations 165

of examples via minimizing the distance between 166

positive pairs and maximizing the distance between 167

negative pairs (Saunshi et al., 2019; Chuang et al., 168

2020; Liu et al., 2022), a concept initially proposed 169

in the field of computer vision (Chopra et al., 2005; 170

Chen et al., 2020; Wang and Liu, 2021). In natural 171

language processing, contrastive learning is utilized 172

for learning the sentence embeddings (Giorgi et al., 173

2021; Yan et al., 2021), translation tasks (Pan et al., 174

2021; Ye et al., 2022), and summarization (Wang 175

et al., 2021; Cao and Wang, 2021). Owing to its 176

strong capability in achieving alignment across dif- 177

ferent languages, contrastive learning has also been 178

used in zero-shot cross-lingual SLU (Liang et al., 179

2022; Qin et al., 2022). However, we find two main 180

issues with directly utilizing vanilla conservative 181
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Figure 1: The overview of our approach.

learning in zero-shot cross-lingual SLU. As a re-182

sult, we propose cyclical contrastive learning based183

on geodesic to tackle these two issues.184

3 Background185

SLU comprises two core subtasks, including intent186

detection and slot filling. Given the input utterance187

x = (x1, x2, . . . , xn), where n denotes the length188

of x, intent detection is treated as a classification189

task, producing the intent label oI , and slot filling190

is a sequence labeling task, mapping each utterance191

x to a slot output sequence oS = (oS1 , o
S
2 , . . . , o

S
n).192

Due to the intrinsic correlation between intent de-193

tection and slot filling, it is common to train a uni-194

fied SLU model capable of jointly handling both195

tasks, which is formulated as follows:196

(oI ,oS) = f(x) (1)197

where f denotes the trained model.198

Zero-shot cross-lingual SLU task involves train-199

ing an SLU model on a high-resource source lan-200

guage, such as English, and seamlessly using it201

on a low-resource target language, such as French.202

In this scenario, when presented with an instance203

xtarget in the target language, the trained model f204

can directly generate predictions for both intent and205

slot values in the target language:206
(
oI
target,o

S
target

)
= f (xtarget) (2)207

where target denotes the target language.208

4 Method209

In this section, we first introduce the Generic SLU210

Module (Sec. 4.1) and the previous paradigm of211

utilizing contrastive learning to enhance zero-shot 212

cross-lingual SLU (Sec. 4.2). Then, we introduce 213

the components of our proposed approach, includ- 214

ing Cyclical Contrastive Learning (Sec. 4.3) and 215

Geodesic (Sec. 4.4). At last, we introduce the final 216

Training Objective (Sec. 4.5). The overview of our 217

approach is demonstrated in Figure 1. 218

4.1 Generic SLU Module 219

Given the input sentence x = (x1, x2, ..., xn), the 220

construction of the input sequence is based on each 221

input utterance by incorporating the specific tokens 222

x = ([CLS], x1, x2, ..., xn, [SEP]) (Devlin et al., 223

2019). [CLS] serves as the special symbol repre- 224

senting the entire sequence, and [SEP] is employed 225

to separate non-consecutive token sequences. Fol- 226

lowing Qin et al. (2020a), code-switching is applied 227

to leverage the bilingual dictionaries (Lample et al., 228

2018) in generating multi-lingual code-switched 229

data as input for the model. The representation of 230

the whole utterance, denoted as H = (hCLS, h1, . . . , 231

hn, hSEP), is obtained by utilizing the pre-trained 232

mBERT (Devlin et al., 2019) model. 233

For the intent detection task, we utilize the utter- 234

ance representation hCLS as input to a classification 235

layer in order to derive the predicted intent: 236

oI = softmax
(
W IhCLS + bI

)
(3) 237

where W I and bI are two trainable matrices. 238

For the slot filling task, we follow the methods 239

proposed in (Wang et al., 2019; Qin et al., 2022), 240

wherein we use the representation of the first sub- 241

token as the whole word representation and lever- 242
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age the hidden states to predict each slot:243

oS
t = softmax (W sht + bs) (4)244

where ht is the representation of the first sub-token245

of word xt, W s and bs are two trainable matrices.246

4.2 Previous Contrastive Paradigm247

Contrastive learning has been applied in zero-shot248

cross-lingual SLU (Qin et al., 2022; Liang et al.,249

2022). In general, previous methods aim to bring250

tokens and the corresponding code-switched tokens251

(positive pairs) closer together while pushing apart252

tokens and the non-corresponding tokens (negative253

pairs). And the previous contrastive loss LCL can254

be formulated as follows:255

LI
CL = −

N∑

j=1

log
s(hj

CLS,h
j+
CLS)∑B

hj
CLS ̸=hj′

CLS

s(hj
CLS,h

j′
CLS)

(5)256

LS
CL = − 1

n

N∑

j=1

n∑

i=1

log
s(hj

i ,h
j+
i )

∑B

hj
i ̸=hj′

i

s(hj
i ,h

j′
i )

(6)257

LCL = LI
CL + LS

CL (7)258

where s(·) denotes the cosine similarity function,259

h+
CLS denotes the positive sample of hCLS, h+

i de-260

notes the positive sample of hi, B denotes the mini-261

batch of original and code-switched tokens, and N262

denotes the total number of utterences.263

4.3 Cyclical Contrastive Learning264

Inspired by previous work (Goel et al., 2022), to im-265

prove the consistency between different languages,266

we introduce two additional consistency losses, in-267

cluding the cross-lingual consistency loss and the268

intra-language consistency loss.269

The cross-lingual consistency loss LC
CCL is ap-270

plied to reduce the discrepancy in similarity scores271

between the representations of all mismatched pairs272

of original tokens and code-switched tokens, which273

can be formulated as follows:274

LC
CCL =

1

N

N∑

j=1

N∑

i=1

(⟨Hj ,Hi⟩ − ⟨Hi,Hj⟩)2 (8)275

where ⟨·, ·⟩ denotes the inner product function, and276

H denotes the representation of the corresponding277

code-switched utterance.278

The intra-lingual consistency loss LI
CCL is em-279

ployed to reduce the discrepancy in the similarity280

scores between the representations of all the origi-281

nal token pairs and corresponding code-switched282

token pairs, which can be formulated as follows: 283

LI
CCL =

1

N

N∑

j=1

N∑

i=1

(⟨Hj ,Hi⟩ − ⟨Hi,Hj⟩)2 (9) 284

The final cyclical contrastive learning loss LCCL 285

is the sum of LC
CCL and LI

CCL: 286

LCCL = LC
CCL + LI

CCL (10) 287

4.4 Geodesic 288

In the previous contrastive paradigm, only the to- 289

kens with the same two labels, including intent and 290

slot, are regarded as the positive pairs. Therefore, 291

the tokens with only one different label (slot or in- 292

tent) are also pushed apart without discrimination, 293

which limits the overall performance. To solve this 294

problem, we use geodesic to discriminate positive 295

pairs in contrastive learning. 296

The representations of tokens are often embed- 297

ded within a high-dimensional manifold, and our 298

objective is to gauge the geodesic distance between 299

two points along this manifold. However, calculat- 300

ing the precise geodesic distance proves challeng- 301

ing in the absence of explicit knowledge regard- 302

ing the manifold’s structure (Kimmel and Sethian, 303

1998). To address this, we resort to leveraging the 304

K-NN graph (Cover and Hart, 1967) as an approxi- 305

mation to the manifold structure (Surazhsky et al., 306

2005; Chowdhury et al., 2022). Within this graph, 307

each token hi constitutes a node, and connections 308

are established between nodes such that each node 309

links to at most k other nodes. 310

Specifically, a directed edge is established from 311

the node hi to node hj if hj is one of the k nearest 312

neighbors of hi. The weight of each edge d(hi,hj) 313

is defined utilizing the cosine similarity: 314

d(hi,hj) = 1− hih
⊤
j (11) 315

Finally, we employ the shortest path algorithm 316

Djikstra (Dijkstra, 1959) to compute the length of 317

the shortest path between the two token representa- 318

tions along the obtained weighted directed graph, 319

serving as the final geodesic distance G(hi,hj). 320

For a token hi, we define the k tokens with the 321

closest geodesic distance from the code-switched 322

tokens as its positive samples Pi: 323

Pi =
{
pk
i

}
= arg topkG(hi,hj)

k

(12) 324

In vanilla contrastive learning, for negative sam- 325

ples with only one different label and those with 326
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two different labels, the push operation for neg-327

ative samples is indistinguishable, which clearly328

undermines the model to learn the correct represen-329

tations. As a result, we use the geodesic distance330

to differentially push negative samples away. The331

similarity SG(hi,hj) between different tokens is:332

SG(hi,hj) = exp(hih
⊤
j · log 1

exp(G(hi,hj) + 1)
)

(13)
333

By considering the relationships between neg-334

ative samples while maximizing mutual informa-335

tion, we believe SG(hi,hj) is more beneficial than336

the conventional similarity function. The geodesic-337

based contrastive learning loss LGCL are as follows:338

LI
GCL = −

N∑

j=1

log

∑
pk
CLS∈PCLS

exp(hj
CLS,p

k
CLS)

∑B

hj
CLS ̸=hj′

CLS

SG(h
j
CLS,h

j′
CLS)

(14)

339

LS
GCL = − 1

n

N∑

j=1

n∑

i=1

log

∑
pk
i ∈Pi

exp(hj
i ,p

k
i )

∑B

hj
i ̸=hj′

i

SG(h
j
i ,h

j′
i )

(15)

340

LGCL = LI
GCL + LS

GCL (16)341

4.5 Trainig Objective342

Following previous work (Qin et al., 2020b, 2022),343

the intent detection objective LI and the slot filling344

objective LS are computed as follows:345

LI = −
nI∑

i=1

ŷI
i log

(
oIi

)
(17)346

LS = −
n∑

j=1

nS∑

i=1

ŷi,S
j log

(
oi,Sj

)
(18)347

where ŷI
i denotes the gold intent label, ŷi,S

j denotes348

the gold slot label for the j-th token, nI denotes349

the number of gold intent labels, and nS denotes350

the number of gold slot labels.351

The final training objective L is as follows:352

L = αLI + (1− α)LS + λLCCL + γLGCL (19)353

354

5 Experiments355

5.1 Datasets and Metrics356

We primarily conduct our experiments on two pub-357

lic cross-lingual SLU benchmark datasets, includ-358

ing the MultiATIS++ (Xu et al., 2020) dataset and359

the MTOP (Li et al., 2021) dataset.360

MultiATIS++2 dataset is the broadened version 361

of the Multilingual ATIS (Upadhyay et al., 2018) 362

dataset, whose statistics are shown in Table 1. This 363

extension includes human-translated data for an ad- 364

ditional six languages: Spanish (es), German (de), 365

Chinese (zh), Japanese (ja), Portuguese (pt), and 366

French (fr), complementing the original languages, 367

Hindi (hi) and Turkish (tr). The dataset comprises 368

4,478 utterances in the training set, 500 in the vali- 369

dation set, and 893 in the test set, with a total of 18 370

intents and 84 slots for each language.

Language Utterances Intent Slot
train valid test types types

hi 1440 160 893 17 75
tr 578 60 715 17 71
others 4488 490 893 18 84

Table 1: Statistics of MultiATIS++ dataset.
371

MTOP3 is compiled from interactions between 372

humans and assistant systems, with statistics pre- 373

sented in Table 2. MTOP comprises over 100,000 374

human-translated utterances in six languages (En- 375

glish (en), German (de), Spanish (es), French (fr), 376

Thai (th), Hindi (hi)) across eleven domains. For a 377

fair comparison, we Liang et al. (2022) to use the 378

flat version, divided into 70:10:20 percentage splits 379

for the training set, validation set, and test set.

Number of Total Utterances Intent Slot
en de fr es hi th types types

22288 18788 16584 15459 16131 15195 117 78

Table 2: Statistics of MTOP dataset.
380

Consistent with prior research (Qin et al., 2022; 381

Zhu et al., 2023; Cheng et al., 2023), accuracy 382

serves as the metric for evaluating intent detection, 383

and F1 score is applied to assess slot filling perfor- 384

mance. Moreover, overall accuracy is utilized for 385

sentence-level semantic frame parsing evaluation. 386

5.2 Implementation Details 387

Following Qin et al. (2022), we utilize the base 388

case of the multilingual BERT (mBERT)4(Devlin 389

et al., 2019), featuring N = 12 attention heads and 390

M = 12 transformer blocks. The learning rate is 391

set to 5 × 10−7 and the total batch size is set to 392

2https://github.com/amazon-science/multiatis
3https://fb.me/mtop_dataset
4https://github.com/google-research/bert/blob/

master/multilingual.md
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Intent Accuracy en de es fr hi ja pt tr zh AVG

ZSJoint‡ (Chen et al., 2019) 98.54 90.48 93.28 94.51 77.15 76.59 94.62 73.29 84.55 87.00
CoSDA† (Qin et al., 2021) 95.74 94.06 92.29 77.04 82.75 73.25 93.05 80.42 78.95 87.32
GL-CLEF* (Qin et al., 2022) 98.77 97.53 97.05 97.72 86.00 82.84 96.08 83.92 87.68 91.95
LAJ-MCL* (Liang et al., 2022) 98.77 98.10 98.10 98.77 84.54 81.86 97.09 85.45 89.03 92.41
DiffSLU* (Mao and Zhang, 2023) 98.86 98.17 98.21 98.93 86.66 82.65 97.21 85.98 89.46 92.90
SOGO* (Zhu et al., 2023) 98.89 98.45 98.15 97.74 83.87 84.75 97.73 85.53 89.10 92.69
FC-MTLF* (Cheng et al., 2023) 98.97 98.21 98.36 99.01 86.72 82.95 97.34 86.02 89.53 93.01

CCLG (ours) 99.35 98.51 98.94 99.43 87.32 85.53 98.79 86.48 89.97 93.81

Slot F1 en de es fr hi ja pt tr zh AVG

ZSJoint‡ (Chen et al., 2019) 95.20 74.79 76.52 74.25 52.73 70.10 72.56 29.66 66.91 68.08
CoSDA† (Qin et al., 2021) 92.29 81.37 76.94 79.36 64.06 66.62 75.05 48.77 77.32 73.47
GL-CLEF* (Qin et al., 2022) 95.39 86.30 85.22 84.31 70.34 73.12 81.83 65.85 77.61 80.00
LAJ-MCL* (Liang et al., 2022) 96.02 86.59 83.03 82.11 61.04 68.52 81.49 65.20 82.00 78.23
DiffSLU* (Mao and Zhang, 2023) 96.16 86.72 85.48 84.26 73.04 74.12 82.52 68.14 83.12 81.51
SOGO* (Zhu et al., 2023) 95.42 87.46 87.01 84.45 74.25 76.69 83.91 67.04 78.53 81.64
FC-MTLF* (Cheng et al., 2023) 96.21 86.87 85.66 84.62 73.18 74.24 82.68 68.22 83.16 81.65

CCLG (ours) 96.83 88.01 87.45 85.22 74.97 77.19 84.17 68.98 83.82 82.96

Overall Accuracy en de es fr hi ja pt tr zh AVG

ZSJoint‡ (Chen et al., 2019) 87.23 41.43 44.46 43.67 16.01 33.59 43.90 1.12 30.80 38.02
CoSDA† (Qin et al., 2021) 77.04 57.06 46.62 50.06 26.20 28.89 48.77 15.24 46.36 44.03
GL-CLEF* (Qin et al., 2022) 88.02 66.03 59.53 57.02 34.83 41.42 60.43 28.95 50.62 54.09
LAJ-MCL* (Liang et al., 2022) 89.81 67.75 59.13 57.56 23.29 29.34 61.93 28.95 54.76 52.50
DiffSLU* (Mao and Zhang, 2023) 90.06 68.02 59.84 58.08 35.12 43.06 63.04 29.32 55.08 55.74
SOGO* (Zhu et al., 2023) 90.54 72.26 61.05 57.88 39.90 46.95 64.23 29.14 51.31 57.02
FC-MTLF* (Cheng et al., 2023) 91.58 69.54 61.43 59.62 36.86 44.64 64.55 30.86 56.52 57.29

CCLG (ours) 91.97 74.91 62.43 59.99 40.43 47.98 64.95 31.56 57.83 59.12

Table 3: Experiment Results on the MultiATIS++ dataset. We report both individual and average (AVG) results.
Results with “*” are obtained from the respective published paper, results with “†” are cited from Qin et al. (2022),
and results with “‡” are cited from Liang et al. (2022). The symbol “–” indicates missing results from the published
work. Results in bold denote our framework significantly outperforms baselines with p < 0.01 under t-test.

16. During the training process, the value of la-393

bel smoothing is set to 0.1, and the dropout rate is394

set to 0.1. We train the model for 40 epochs, and395

to avoid overfitting, the training will early-stop if396

the loss on the development set does not decrease397

for 10 epochs. We use Adam optimizer (Kingma398

and Ba, 2015) with β1 = 0.9, β2 = 0.98, and 4k399

warm-up updates to optimize parameters. Follow-400

ing the zero-shot setting, we choose the model with401

the highest overall accuracy based on the English402

development set and subsequently evaluate on test403

datasets. For all hyper-parameters, we perform sev-404

eral experiments and select the values with the best405

performance. α is set to 0.9, λ is set to 0.5, γ is406

set to 1, and k is set to 5. The experiments are407

conducted on an NVIDIA A100. Our code is based408

on PyTorch (Paszke et al., 2019) and Transform-409

ers5(Wolf et al., 2020) framework.410

5.3 Baselines411

We compare our proposed approach with the fol-412

lowing baselines, including ZSJoint (Chen et al.,413

5https://github.com/huggingface/transformers

Methods Intent Acc Slot F1 Overall Acc

ZSJoint♢ 85.31 67.26 52.15
CoSDA‡ 90.72 73.34 58.77
CL-CLEF♢ 88.94 79.86 61.24
LAJ-MCL* 91.04 74.50 60.11

CCLG (ours) 92.42 82.24 64.36

Table 4: Average results of all the languages on MTOP.
Results with ‡ are cited from Liang et al. (2022), re-
sults with * are from the corresponding published paper,
results with ♢ are obtained by our re-implementation,
and results in bold denote our framework significantly
outperforms baselines with p < 0.01 under t-test.

2019), CoSDA (Qin et al., 2021), GL-CLEF (Qin 414

et al., 2022), LAJ-MCL (Liang et al., 2022), Diff- 415

SLU (Mao and Zhang, 2023), SOGO (Zhu et al., 416

2023), and FC-MTLF (Cheng et al., 2023), whose 417

details are provided in Appendix A. 418

5.4 Main Results 419

The results on MultiATIS++ are shown in Table 3 420

and the results on MTOP are listed in Table 4. From 421

them, we have the following observations: 422
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Intent Accuracy en de es fr hi ja pt tr zh AVG

CCLG (ours) 99.35 98.51 98.94 99.43 87.32 85.53 98.79 86.48 89.97 93.81

w/o Cyclical Contrastive Learning 98.21 97.76 97.11 97.74 86.14 84.15 96.01 84.23 88.13 92.16
w/o Geodesic 98.05 97.23 96.54 97.12 85.22 82.05 95.33 83.24 87.42 91.36

Slot F1 en de es fr hi ja pt tr zh AVG

CCLG (ours) 96.83 88.01 87.45 85.22 74.97 77.19 84.17 68.98 83.82 82.96

w/o Cyclical Contrastive Learning 96.13 87.11 86.82 84.75 74.23 76.65 83.76 68.33 83.08 82.32
w/o Geodesic 95.13 86.04 85.03 83.76 69.97 72.44 81.03 64.98 77.01 79.49

Overall Accuracy en de es fr hi ja pt tr zh AVG

CCLG (ours) 91.97 74.91 62.43 59.99 40.43 47.98 64.95 31.56 57.83 59.12

w/o Cyclical Contrastive Learning 91.13 74.22 62.01 59.56 39.64 47.45 64.33 31.02 56.76 58.46
w/o Geodesic 87.62 65.73 59.14 56.62 34.44 41.02 60.11 28.63 50.14 53.72

Table 5: Ablation study of difference components on the MutliATIS++ dataset.

(1) The methodologies employed in CoSDA, GL-423

CLEF, LAJ-MCL, and FC-MTLF all incorporate424

code-switching, and it is evident that they outper-425

form models that do not use this technique, show-426

casing its effectiveness in enhancing model perfor-427

mance compared to those that do not utilize such428

strategies. Moreover, our proposed approach goes429

beyond these established approaches by introduc-430

ing a novel framework that achieves even greater431

performance gains. With the relative enhancement432

of 1.83% in average overall accuracy over the pre-433

vious state-of-the-art model, our method stands out.434

This notable improvement can be attributed to our435

innovative approach based on cyclical contrastive436

learning based on geodesic.437

(2) CCLG obtains notable and consistent ad-438

vancements across all subtasks, particularly show-439

casing significant improvements. Its impact is par-440

ticularly pronounced in low-resource languages441

compared to high-resource ones. The substantial442

improvement achieved in these languages surpasses443

gains observed in other high-resource languages.444

The success of CCLG in low-resource languages445

aligns with the original intent of the zero-shot cross-446

lingual SLU task, which aimed to address chal-447

lenges in languages with limited training data.448

5.5 Ablation Study449

To validate the advantages of CCLG from different450

perspectives, we conduct several ablation studies451

on the MixATIS++ dataset, the results of which are452

demonstrated in Table 5.453

5.5.1 Effect of Cyclical Contrastive Learning454

CCLG makes a pivotal contribution through its in-455

novative cyclical contrastive learning, strategically456

achieving consistency across different languages.457

Methods Intent Acc Slot F1 Overall Acc

ChatGPT 73.25 61.57 39.16
Vicuna 1.3 (7B) 72.91 60.40 37.05
LLaMA 2 (7B) 72.86 61.20 37.28

CCLG (ours) 93.81 82.96 59.12

Table 6: Results of LLMs on the MutliATIS++ dataset.

To meticulously evaluate the impact of this module, 458

we conduct an ablation study by excluding LCCL 459

in Eq. 19, as denoted by "w/o Cyclical Contrastive 460

Learning" in Table 5. A discernible degradation 461

in performance emerges across all metrics for ev- 462

ery language when the cyclical contrastive learning 463

module is omitted. We contend that this observed 464

improvement stems from the module’s capability to 465

model the consistency between different languages, 466

particularly beneficial for low-resource languages 467

facing the data scarcity challenges. 468

5.5.2 Effect of Geodesic 469

To bolster the effectiveness of geodesic, we con- 470

duct an ablation study by excluding LGCL in Eq. 19. 471

This configuration is denoted as "w/o Geodesic" 472

in Table 5. Significantly, our findings reveal a de- 473

cline in performance across all metrics for each 474

language, underscoring the importance of geodesic 475

in constructing positive and negative samples in 476

contrastive learning. This ensures a robust and reli- 477

able model performance in real-world applications. 478

5.6 Comparison with Large Language Models 479

As demonstrated in Table 6, we utilize the evalu- 480

ation methodology introduced by He and Garner 481

(2023) to assess the performance of ChatGPT (Ope- 482

nAI, 2023), Vicuna 1.3 (7B) (Zheng et al., 2023), 483

and LLaMA 2(7B) (Touvron et al., 2023). In this 484
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Text (En): show flights from burbank to st. louis on monday

Ref. Intent: atis_flight
Slot: O O O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name

GL-CLEF Intent: atis_flight
Slot: O O O B-fromloc.city_name O O O O B-depart_date.day_name

FC-MTLF Intent: atis_flight
Slot: O O O B-fromloc.city_name O B-toloc.city_name O O B-depart_date.day_name

CCLG Intent: atis_flight
Slot: O O O B-flight_stop O O B-fromloc.city_name O B-toloc.city_name
Text (De): Zeige Flüge von Burbank nach St. Louis für Montag

Ref. Intent: atis_flight
Slot: O O O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name

GL-CLEF Intent: atis_airline
Slot: O O O B-fromloc.city_name O O O O O

FC-MTLF Intent: atis_airline
Slot: O O O B-fromloc.city_name O B-toloc.city_name O O O

CCLG Intent: atis_flight
Slot: O O O B-fromloc.city_name O B-toloc.city_name I-toloc.city_name O B-depart_date.day_name

Table 7: Case study on MultiATIS++ dataset. Text in red denotes the incorrect predictions.

evaluation, the models are presented with 20 ex-485

amples each. Despite the impressive performance486

demonstrated by Large Language Models (LLMs)487

in few-shot and zero-shot learning tasks, a signifi-488

cant performance gap of approximately 20% per-489

sists between these models and CCLG in terms490

of overall accuracy on the MultiATIS++ dataset.491

This performance disparity is consistently observed492

across other datasets as well. The observed perfor-493

mance degradation highlights the persistent chal-494

lenges that language models encounter in under-495

standing spoken language, despite their advanced496

few-shot and zero-shot learning capabilities. This497

underscores the urgent need for dedicated efforts498

in designing effective zero-shot cross-lingual SLU499

frameworks. Addressing these challenges is not500

only crucial but also remains an ongoing and vital501

task for the NLP community. Further exploration502

and investigation into innovative approaches are503

warranted to advance state-of-the-art performance.504

5.7 Case Study505

To further verify the advancements of our model506

compared to previous methods in zero-shot cross-507

lingual SLU, we present a case study across differ-508

ent languages. Specifically, we examine English509

and German as two representative examples. The510

results in Table 7 reveal notable distinctions in the511

performance of GL-CLEF, FC-MTLF, and CCLG.512

In the case of English, all these models correctly513

predict the intent. However, as the linguistic com-514

plexity increases in German, errors become more515

pronounced in GL-CLEF and FC-MTLF, while516

CCLG maintains correct predictions. It exemplifies517

the robustness and cross-lingual generalizability of518

CCLG, outperforming its counterparts in accurately 519

predicting intents across diverse languages, with- 520

out succumbing to increased linguistic complexity, 521

thereby enhancing overall performance. 522

In terms of slot filling accuracy, GL-CLEF and 523

FC-MTLF show some errors in English, whereas 524

CCLG maintains accuracy. Moving to German, the 525

errors in GL-CLEF and FC-MTLF become more 526

pronounced, while CCLG continues to maintain a 527

high performance. This observed trend highlights 528

the robust nature of CCLG, showcasing its consis- 529

tent superiority in accurately predicting slots. 530

6 Conclusion 531

In this paper, we propose a novel framework CCLG 532

for zero-shot cross-lingual spoken language under- 533

standing (SLU), which utilizes cyclical contrastive 534

learning to achieve consistency across different 535

languages and applies geodesic to construct posi- 536

tive samples and negative samples in contrastive 537

learning. Experiments on the MultiATIS++ dataset 538

and the MTOP dataset show that CCLG outper- 539

forms the previous best model and achieves a new 540

state-of-the-art performance. Further analysis also 541

demonstrates that our method can indeed transfer 542

knowledge between different languages effectively. 543

Limitations 544

While our approach achieves state-of-the-art per- 545

formance by modifying the traditional contrastive 546

paradigm, we recognize the potential for further en- 547

hancements through the incorporation of external 548

knowledge. Given the recent successes observed 549

with LLMs, we anticipate that harnessing LLMs 550

could yield additional improvements in our model’s 551
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performance. Exploring the integration of LLMs552

into our framework represents a promising avenue.553

We leave this aspect for future work.554

Ethics Statement555

We conducted all experiments using publicly avail-556

able datasets that are free from offensive content or557

information with negative social impact. The main558

objective of this paper is to enhance the model’s559

capacity for understanding, and our model does560

not generate any uncontrollable output. Hence, we561

took measures to ensure that our paper adheres to562

ethical review guidelines. By prioritizing ethical563

considerations, our aim is to contribute responsibly564

to the advancement of NLP technology.565
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A Details of Baselines782

Here we provide the details of basslines:783

(1) ZSJoint: We have re-implemented the zero-784

shot joint model (Chen et al., 2019) (referred to as785

ZSJoint), trained on the English training set and786

directly applied to the test sets of target languages.787

(2) CoSDA: Qin et al. (2021) introduces a dy-788

namic code-switching method involving random789

multilingual token-level replacement. For a fair790

comparison, we utilize both English training data791

and code-switching data for fine-tuning.792

(3) GL-CLEF: Qin et al. (2022) proposes a793

global-local contrastive learning framework for ex-794

plicit alignment, achieving the different granularity795

alignments, including sentence-level local intent796

alignment, token-level local slot alignment, and797

semantic-level global intent-slot alignment.798

(4) LAJ-MCL: Liang et al. (2022) introduces799

a multi-level contrastive learning framework de-800

signed for zero-shot cross-lingual SLU.801

(5) DiffSLU: Mao and Zhang (2023) introduces802

a diffusion model and applies knowledge distil-803

lation for zero-shot cross-lingual SLU, achieving804

mutual guidance between intent and slots.805

(6) SOGO: Zhu et al. (2023) proposes a semantics-806

coherent and grammar-coherent method to enhance807

code-switching method for zero-shot cross-lingual808

SLU, effectively boosting the performance.809

(7) FC-MTLF: Cheng et al. (2023) introduces a810

framework for cross-lingual SLU, utilizing code-811

switching for coarse-grained alignment and ma-812

chine translation for fine-grained alignment.813
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