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Abstract

This paper introduces INTERVENOR (IN-
TERactiVE chaiN Of Repair), a system de-
signed to emulate the interactive code repair
processes observed in humans, encompass-
ing both code diagnosis and code repair. IN-
TERVENOR prompts Large Language Mod-
els (LLMs) to play distinct roles during the
code repair process, functioning as both a Code
Learner and a Code Teacher. Specifically,
the Code Learner is tasked with adhering to
instructions to generate or repair code, while
the Code Teacher is responsible for crafting
a Chain-of-Repair (CoR) to serve as guidance
for the Code Learner. During generating the
CoR, the Code Teacher needs to check the
generated codes from Code Learner and re-
assess how to address code bugs based on er-
ror feedback received from compilers. Experi-
mental results demonstrate that INTERVENOR
surpasses baseline models, exhibiting improve-
ments of approximately 18% and 4.3% over
GPT-3.5 in code generation and code trans-
lation tasks, respectively. Our further analy-
ses show that CoR is effective to illuminate
the reasons behind bugs and outline solution
plans in natural language. With the feedback
of code compilers, INTERVENOR can accu-
rately identify syntax errors and assertion er-
rors and provide precise instructions to repair
codes. All data and codes are available at
https://github.com/NEUIR/INTERVENOR.

1 Introduction

Large Language Models (LLMs), such as Chat-
GPT (OpenAI, 2022), have shown remarkable per-
formance on code related tasks (OpenAI, 2023;
Roziere et al., 2023; Wang et al., 2023b). This has
significantly enhanced the efficiency and produc-
tivity in coding and software development (Qian
et al., 2023a). Current approaches for code-based
models involve pretraining language models on
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Figure 1: The Illustration of INTERVENOR. There are
two agents in INTERVENOR, the teacher and student,
who collaborate to repair the code. The error messages
are utilized as a kind of INTERVENOR to alleviate
the Degeneration-of-Thought (DoT) problem.

code corpora (Muennighoff et al., 2023; Luo et al.,
2023; Li et al., 2023b; Zheng et al., 2023) and em-
ploying Chain-of-Thought (CoT) to prompt the
coding proficiency of LLMs (Wei et al., 2022;
Huang et al., 2023; Li et al., 2023a). However,
compelling LLMs to directly generate entirely cor-
rect code proves to be exceptionally challenging,
even for proficient programmers in real-world sce-
narios (Chen et al., 2023b).

Recently, researchers focus on improving the
code generation ability of LLMs through Self-
Repair techniques (Olausson et al., 2023; Chen
et al., 2023b). These methods leverage LLMs
themselves to execute and repair codes, thereby
enhancing the quality of generated code. Moreover,
multi-agent collaborative coding approaches (Qian
et al., 2023a; Dong et al., 2023) have also proven
their effectiveness in handling difficult code tasks
by prompting LLMs to play different roles, such
as developers and testers. However, lots of bugs
are difficult to find due to the cognitive iner-
tia (McGuire, 1960)–overlooking the buggy codes
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that may not conform to their pre-existing coding
thinking of LLMs. These agent-based code re-
finement methods (Dong et al., 2023; Qian et al.,
2023a) heavily rely on the self-evaluation capa-
bilities of LLMs, potentially encountering the
Degeneration-of-Thought (DoT) problem (Liang
et al., 2023; Shinn et al., 2023).

This paper proposes INTERactiVE chaiN Of
Repair (INTERVENOR) to alleviate the DoT prob-
lem in code repair. The approach incorporates feed-
back from code compilers to enhance the code re-
pair process. Following Dong et al. (2023), we de-
velop two agents, namely, Code Learner and Code
Teacher, to collaboratively repair codes interac-
tively. As illustrated in Figure 1, the Code Learner
is tasked with generating/repairing codes based on
provided instructions. To craft specific code repair
instructions to guide the Code Learner (Kaddour
et al., 2023; Wang et al., 2023a), the Code Teacher
generates the Chain-of-Repair (CoR) to illustrate
the bug repair solutions for the Code Learner. In-
stead of Self-Debug (Chen et al., 2023b), Code
Teacher incorporates the bug report from compil-
ers to rethink the reasons of code errors and gen-
erate planning on how to repair the bugs. This
interactive code repair process will continue until
the code learner successfully fixes all code errors
or reaches the predetermined maximum number of
repair attempts.

Experimental results demonstrate the effective-
ness of INTERVENOR by outperforming previous
baseline models. Notably, INTERVENOR also
achieves about 18% and 4.3% improvements over
GPT-3.5 (OpenAI, 2022) in code generation and
code translation tasks, showing its ability to im-
prove the quality of generated codes through itera-
tive code repair. Besides, we also build the CodeEr-
ror dataset for evaluating the code repair ability of
INTERVENOR by collecting the buggy code snip-
pets from GPT-3.5 and real-world user-submitted
codes. INTERVENOR further validates its efficacy
by demonstrating a twofold increase in the number
of successfully repaired codes.

Our further analyses illustrate that INTER-
VENOR is effective in leveraging the bug messages
from code compilers, recognizing the reasons for
code errors, and providing correction planning in
natural language. Thanks to our CoR mechanism,
INTERVENOR avoids thinking by LLMs them-
selves and can accurately diagnose the buggy codes
and correct the assertion errors and name/syntax
errors even in more difficult code generation scenar-

ios. Our CoR mechanism enables LLMs to avoid
designing complex code generation/repair prompts
and achieve the best performance via only three-
turn code repair. It also shows the potential to
leverage the feedback from environments or rule
systems to evolve LLMs (Olausson et al., 2023).

2 Related Work

Code generation tasks (Chen et al., 2021; Austin
et al., 2021; Zheng et al., 2023) aim to generate
correct and executable code based on the given nat-
ural language description, which has drawn lots of
attention from researchers. LLMs such as Chat-
GPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023)
have shown strong effectiveness in generating code
of high quality. To enhance the coding ability of
LLMs, existing work focuses on code-specific pre-
training and performs exceptionally well in code
generation tasks (Roziere et al., 2023; Li et al.,
2023b; Luo et al., 2023; Wang et al., 2023b).

Recently, some models focus on utilizing
prompting techniques to enhance the coding capa-
bilities of LLMs. CodeCoT (Huang et al., 2023) is
inspired by Chain-of-Thought (Wei et al., 2022)
and prompts the quality of generated codes us-
ing Code-CoT and Self-exam methods. LLMs are
asked to craft the code and design a set of test cases
to polish the codes. Structured Chain-of-Thought
(SCoT) (Li et al., 2023a) further considers the pro-
gram structure, such as sequences, branches, and
loops, and prompts LLMs to generate intermedi-
ate reasoning steps with program structures. Nev-
ertheless, forcing LLMs to directly generate the
completely correct codes is challenging in the code
generation task (Chen et al., 2023b).

To generate more accurate code, existing efforts
primarily concentrate on Self-Refine (Olausson
et al., 2023) and Self-Repair (Chen et al., 2023b)
techniques. The Self-Refine models aspire to im-
prove the quality of generated code by decoding
multiple samples and subsequently selecting the
most suitable one based on specific criteria. One
strategy to formulate customized criteria involves
executing the generated code and selecting the op-
timal one based on the resulting execution out-
comes (Ni et al., 2023; Zhang et al., 2023b; Shi
et al., 2022; Li et al., 2022). Another approach is
to rerank multiple code solutions to determine the
final code (Shi et al., 2022; Zhang et al., 2023b;
Chen et al., 2023a; Inala et al., 2022). However,
these methods necessitate significant computing re-
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sources for generating code candidates, rendering
them inefficient (Zhang et al., 2023a).

Another research avenue involves employing an
iterative code repair approach to enhance the qual-
ity of generated code (Zhang et al., 2023a; Welleck
et al., 2023; Madaan et al., 2023; Shinn et al.,
2023; Josifoski et al., 2024). Self-Debug (Chen
et al., 2023b) utilizes explanations generated
by LLMs to rectify self-generated code, while
Self-Repair (Olausson et al., 2023) incorporates
human-provided feedback for improvement. Self-
Edit (Zhang et al., 2023a) employs error messages
to refine generated code, but it necessitates the train-
ing of an additional fault-aware editor to generate a
new program. Instead of directly integrating feed-
back for code repair, INTERVENOR designs an
additional agent to reflect the reasons for coder er-
rors and generate the Chain-of-Repair (CoR). This
CoR is then employed to instruct the other agent in
code repair through natural language.

Moreover, the work (Dong et al., 2023; Qian
et al., 2023a) also designs a multi-agent collabo-
rative approach to simulate the software develop-
ment process and improve the efficiency of code
generation. Nevertheless, these methods are highly
dependent on the self-evaluation ability of LLMs
and may face the Degeneration-of-Thought (DoT)
problem (Liang et al., 2023; Shinn et al., 2023).
Unlike them, INTERVENOR focuses on the bug-
fixing process and proposes a simple but effective
solution, which utilizes external tools, such as the
Python interpreter, to execute the code (Xu et al.,
2023; Qian et al., 2023b) and use the accurate bug
report to facilitate the agent collaboration during
interactive code repair.

3 Methodology

In this section, we introduce INTERVENOR,
which conducts an interactive program repair pro-
cess using LLM collaboration. We first describe
the preliminary of code repair (Sec. 3.1) and then
introduce our interactive Chain-of-Repair (CoR)
mechanism (Sec. 3.2).

3.1 Preliminary of Code Repair

The code repair models mainly focus on Self-
Repair (Olausson et al., 2023; Chen et al., 2023b).
These models usually consist of three steps, in-
cluding code generation, code execution, and code
explanation. Self-Repair aims to use LLM itself
to conduct the self-debug and self-execution pro-

cesses and then iteratively repair codes. Never-
theless, programmers usually fail to recognize the
code errors because of cognitive inertia (McGuire,
1960), making the code execution more difficult by
LLM itself.

Different from these self-repair models, IN-
TERVENOR follows previous work (Zhang et al.,
2023a; Wang et al., 2022) to incorporate the feed-
back from compilers to prompt the code generation
ability of LLMs. Instead of directly feeding the
code bug message to LLMs, we design the interac-
tive chain of repair mechanism, which builds two
agents to rethink and repair the code errors. The
compiler serves as an INTERVENOR to avoid the
Degeneration-of-Thought (DoT) problem during
the interactive repair process.

3.2 Interactive Chain-of-Repair (CoR)

As shown in Figure 2, given the code genera-
tion tasks, INTERVENOR aims to mimic the hu-
man bug-repairing behavior by iteratively acquiring
feedback from compilers, then generating bug rea-
sons and solving plans in natural language, and
finally fixing the program. Specifically, INTER-
VENOR employs two LLM based agents to play
different roles in code repair (Sec. 3.2.1). Then we
conduct an interactive code repair process using
the agents (Sec. 3.2.2).

3.2.1 Agent Building
INTERVENOR involves the integration of two

agents, Code Learner and Code Teacher, who
work interactively to repair the generated codes.
The role of the Code Learner follows the instruc-
tions to conduct code generation/repair, guided by
the Code Teacher. The primary focus of the Code
Teacher is to rethink and elucidate code errors for
students. Additional details about agent construc-
tion can be found in Appendix A.5.

Code Learner. The Code Learner follows in-
structions and engages in two coding tasks, includ-
ing initial code generation and code repair.

In the initial code generation phase, the Code
Learner endeavors to generate the initial version
of code according to the requirements of the given
coding task. Subsequently, the agent’s role is mod-
ified for code repair. We trigger the code repair
proficiency of LLMs using the instruction “You are
a student assistant with excellent code repair capa-
bilities”. Besides, Code Learner incorporates the
Chain-of-Repair (CoR) as an instruction to guide
the code repair.
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def decimal_to_binary(decimal): 

binary = ‘’
while decimal > 0: 

binary = str(decimal % 2) + 

binary 

decimal = decimal // 2

return 'db' + binary + 'db'

Code Check

Generate the Chain-of-Repair (CoR)

def decimal_to_binary(decimal):

if decimal == 0: 

return "db0db"

binary = ‘’
while decimal > 0: 

binary = str(decimal % 2) + binary 

decimal = decimal // 2

return 'db' + binary + 'db'

Code Generation

Compiler

Code Repair

The code needs to be modified to handle the case where 
the input decimal is 0. Currently, the code only works for 
positive decimal numbers. To fix this, we can add an if 
statement at the beginning of the function to check if the 
input decimal is 0. If it is, we can simply return "db0db" as 
the output. This will ensure that the test case for decimal 
0 will pass. 

AssertionError: Error Line - assert 
decimal_to_binary(0) == "db0db"

Task: You will be given a number in decimal form and your task is to convert it to binary format. 
The function should return a string, with each character representing a binary number. Each 
character in the string will be ‘0’ or ‘1‘. There will be an extra couple of characters ‘db’ at the 
beginning and at the end of the string to help with the format.

Bug Fixing

A B

CA

Figure 2: Illustration of Our Interactive Chain-of-Repair Model (INTERVENOR ).

Code Teacher. The Code Teacher conducts
the CoR results during interactive code repair. It
aims to generate the code error explanation and
give bug-fixing planning for Code Learner.

Specifically, we use the prompt–“You are an ex-
perienced and insightful programming instructor”–
to instruct LLMs to function as proficient code
debuggers and serve to activate their bug-tracing
and code-diagnosis abilities. Code Teacher inte-
grates feedback from code compilers to produce
extensive repair suggestions and guidance. This
assists Code Learner in gaining a deeper under-
standing and effectively addressing errors within
their code.

3.2.2 Interactive Code Repair Workflow
INTERVENOR conducts an interactive code-

repair process, facilitating the collaboration among
agents and the code compiler.

In the initial step (Step A0, where 0 signifies
the initial turn), we prompt the Code Learner to
generate code for the given task. Subsequently, the
Code Learner executes the generated code using
the code compiler to assess its correctness (Step
B). Following this, the Code Teacher generates
code repair instructions (CoR) based on the bug re-
port and the associated buggy code (Step C). These
instructions elucidate the reason of the bug, such
as “modified to handle the case where the input
decimal is 0”, and include code correction plan-
ning, for example, “we can simply return db0db”.

Benchmark Language Problems #Tests
HumanEval Python 164 7.8
MBPP Python 500 3.1

HumanEval-X
C++ 164 7.8
Java 164 7.8
JavaScript 164 7.8

CodeError Python 4,463 9.0

Table 1: Data Statistics. #Tests represents the average
number of test cases.

Such instructions are informative and enhance the
guidance for the Code Learner. Ultimately, the
Code Learner follows the chain-of-repair (CoR)
to rectify the code and subsequently resubmits the
corrected version to the compiler for execution in
the subsequent turn ((Step Ai), where i ≥ 1 de-
notes the code repair process). The Ai, B, and C
steps are iterated sequentially until either the code
meets the compiler’s estimation or the maximum
turn limit is reached.

4 Experimental Methodology

In this section, we describe the datasets, evaluation
metrics, baselines, and implementation details.

Dataset. We evaluate the code generation and
translation effectiveness on three datasets, includ-
ing HumanEval, MBPP and HumanEval-X. Besides,
we build a new benchmark CodeError to further
test the code repair ability of LLMs. All data statis-
tics are shown in Table 1.
HumanEval (HEval) (Chen et al., 2021) serves
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as a benchmark for evaluating the functional cor-
rectness of synthesized programs generated from
docstrings. It comprises 164 hand-written Python
programming problems, which consist of function
signatures, docstrings, bodies, and multiple unit
tests. MBPP (Austin et al., 2021) is a benchmark that
includes 974 introductory-level Python program-
ming problems. Each problem comprises a prob-
lem statement, a code solution, and three automated
test cases, and the task IDs that range from 11 to
510 are used for evaluation. HumanEval-X (Zheng
et al., 2023) is used to assess a model’s multi-
programming language generation and translation
capability. It consists of 820 human-crafted data
instances, covering C++, Java, JavaScript, and Go.
DS-1000 (Lai et al., 2022) is a benchmark designed
to evaluate the capabilities of LLMs in data science
code generation. It includes 1,000 problems that
span seven Python libraries, such as NumPy and
Pandas. We use the completion style prompt for
each question.

Then we build the CodeError benchmark to fur-
ther evaluate the code repair effectiveness of IN-
TERVENOR. The CodeError benchmark contains
a total of 4,463 examples, evenly distributed across
more than six different error types. It includes
basic programming problems, data analysis prob-
lems, and programming competition problems. For
each example, there are 9 test cases on average to
evaluate the code’s correctness. More details of
CodeError are shown in Appendix A.3.

Evaluation Metrics. We use Pass@k (Chen
et al., 2021) to evaluate the effectiveness of differ-
ent models on both code generation task and code
translation task, which is the same as the previous
work (Chen et al., 2021; Zheng et al., 2023; Li et al.,
2023a; Chen et al., 2023a; Nijkamp et al., 2023).

Baselines. We first compare INTERVENOR
with several code-oriented large language
pretrained models, such as Incoder (Fried
et al., 2023), CodeGen (Nijkamp et al., 2023),
CodeGeeX (Zheng et al., 2023), CodeT5 (Wang
et al., 2023b), StarCoder (Li et al., 2023b),
WizardCoder (Luo et al., 2023), and Llama based
models (Touvron et al., 2023; Roziere et al., 2023).
These models are pretrained on large-scale code
corpora, demonstrating strong code generation
capabilities. Additionally, we also compare
INTERVENOR with some closed-source and
high-performance large language models, e.g.
Claude (Anthropic, 2023), GPT-3.5 (OpenAI,
2022), and GPT-4 (OpenAI, 2023), which show

strong emergent abilities, especially for the code
generation tasks. In our experiments, GPT-3.5
is our main baseline model. Besides, we also
compare Self-Debug (Chen et al., 2023b) and
the multi-agent collaborative method, Self-
Collaboration (Dong et al., 2023) to show the code
repair ability of INTERVENOR.

Implementation Details. In our experiments,
we use GPT-3.5 (gpt-3.5-turbo-0613) as the foun-
dation model to build different agents in INTER-
VENOR. We set the temperature to 0.2 and the max-
imum generation length to 512 tokens. The max-
imum number of interactive code repairs is set to
5. Additionally, we also use CodeLlama-7B/13B-
Instruct to implement the agents, Code Learner
and Code Teacher, of our INTERVENOR model
to explore the impact of using different LLMs. On
all datasets, we use the 0-shot setting in our experi-
ments.

5 Evaluation Results

In this section, we evaluate the overall performance
of INTERVENOR. Then we conduct ablation stud-
ies and also show the effectiveness of Interactive
CoR in different testing scenarios. Finally, case
studies are presented.

5.1 Overall Performance
The overall performance of INTERVENOR in code
generation and translation tasks is shown in Table 2.

Overall, INTERVENOR outperforms all base-
lines in all tasks by achieving more than 1% im-
provements, showing its effectiveness. Compared
to our main baseline model GPT-3.5, INTER-
VENOR achieved about 18% and 4.3% improve-
ments in code generation and code translation tasks,
respectively. It illustrates that INTERVENOR has
the ability to prompt the coding ability of LLMs
by mimicking the human code repair behavior–
iteratively judging, rethinking, and repairing. No-
tably, INTERVENOR also surpasses Self-Debug
and Self-Collaboration models, demonstrating its
ability to successfully intervene in the code genera-
tion/translation process and guide LLMs to better
repair the codes using our chain of repair mecha-
nism. All these experimental results highlight the
generalization ability of INTERVENOR in improv-
ing LLMs’ coding ability in different languages.

5.2 Ablation Studies
The ablation studies are conducted to show the
effectiveness of the interactive CoR mechanism.
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Model
Code Generation Code Translation

HEval MBPP HumanEval-X DS-1000 Target Language
Python Python C++ Java JS Python Python C++ Java JS

InCoder (Fried et al., 2023) 15.2 19.4 9.5 9.1 13.0 7.4 - - - -
CodeGen (Nijkamp et al., 2023) 18.3 20.9 18.1 14.9 18.4 8.4 40.7 37.6 35.4 51.8
CodeGeeX (Zheng et al., 2023) 22.9 24.4 17.1 20.0 17.6 - 68.5 43.6 56.8 45.2
CodeT5+ (Wang et al., 2023b) 30.9 - - - - - - - - -
InstructCodeT5+ (Wang et al., 2023b) 35.0 - - - - - - - - -
PaLM-Coder (Chowdhery et al., 2023) 35.9 47.0 - - - - - - - -
StarCoder (Li et al., 2023b) 40.8 49.5 - - - 26.0 - - - -
WizardCoder (Luo et al., 2023) 57.3 51.8 - - - 28.4 - - - -
LLama2 (Touvron et al., 2023) 30.5 45.4 - - - - - - - -
CodeLLama (Roziere et al., 2023) 62.2 61.2 - - - 28.0 - - - -
PanGu-Coder2 (Shen et al., 2023) 61.6 - - - - - - - - -
Claude (Anthropic, 2023) 47.6 - - - - - - - - -
GPT-4 (OpenAI, 2023) 67.0 - - - - - - - - -
Self-Debug (Simple) (Chen et al., 2023b) 73.8 - - - - - - - - -
Self-Debug (UT+Trace) (Chen et al., 2023b) 71.9 - - - - - - - - -
Self-Collaboration (Dong et al., 2023) 74.4 68.2 - - - - - - - -
GPT-3.5 (OpenAI, 2022) 60.3 39.8 52.4 50.6 54.3 29.7 84.3 71.5 81.7 84.6
INTERVENOR 75.6 69.8 67.1 68.3 67.1 39.7 89.8 75.6 85.4 88.3

Table 2: Overall Performance of Different Models. We evaluate model effectiveness on code generation and code
translation (HumanEval-X dataset) tasks using the Pass@1 evaluation metric. The baseline results are borrowed
from corresponding papers. Simple and UT+Trace are two variants of Self-Debug. More evaluation results on the
code translation task are shown in Appendix A.2.

Code Repair Prompt Methods HEval MBPP HumanEval-X CodeError Avg.Python Python C++ Java JS Python

No Repair

Zero-Shot 60.3 39.8 52.4 50.6 54.3 - -
Zero-Shot CoT 51.8 35.2 48.2 45.7 45.4 - -
Few-Shot 62.2 45.4 53.1 62.2 43.3 - -
Few-Shot CoT 60.4 45.4 48.2 63.4 57.9 - -

Single Turn

Zero-Shot 62.2 41.6 54.3 65.2 60.4 4.9 48.1
Few-Shot 65.2 40.6 57.9 65.2 62.8 9.8 50.3
CoT 66.5 48.8 56.7 62.2 60.4 10.3 50.8
Self-Refine 65.2 48.8 57.3 64.0 60.4 5.2 50.2
Error Msgs 67.1 51.8 57.3 59.8 62.8 9.8 51.4
INTERVENOR (CoR) 69.5 51.0 59.8 65.2 60.4 15.9 53.6

Multi-Turns INTERVENOR (CoR) 75.6 69.8 67.1 68.3 67.1 21.7 61.6

Table 3: Evaluations on Different Prompting Methods. We compare INTERVENOR with different prompting
techniques to evaluate its effectiveness. All models are built based on GPT-3.5 and evaluated using Pass@1.

Evaluation on Different Prompting Methods.
Firstly, we evaluate the code generation ability
of LLMs using different code generation/repair
prompting methods. As shown in Table 3, we com-
pare CoT (Kojima et al., 2022), Few-Shot (Chen
et al., 2021), and Few-Shot CoT (Wei et al., 2022)
models in experiments, which prompt LLMs to
better generate codes. These models try to gener-
ate natural language as the chain of coding thought
(CoT) or provide some instances to demonstrate the
coding task (Few-Shot). Then we compare differ-
ent methods to generate the code repair instruction,
including Self-Refine (Madaan et al., 2023), Er-
ror Msgs, and Chain-of-Repair (CoR). Self-Refine
asks the LLMs to rethink the errors by themselves,
while Error Msgs and CoR incorporate the code
error messages from compilers. Msgs directly uses
error messages to guide the code repair process.

The experimental results show that code repair

is more effective than directly prompting LLMs to
generate codes. Even though we conduct differ-
ent Few-shot and CoT methods to directly prompt
LLMs, we only achieve 3.5% improvements, which
shows that it is difficult for LLMs to generate cor-
rect codes without repairing. On the contrary, the
code repair methods improve the quality of gener-
ated codes by achieving more than 9.7% improve-
ments with only single-turn repair. Both Error
Msgs and CoR thrive on the feedback from code
compilers and achieve more than 1.2% improve-
ments than Self-Refine, demonstrating that compil-
ers can provide valuable signals to help LLMs bet-
ter recognize the code bugs. Notably, CoR achieves
the best performance among all code repair mod-
els, illustrating its effectiveness in guiding LLMs
for code repair. CoR uses the error messages from
code compilers to prompt LLMs, aiming to rethink
the reasons for making errors and generate the in-
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Code Learner Code Teacher HEval MBPP HumanExal-X CodeError
Python Python C++ Java JS Python

CodeLlama-7B

N/A 32.3 34.4 30.3 29.8 33.5 -
CodeLlama-7B 32.9 35.1 31.0 31.0 34.1 4.6
CodeLlama-13B 33.5 35.3 32.2 31.5 35.5 4.9
GPT-3.5 36.6 38.4 33.5 32.3 40.4 8.6

CodeLlama-13B

N/A 39.6 36.4 36.6 33.5 39.6 -
CodeLlama-7B 40.0 37.1 37.1 34.5 40.4 8.8
CodeLlama-13B 42.1 37.7 38.6 36.6 42.8 9.4
GPT-3.5 43.6 40.4 42.2 37.5 46.1 12.6

GPT-3.5

N/A 60.3 39.8 52.4 50.6 54.3 -
CodeLlama-7B 65.2 42.8 55.4 55.1 56.1 11.8
CodeLlama-13B 66.5 46.1 56.1 58.9 58.9 13.6
GPT-3.5 69.5 51.0 59.8 65.2 60.4 15.9

Table 4: Model Performance of Different Code Learner and Code Teacher Model Pairings. We only conduct one
turn code repair in experiments. “N/A” represents the initial output of Code Learner without any intervention from
the Code Teacher for code repair, it reflects the initial generation results of Code Learner.

#Turn Model HEval MBPP HumanEval-X Avg.Python Python C++ Java JS
0 GPT-3.5 60.3 39.8 52.4 50.6 54.3 51.5

1
Error Msgs 67.1 51.8 57.3 59.8 62.8 59.8
Self-Refine 65.2 48.8 57.3 64.0 60.4 59.1
INTERVENOR 69.5 51.0 59.8 65.2 60.4 61.2

2
Error Msgs 68.3 53.0 60.3 62.8 63.4 61.6
Self-Refine 69.5 49.6 60.3 64.6 62.8 61.4
INTERVENOR 73.2 54.4 61.6 67.1 62.2 63.7

3
Error Msgs 69.5 54.9 62.2 63.7 64.0 62.9
Self-Refine 71.9 51.2 63.4 65.2 63.4 63.0
INTERVENOR 75.6 60.2 65.2 68.3 64.0 66.7

Table 5: Multi-Turn Code Repair Performance of IN-
TERVENOR, Error Msgs, and Self-Refine.

structions for repairing.
Building Code Teacher/Learner Using Differ-

ent LLMs. Then, as shown in Table 4, we inves-
tigate the impact of using different LLMs to build
Code Learner and Code Teacher. When we use
the identical LLM to build the Code Learner, the
performance of INTERVENOR is improved with
the enhanced capabilities of the Code Teacher,
underscoring the efficacy of our CoR mechanism.
This indicates that stronger models can conduct
a more in-depth analysis of erroneous code and
provide more accurate suggestions for code repair.
Similarly, by keeping the same LLM to build the
Code Teacher, a stronger Code Learner also con-
ducts better code repair results. This indicates that
a more powerful Code Learner has a stronger
instruction-following ability to better comprehend
the CoR provided by the Code Teacher.

Effectiveness on Alleviating the DoT prob-
lem. Finally, we conduct experiments to demon-
strate how our model alleviates the Degenerate-of-
Thought (DOT) problem. As shown in Table 5, we
compare the multi-turn code repair performance of
INTERVENOR, Error Msgs, and Self-Refine. Both
INTERVENOR and Error Msgs incorporate feed-
back from the compiler, while Self-Refine conducts
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Figure 3: The Impact of Different Code Repair Turns.
HumanEval, MBPP, and HumanEval-X (HEX) are used
to evaluate our INTERVENOR model.

self-reflection to generate the reasons for buggy
code. Thus, Self-Refine usually faces the DoT
problem, which usually neglects the bugs that ap-
pear in the code segments. The experiments show
that with the increase in the number of repair turns,
the performance of INTERVENOR surpasses that
of Self-Refine and Error Msgs across almost all
datasets. After three turns of code repair, INTER-
VENOR achieves an average improvement of 3.7%
over Self-Refine and Error Msgs, highlighting its
effectiveness in alleviating the DoT problem.

5.3 Effectiveness of INTERVENOR in
Different Testing Scenarios

In this subsection, we delve deeper into exploring
the effectiveness of INTERVENOR in two test-
ing scenarios: 1) validating the impact of different
code repair turns, and 2) evaluating the code repair
effectiveness on different code error types.

As shown in Figure 3, the code generation per-
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Figure 4: Code Repair Performance on the CodeError
Dataset. We repair the error codes with one single turn.
The codes are divided into two groups to evaluate the
code repair effectiveness, including Assertion Errors
and Others (AttributeError, NameError, RecursionError,
SyntacError and TypeError).

formance is significantly improved during the it-
eratively repairing. After three turns, the INTER-
VENOR achieves almost the best performance on
HumanEval and HumanEval-X datasets, showing
the efficiency of our interactive chain-of-repair
mechanism. For a more difficult dataset MBPP, IN-
TERVENOR achieves 30% improvements and still
has some room to achieve further improvements,
demonstrating its advantages in dealing with more
difficult and realistic coding tasks.

Then we show the code repair effectiveness on
different error types in Figure 4. We use differ-
ent prompt methods to stimulate LLMs to repair
code errors and show their effectiveness on differ-
ent types of code errors. Overall, INTERVENOR
doubles the number of corrected code examples of
baseline models, showing its effectiveness in repair-
ing code errors. On the one hand, INTERVENOR
significantly outperforms other methods on the As-
sertionError repairing task. It illustrates that IN-
TERVENOR can provide more precise guidance
and identify errors with the help of the bug report
derived from the failed testing case. On the other
hand, INTERVENOR also shows a strong ability
to correct other code errors. Our Chain-of-Repair
(CoR) method also thrives on the error messages of
the compiler, breaks the cognitive inertia of LLMs,
and identifies the specific code error for repairing.
All these phenomena show that the quality of code
execution feedback is critical in repairing codes.

5.4 Case Studies
Finally, we show two cases in Figure 5 to demon-
strate the effectiveness of INTERVENOR. We com-
pare INTERVENOR with Self-Refine (Madaan

et al., 2023), which prompts LLMs themselves to
execute codes, recognize bugs, and repair codes.

Overall, the feedback from compilers indeed
helps to improve the accuracy of repaired code
by providing more valuable instructions. In the
first case, Self-Refine fails to fix the AttributeError
and adds the “all()” function in codes. On the con-
trary, INTERVENOR successfully fixes the code,
showing its effectiveness. It accurately analyzes
the reason of bugs “call the islower() method on
an integer object, which is not possible” and also
provides a solution by suggesting to “check if the
key is a string before calling the islower() method”.
In the second case, the instruction provided by Self-
Refine thinks the code seems to be correct and does
not offer definite solutions, showing the cognitive
inertia in debug–It is hard to debug the code written
by ourselves. INTERVENOR shows its effective-
ness in directly generating the reason for the bug:
“the function is not handling the case where the
input list has only one element correctly”. More
cases are shown in Appendix A.4.

6 Conclusion

This paper proposes INTERVENOR, which re-
gards the feedback of compilers as the INTER-
VENOR to facilitate the agent collaboration of
code error diagnosis and repair. Our experiments
show that INTERVENOR outperforms previous
code generation/repair models by generating accu-
rate code repair solutions and instructions.

Limitations

The effectiveness of INTERVENOR heavily de-
pends on the capabilities of the foundation model,
necessitating its proficiency in code error analysis
and repair. The efficacy of INTERVENOR may
be constrained when using less proficient LLMs
to build the agents. Furthermore, in cases where
codes exhibit solely logical errors, the compiler
relies on test cases to furnish feedback. The qual-
ity and coverage of test cases are crucial in this
scenario. Inadequate or poorly designed test cases
may not be sufficient to detect or help rectify these
logical errors effectively. Hence, the efficacy of IN-
TERVENOR is intricately linked to the robustness
and comprehensiveness of the test cases.

Ethics Statement

In conducting this research and presenting the find-
ings in this paper, we have upheld rigorous ethical
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def derivative(xs: list): 

if len(xs) == 1: 

return [0]

else: 

return [xs[i] * i for i in

range(1, len(xs))]

Instruction:  One possible modification method is to use the `all()` function to 
check if all keys are either in lower case or upper case. This function takes an 
iterable as an argument and returns `True` if all elements in the iterable are `True`, 
otherwise it returns `False`. We can use this function to check if all keys are in 
lower case or upper case by passing a generator expression that checks if each key 
is either in lower case or upper case. 

Instruction: The error message indicates that the code is trying to call the islower() 
method on an integer object, which is not possible. This is because the code is 
trying to check if the keys in the dictionary are all lowercase strings, but one of the 
keys is an integer. To fix this, we can modify the code to first check if the key is a 
string before calling the islower() method. This can be done using the isinstance() 
function, which checks if an object is an instance of a specific class.  

ErrorType: AttributeError
ErrorMessage: AttributeError: 'int' object has no attribute 'islower'

Buggy Code

INTERVENOR

if all(key.islower() for key in keys):

return True

elif all(key.isupper() for key in keys):

return True

def check_dict_case(dict): 

if len(dict) == 0:

return False

else:

keys = list(dict.keys())

if keys[0].islower(): 

for key in keys:

if not key.islower(): 

return False

return True

else: 

for key in keys:

if not key.isupper(): 

return False

return True

if isinstance(keys[0], str) and keys[0].islower(): 

for key in keys:

if not isinstance(key, str) or not key.islower(): 

return False

return True

Task: Given a dictionary, return True if all keys are strings 
in lower case or all keys are strings in upper case, else 
return False. The function should return False is the 
given dictionary is empty. 

Self-Refine

Bug Fixing

Bug Fixing

Task: xs represent coefficients of a polynomial. xs[0] + xs[1] 
* x + xs[2] * x^2 + .... Return derivative of this polynomial 
in the same form.
derivative([3, 1, 2, 4, 5]) should return [1, 4, 12, 20]
derivative([1, 2, 3]) should return [2, 6]

Buggy Code

INTERVENOR

Self-Refine

ErrorType: AssertionError
ErrorMessage: AssertionError: Assertion failed for assert derivative 
([1]) == []

Instruction:The error message indicates that the function is not handling the case 
where the input list has only one element correctly. From the error message, we 
can know that the issue lies in the condition where the length of the input list is 1. 
The current implementation returns [0] when the input list contains only one 
element, but the expected result is an empty list. To fix this, we need to modify the 
corresponding return statement.

if len(xs) == 1: 

return []

Bug Fixing

Instruction: The code seems to be correct, but there are some edge cases that are 
not handled properly. For example, if the input list is empty or contains only one 
element, the function will return an incorrect result. To fix this, we can add a check 
at the beginning of the function to handle these edge cases. 

if len(xs) == 0: 

return [] 

elif len(xs) == 1: 

return [0]

Bug Fixing

check_dict_case({"a":"apple", "b":"banana"}) should return True.
check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) 
should return False. 

Figure 5: Case Studies. We provide two cases that showcase the effectiveness of the Chain-of-Repair (CoR)
generated by INTERVENOR when fixing AttributeError and AssertionError, respectively.

standards throughout the entirety of the process.
Our experiments are conducted on commonly used
datasets from previous works. Additionally, for our
newly constructed dataset, we have also reached
out to relevant platforms, and they have granted us
permission to use the data for scientific research
purposes. Besides, the code submitted to the At-
coder website has undergone stringent ethical re-
view, with very few instances where ethical con-
cerns arise. Furthermore, despite the risk of large
language models (LLMs) generating toxic data, by
providing clear role-playing instructions and only
allowing LLMs to complete code-related tasks, we
believe the model’s output will not produce harmful
content.
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Bug Fixing

Large Language Models (LLMs)

Task: Given a dictionary, return True if all keys are strings in lower case or all keys are strings 

in upper case, else return False. The function should return False is the given dictionary is 
empty.

def check_dict_case(dict): 

if len(dict) == 0:

return False

else:

keys = list(dict.keys())

if keys[0].islower(): 

for key in keys:

if not key.islower(): 

return False

return True

else: 

for key in keys:

if not key.isupper(): 

return False

return True

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
AttributeError: 'int' object has no attribute 
'islower' 

---------------------------------------------------

AttributeError Traceback

Cell In[1], line 6

if len(dict) == 0:

return False

else:

keys = list(dict.keys())

if keys[0].islower(): 

for key in keys:

if not key.islower(): 

return False

return True

if isinstance(keys[0], str) and keys[0].islower(): 

Prompt

Test

Correct/wrong?

Input           Output      Expected

…              …             …

{"a":"apple", 
"b":"banana"} True

Buggy Code Error Messages

---->

Figure 6: An Example of the CodeError Dataset. The CodeError benchmark asks LLMs to fix buggy codes and then
evaluate whether the fixed code meets the requirements specified in the task description and passes all test cases.
During the process of code repair, LLMs can utilize error messages to repair codes.

A Appendix

A.1 License

For all datasets in our experiments, HumanEval
uses the MIT License, MBPP uses the CC-BY-
4.0 License, and HumanEval-X uses the Apache
License 2.0. All of these licenses allow their data
for academic use.

A.2 Code Translation Results

As shown in Table 6, we present more detailed
evaluation results on the code translation task.

In general, INTERVENOR shows the best per-
formance across all twelve cross-language code
translation tasks, demonstrating its ability to un-
derstand and translate codes. Compared with GPT-
3.5, INTERVENOR improves its performance on
all code translation tasks, especially on the tasks
that translate other languages into Python. This
indicates that INTERVENOR is more effective in
generating an effective code repair chain according
to the bug reports from the Python interpreter. Such
a phenomenon aligns with human intuition during
the debugging process, namely that bugs in Python
code are more easily resolved.

A.3 More Details of the CodeError
Benchmark

In our experiments, we build the CodeError bench-
mark to evaluate the code repair capabilities of
LLMs, which facilitates the research on the code
repair task. The CodeError dataset is collected
from basic programming problems, data analysis
problems, and programming competition problems.
In this section, we show more detailed data infor-

mation about the CodeError benchmark.

Source Model Target
Python C++ Java JS

Python

CodeGen - 35.9 29.3 43.4
CodeGeeX - 34.2 42.0 34.8
GPT-3.5 - 62.8 70.7 82.3
INTERVENOR - 67.7 75.1 87.8

C++

CodeGen 33.8 - 43.2 54.5
CodeGeeX 62.8 - 71.7 50.8
GPT-3.5 81.1 - 89.6 82.3
INTERVENOR 90.2 - 92.1 86.1

Java

CodeGen 52.7 41.4 - 57.7
CodeGeeX 75.0 49.7 - 50.0
GPT-3.5 89.6 75.6 - 89.1
INTERVENOR 92.1 79.3 - 90.9

JS

CodeGen 35.5 35.4 33.8 -
CodeGeeX 67.7 46.9 56.6 -
GPT-3.5 82.3 76.2 84.8 -
INTERVENOR 87.2 79.9 89.1 -

Table 6: Code Translation Performance on Humaneval-
X. We evaluate the code translation effectiveness among
different program languages, including Python, C++,
Java, and JavaScript (JS). We report the results of IN-
TERVENOR, which only repairs codes with a single
turn. All evaluation results are evaluated with Pass@1.

CodeError Examples. As shown in Figure 6,
each example in CodeError consists of a pro-
gramming task description, a buggy code snip-
pet, error messages, and test cases to evaluate
the code correctness of the repaired codes. If the
fixed/generated code meets the requirements speci-
fied in the task description and passes all test cases,
it proves that the repaired code is correct. Dur-
ing the process of code repair, LLMs need to fix
the buggy code and are also able to use the error
messages from the buggy code for assistance. We
provide more examples that are sampled from the
basic programming problems, programming com-
petition problems, and data analysis problems in
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Dataset Language Size Avg.TC Error Type Error Msg Category
DeepFix (Yasunaga and Liang, 2021) C 6,971 ✗ CE Only ✗ Basic
Review4Repair (Huq et al., 2022) Java 2,961 ✗ All ✗ Basic
Bug2Fix (Lu et al., 2021) Java 5,835 ✗ All ✗ Basic
Github-Python (Yasunaga and Liang, 2021) Python 15k ✗ CE Only ✗ Basic
FixEval (Haque et al., 2023) Java/Python 43k/243k 25.0 All ✗ Competition

CodeError (Ours) Python 4,463 9.0 All ✓
Basic

Data Analysis
Competition

Table 7: A Comparison between CodeError and Other Code Repair Benchmarks. Size only represents the size
of the test set. Avg.TC indicates the average number of test cases per problem. CE indicates compilation errors
(e.g., SyntaxError). Error Msg indicates whether the buggy code contains detailed error information, such as the
line of incorrect code, the reasons for the error, etc. Category represents the scope covered by the buggy code, and
CodeError covers basic programming problems, data analysis problems, and programming competition problems.

Basic Comp DA Total/Avg.
Problem 326 3,888 249 4,463
AssertionError 236 2,949 52 3,237
NameError 22 62 32 116
TypeError 39 91 53 183
IndexError 1 92 8 101
ValueError 2 229 44 275
SyntaxError 11 375 4 390
Other Errors 15 90 57 162
Avg. Problem Words 10 47 140 49
Avg. Buggy Code 21 34 2 31
Avg. Test Cases 4 10 1.6 9

Table 8: Data Statistics of CodeError. We calculate the
average word count per problem, the average number
of lines in buggy code, and the average number of test
cases per problem. Basic, Comp, and DA represent ba-
sic programming problems, programming competition
problems, and data analysis problems, respectively.

Figure 7, Figure 8, and Figure 9, respectively.
Data Collection. CodeError is collected from

various coding problems, making the dataset di-
verse and reliable.

To ensure the diversity of CodeError, we col-
lect basic programming problems, data analysis
problems, and programming competition problems
from HumanEval, MBPP, DS-1000, APPS, and the
programming contest site AtCoder. We conduct
code generation experiments using GPT-3.5 on the
first four datasets, preserving the generated codes
that contain errors. For the programming contest
site AtCoder, we crawl real-world user-submitted
buggy codes to ensure the reliability of CodeError.
The diverse data sources allow us to build a com-
prehensive and robust dataset to estimate the code
repair ability of LLMs.

Data Statistics. The data statistics of CodeError
are shown in Table 8.

The CodeError benchmark contains a total of
4,463 examples, evenly distributed across more
than six different error types. These errors range
from simple syntax errors to complex logic errors.

AssertionError is an exception that is raised when an
assert statement fails. In this paper, an AssertionError
indicates that the code can run correctly but fails to pass
certain test cases, suggesting the presence of potential logic
errors that require further investigation and resolution.

NameError is an exception that is raised when a local or
global name is not found. This error occurs when you try
to access a variable or a function that is not defined or is
not in the current scope.

TypeError is an exception that is raised when an operation
or function is applied to an object of an inappropriate type.
This typically occurs when you try to perform an operation
that is not supported for the type of data you are working
with.

IndexError is an exception that is raised when you try to
access an index that does not exist in a list, tuple, or any
other sequence. This typically happens when you attempt
to access an index that is outside the range of the sequence.

ValueError is an exception that is raised when a built-in
operation or function receives an argument that has the
right type but an inappropriate value. Essentially, this error
occurs when a function receives an argument of the correct
type, but the value of the argument is not appropriate for
the operation.

SyntaxError is an exception that is raised when there is
an error in the syntax of your code. This can happen due
to various reasons, such as missing parentheses, invalid
keywords, or incorrect indentation.

Table 9: Common Code Errors and Their Descriptions.

And we provide detailed descriptions for common
error types in Table 9. The predominant error
type is the AssertionError (Logic Error). This phe-
nomenon is quite normal in the real-world coding
scenario since the current integrated development
environment (IDE) can assist developers in avoid-
ing simple errors such as SyntaxError and NameEr-
ror but may not help to identify logic errors within
the code. For each example, there are 9 test cases
on average to evaluate the correctness of the re-
paired codes.
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Turns Self-Debug Self-Collaboration Self-Refine INTERVENOR (Ours)
1 3 >3 2 2
2 6 >6 4 4
3 9 >9 6 6

Table 10: A Comparison of Computational Overhead Between INTERVENOR and Other Iterative Self-Refinement
Baselines.

Dataset Comparison. Finally, we compare the
CodeError dataset with other code repair bench-
marks. The differences are shown in Table 7.

Similar to FixEval (Haque et al., 2023), we uti-
lize test cases to assess the functional correctness of
the repaired code. Additionally, in comparison to
other benchmarks (Yasunaga and Liang, 2021; Huq
et al., 2022; Lu et al., 2021; Haque et al., 2023), we
have two notable features:

• We provide detailed error information for erro-
neous codes, including error code localization,
the cause of the error, error type, and more.

• CodeError covers a variety of problem types,
including basic programming problems, data
analysis problems, and programming compe-
tition problems, enabling a more comprehen-
sive benchmark to evaluate the code repair
capabilities of LLMs.

A.4 Additional Case Studies

In this subsection, we sample some cases from
CodeError to demonstrate the effectiveness of the
Chain-of-Repair (CoR) mechanism.

As shown in Figure 10, in the first case, there is
a simple NameError in the buggy code, which indi-
cates that ‘hashlib’ is not defined. We can see that
the INTERVENOR recognizes hashlib as a Python
package and provides a solution: “import the ‘hash-
lib’ module at the beginning of the code”. In the
second case, the error in the code is more subtle,
involving an operation that should check the data
structures of ‘int’ and ‘list’. The CoR explicitly
states that this is a “valid operation” and provides
a solution: “check if the current element in the list
is a list or not before adding it to the sum”. With
the help of accurate instruction, INTERVENOR
successfully repairs the code.

Additionally, in Figure 11, we demonstrate that
INTERVENOR can effectively address boundary
issues, which are often quite tricky. INTER-
VENOR accurately identifies the code error in the
loop condition and suggests a modification method:
“modify the loop to iterate up to n − 1 instead of

n”. In Figure 12, we demonstrate that INTER-
VENOR can fix multiple error types in the code
by iteratively repairing. Over two iterations, IN-
TERVENOR identifies and accurately modifies the
ValueError and TypeError in the code.

All these cases demonstrate the effectiveness of
the Chain-of-Repair (CoR) mechanism and high-
light the effectiveness of CoR in identifying errors
and providing appropriate solutions for code repair.

A.5 Prompts for Agent Building
In this subsection, we show the prompts used in
our experiments.

We first show the role-playing instructions used
by Code Learner and Code Teacher in Figure 13.
We utilize specific instructions to ensure that the
Code Teacher and Code Learner within INTER-
VENOR play the correct roles and carry out code
inspection and code repair.

Then, we present the prompts used in code gen-
eration and code repair. From Figures 14 to 15,
we show the Zero-Shot, Zero-Shot CoT, Few-Shot,
and Few-Shot CoT prompts for code generation
tasks. From Figures 16 to 19, we show the prompts
used in some code repair baseline models, includ-
ing Zero-Shot, Few-Shot, CoT, Self-Refine, and
Error Msgs. Self-Refine asks the LLMs to rethink
the errors by themselves, while Error Msgs incor-
porate the code error messages from compilers and
directly use them to guide the code repair process.

A.6 Computational Overhead
In this subsection, we compare the computational
overhead with other iterative self-refinement base-
lines.

We follow Self-Debug, Self-Collaboration, and
Self-Refine to iteratively fix buggy codes. As
shown in Table 10, if we iterate for the same num-
ber of turns, INTERVENOR calls the API fewer
times and brings performance improvements.
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Task: Implement a function that takes an non-negative integer and returns an array of the first 
n integers that are prime numbers and less than n. 

def count_up_to(n): 

"""Implement a function that takes an non-

negative integer and returns an array of the 

first n integers that are prime numbers and less 

than n. 

for example: 

count_up_to(5) => [2,3] 

count_up_to(11) => [2,3,5,7] 

count_up_to(0) => [] 

count_up_to(20) => [2,3,5,7,11,13,17,19] 

count_up_to(1) => [] 

count_up_to(18) => [2,3,5,7,11,13,17] """

if n <= 1: 

return []

primes = []

for i in range(2, n): 

if is_prime(i): 

primes.append(i)

return primes

Buggy Code

----------------------------

----------------------------

----------------------------

NameError Traceback (most 

recent call last)

Cell In[], line 17, in

count_up_to(n)

15 primes = []

16 for i in range(2, n): 

--->17 if is_prime(i): 

18 primes.append(i)

19 return primes 

NameError: name 'is_prime'

is not defined

Error Messages

Figure 7: An Example from the Basic Programming Problems.
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Task: Vasya has a string $s$ of length $n$ consisting only of digits 0 and 

1. Also he has an array $a$ of length $n$. 
Vasya performs the following operation until the string becomes empty: 
choose some consecutive substring of equal characters, erase it from the 
string and glue together the remaining parts (any of them can be empty). 
For example, if he erases substring 111 from string 111110 he will get the 
string 110. Vasya gets $a_x$ points for erasing substring of length $x$.
Vasya wants to maximize his total points, so help him with this! 

-----Input-----

The first line contains one integer $n$ ($1 \le n \le 100$) — the length of 
string $s$.
The second line contains string $s$, consisting only of digits 0 and 1.
The third line contains $n$ integers $a_1, a_2, \dots a_n$ ($1 \le a_i \le 
10^9$), where $a_i$ is the number of points for erasing the substring of 
length $i$.

-----Output-----

Print one integer — the maximum total points Vasya can get.

-----Examples-----

Input
7
1101001
3 4 9 100 1 2 3
Output
109

Input
5
10101
3 10 15 15 15
Output
23

-----Note-----

In the first example the optimal sequence of erasings is: 1101001 
$\rightarrow$ 111001 $\rightarrow$ 11101 $\rightarrow$ 1111 
$\rightarrow$ $\varnothing$.

In the second example the optimal sequence of erasings is: 10101 
$\rightarrow$ 1001 $\rightarrow$ 11 $\rightarrow$ $\varnothing$.

n = int(input())

s = input()

a = list(map(int,

input().split()))

max_points = 0

for i in range(n): 

if s[i] == s[i+1]: 

max_points += a[i]

else: 

max_points += a[i+1]

print(max_points)

Buggy Code

Error Messages

-----------------------------

-----------------------------

-----------------------------

NameError Traceback (most 

recent call last)

6 max_points = 0

7 for i in range(n): 

--->8 if s[i] == s[i+1]: 

9 max_points += a[i]

10 else: 

11 max_points += a[i+1]

IndexError: string index out 

of range

"input": “
7

1101001

3 4 9 100 1 2 3",

"output": "",

"expected": "109"

Failed Test Case

Figure 8: An Example from the Programming Competition Problems. The error information includes the line of
code where the error occurs and the test case that failed.
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Task: I have a data frame like below 

A_Name B_Detail Value_B Value_C Value_D ......
0   AA      X1        1.2      0.5       -1.3    ......
1   BB      Y1        0.76     -0.7      0.8     ......
2   CC      Z1        0.7      -1.3      2.5     ......
……
This is just a sample of data frame, I can have n number of columns like (Value_A, Value_B, Value_C, ........... Value_N)
Now i want to filter all rows where absolute value of all columns (Value_A, Value_B, Value_C, ....) is less than 1.
If you have limited number of columns, you can filter the data by simply putting 'and' condition on columns in dataframe, 
but I am not able to figure out what to do in this case. 
I don't know what would be number of such columns, the only thing I know that such columns would be prefixed with 
'Value'.
In above case output should be like 

A_Name B_Detail Value_B Value_C Value_D ......
1   BB      Y1        0.76     -0.7      0.8     ......
3   DD      L1        0.9      -0.5      0.4     ......
5   FF      N1        0.7      -0.8      0.9     ......

A:
<code>
import pandas as pd

df = pd.DataFrame({'A_Name': ['AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG'],
'B_Detail': ['X1', 'Y1', 'Z1', 'L1', 'M1', 'N1', 'K1'],
'Value_B': [1.2, 0.76, 0.7, 0.9, 1.3, 0.7, -2.4],
'Value_C': [0.5, -0.7, -1.3, -0.5, 1.8, -0.8, -1.9],
'Value_D': [-1.3, 0.8, 2.5, 0.4, -1.3, 0.9, 2.1]})

</code>
df = ... # put solution in this variable
BEGIN SOLUTION
<code>

df = df[(df.abs() < 1).all(axis=1)]Buggy Code

Traceback (most recent call last): 

File "program.py", line 13, in <module>

df = df.loc[(df.abs() > 1).any(axis=1)]

File "<hidden path>/lib/python3.8/site-

packages/pandas/core/generic.py", line 9773, in abs

return np.abs(self) # type: ignore[return-value]

File "<hidden path> /lib/python3.8/site-

packages/pandas/core/generic.py", line 2032, in __array_ufunc__ 

return arraylike.array_ufunc(self, ufunc, method, *inputs, **kwargs)

File "<hidden path> /lib/python3.8/site-

packages/pandas/core/arraylike.py", line 372, in array_ufunc 

result = mgr.apply(getattr(ufunc, method))

File "<hidden path> /lib/python3.8/site-

packages/pandas/core/internals/managers.py", line 325, in apply 

applied = b.apply(f, **kwargs)

File "<hidden path> /lib/python3.8/site-

packages/pandas/core/internals/blocks.py", line 381, in apply 

result = func(self.values, **kwargs)

TypeError: bad operand type for abs(): 'str

Error Messages

Figure 9: An Example from the Data Analysis Problem. We use the completion mode in DS-1000.

2098



NameError

def string_to_md5(text):  

if text == ‘’: 

return None

else: 

return hashlib.md5(text.encode('utf-8')).hexdigest()

---Buggy Code

---Error Message

The error message indicates that the 'hashlib' module is not imported. To fix this, we can 
import the 'hashlib' module at the beginning of the code using the 'import' keyword.
---

NameError: name 'hashlib' is not defined 

---Chain of Repair

Corrected Code
def string_to_md5(text):  

import hashlib

if text == ‘’: 

return None

else: 

return hashlib.md5(text.encode('utf-8')).hexdigest()

def recursive_list_sum(data_list): 

if len(data_list) == 1: 

return data_list[0]

else: 

if isinstance(data_list, list): 

sum = 0

for element in data_list: 

if isinstance(element, list): 

sum += recursive_list_sum(element)

else: 

sum += element return sum

else: 

return data_list

---Buggy Code

---Error Message

The error message indicates that the function is trying to add an integer and a list, which 
is not a valid operation. To fix this, we can check if the current element in the list is a list or 
not before adding it to the sum. If it is a list, we can recursively call the function on that list 
and add the result to the sum. If it is not a list, we can simply add it to the sum. This way, we 
can handle both cases where the input is a list or an integer.
---

TypeError: unsupported operand type(s) for +: 'int' and 'list’
---Chain of Repair

Corrected Code

TypeError

def recursive_list_sum(data_list): 

if len(data_list) == 1: 

return data_list[0]

else: 

if isinstance(data_list, list): 

return data_list[0] + recursive_list_sum(data_list[1:])

else: 

return data_list

Bug Fixing

Bug Fixing

---Task
Write a function of recursion list sum.

---Task
Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return 
None.

Figure 10: Case Studies. We present two cases from CodeError. The Chain-of-Repair clearly identifies the
NameError and TypeError in the buggy code and provides the correct modification methods, which are highlighted
in red. 2099



Handling Edge Cases---Task
Title: Minimum Difference Subarray
Given an integer array nums, write a function min_diff_subarray that returns a subarray such 
that the absolute difference sum between its elements is minimized. In other words, find a 
subarray such that the sum of the absolute differences between its elements is minimal.

-----Input-----
nums: An integer array where 1 <= len(nums) <= 10^5, and -10^4 <= nums[i] <= 10^4.

-----Output-----
Return a list containing integers, representing the found minimum difference subarray.

Example Input:
nums = [1, 4, 7, 2, 9, 10, 12]
result = min_diff_subarray(nums)
print(result)

Example Output:
[9, 10, 12]

In this example, the subarray [9, 10, 12] has the minimum sum of absolute differences 
between its elements.

---Error Message                                                            ---

---Buggy Code                                                                 ---Chain of Repair

Corrected Code

def min_diff_subarray(nums): 

n = len(nums)

if n == 0: 

return []

min_diff = float('inf’)

result = []

for i in range(n): 

current_diff = abs(nums[i] -

nums[i + 1])

if current_diff < min_diff: 

min_diff = current_diff 

result = [nums[i], nums[i + 

1]]

return result 

# Example call

nums = [1, 4, 7, 2, 9, 10, 12]

result = min_diff_subarray(nums)

print(result)

IndexError Traceback (most recent call last)

Cell In[1], line 19

17 # Example call

18 nums = [1, 4, 7, 2, 9, 10, 12]

--->19 result = min_diff_subarray(nums)

20 print(result)

Cell In[1], line 10, in

min_diff_subarray(nums)

7 result = []

9 for i in range(n): 

--->10 current_diff = abs(nums[i] - nums[i + 

1])

11 if current_diff < min_diff: 

12 min_diff = current_diff 

IndexError: list index out of range

The error message indicates an 
"IndexError: list index out of range" at line 
10 of the min_diff_subarray function. This 
error occurs when the loop variable i 
reaches the last index of the array, and 
nums[i + 1] attempts to access an index 
beyond the bounds of the array.
To fix this issue, you can adjust the loop 
range to ensure that the loop doesn't 
iterate up to the last index. You can 
modify the loop to iterate up to n - 1 
instead of n. 

def min_diff_subarray(nums): 

n = len(nums)

if n == 0: 

return []

min_diff = float('inf’)

result = []

for i in range(n - 1): 

current_diff = abs(nums[i] -

nums[i + 1])

if current_diff < min_diff: 

min_diff = current_diff 

result = [nums[i], nums[i + 

1]]

return result 

# Example call

nums = [1, 4, 7, 2, 9, 10, 12]

result = min_diff_subarray(nums)

print(result)

Bug Fixing

Figure 11: Handling Boundary Issues.
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Handling Multiple Bugs---Task
Suppose you have a DataFrame containing student information, including names, student 
IDs, subjects, and grades. 

1) Select all student information with grades above 90 in all subjects.
2) For each subject, calculate the average grade and append the results to the original 

DataFrame.

---Error Message                                                            ---

---Buggy Code                                                                 ---Chain of Repair

Corrected Code

The error is occurring due to the incorrect 
use of the logical operator & in the code. 
To fix this error, you should use 

parentheses to clarify the order of 

operations. This modification ensures 

that the conditions are properly 

grouped, resolving the ambiguity 

mentioned in the error message.

Bug Fixing

import pandas as pd 

data = {

‘Name‘: . . ., 'StudentID’: . . .,

'Subject’: . . ., 'Grade’: . . .}

df = pd.DataFrame(data)

selected_students = df[df['Grade'] > 90 & 

df['Grade'] < 100]

print(selected_students)

average_scores =

df.groupby('Subject')['Grade'].mean()

df.merge(average_scores, left_on='Subject',

right_index=True, how='left', suffixes=('',

'_Average'), inplace=True)

--------------------------------------------

--------------------------------------------

ValueError Traceback (most recent call last)

<hidden path>/lib/python3.8/site-

packages/pandas/core/generic.py in ?(self)

1535 @final 1536 def __nonzero__(self): 

-> 1537 raise ValueError(

1538 f"The truth value of a 

{type(self).__name__} is ambiguous. "

1539 "Use a.empty, a.bool(), a.item(), 

a.any() or a.all()."

1540 )

ValueError: The truth value of a Series is

ambiguous. Use a.empty, a.bool(), a.item(),

a.any() or a.all().

import pandas as pd 

data = {

'Name': ['John', 'Alice', 'Bob', 'Eva',

'David’],

'StudentID': [101, 102, 103, 104, 105],

'Subject': ['Math', 'English', 'Math',

'Physics', 'English’],

'Grade': [92, 85, 95, 88, 91] }

df = pd.DataFrame(data)

selected_students = df[( df['Grade'] > 90 )

& ( df['Grade'] < 100)]

print(selected_students)

average_scores =

df.groupby('Subject')['Grade'].mean()

df.merge(average_scores, left_on='Subject',

right_index=True, how='left', suffixes=('',

'_Average'), inplace=True)

Turn 1

Turn 2

Based on the error message, it appears 
that the merge() function does not 
support the inplace parameter. To 
address this issue, you can modify the 
code by removing the inplace=True 
parameter from the merge() function.

Bug Fixing, remove inplace parameter

import pandas as pd 

data = . . .

df = pd.DataFrame(data)

selected_students = df[( df['Grade'] > 90 )

& ( df['Grade'] < 100)]

print(selected_students)

average_scores =

df.groupby('Subject')['Grade'].mean()

df.merge(average_scores, left_on='Subject',

right_index=True, how='left', suffixes=('',

'_Average'), inplace=True)

. . .

df.merge(average_scores, left_on='Subject',

right_index=True, how='left', suffixes=('',

'_Average'), inplace=True)

. . .

TypeError: merge() got an unexpected keyword

argument 'inplace'

---Error Message                                                            --- Corrected Code

---Buggy Code                                                                 ---Chain of Repair

Figure 12: Handling Multiple Bugs.
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Code Teacher

You are an experienced and insightful programming instructor, and you need to identify the 

bugs in the given code based on the error messages.

- buggy code:

{buggy code}

When testing the above code, errors occurred: {error_message}, some test cases did not pass! 

Please check the implementation of the function and provide a method for modification based 

on the error message. No need to provide the modified code.

Modification method:

You are a student assistant with excellent code repair capabilities. You can attempt to fix 

the bugs in the above code based on the provided error information and the method for 

modification. Please make sure to carefully check every potentially problematic area and make 

appropriate adjustments and corrections.

- buggy code:

{buggy code}

When testing the above code, errors occurred: {error_message} , some test cases did not pass! 

Please check the implementation of the function and fix the code based on the modification 

method.

- modification method:

{modification method}

Correct the code: Code Learner

INTERVENOR

Figure 13: Role Instructions in INTERVENOR. Within INTERVENOR, there are two LLM-based agents Code
Teacher and Code Learner. We utilize specific instructions to ensure that they play the correct roles and carry out
the intended tasks.
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Zero-Shot 

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

"""

Zero-Shot CoT

Code Generation

Few-Shot

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

Let's write the code step by step.

"""

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

. . .

"""

{canonical_solution}

from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:

""" Input to this function is a string containing multiple groups of nested parentheses. 

Your goal is to

separate those group into separate strings and return the list of those.

Separate groups are balanced (each open brace is properly closed) and not nested within 

each other

Ignore any spaces in the input string.

. . .

"""

{canonical_solution}

def truncate_number(number: float) -> float:

""" Given a positive floating point number, it can be decomposed into

and integer part (largest integer smaller than given number) and decimals

(leftover part always smaller than 1).

. . . 

"""

{canonical_solution}

{task description}

Figure 14: Zero-Shot, Zero-Shot CoT, and Few-Shot Prompts for Code Generation Tasks.
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Few-Shot CoT

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

Let's complete the following code step by step.

"""

# Step 1: Create a variable to store the result

result = False

# Step 2: Loop through the list of numbers

for i in range(len(numbers)):

# Step 3: Check if the current number is within the threshold of any other number in 

the list

for j in range(i+1, len(numbers)):

if abs(numbers[i] - numbers[j]) <= threshold:

# Step 4: If the condition is met, set the result to True and break out of 

the loop

result = True

break

# Step 5: If the result is already True, break out of the loop

if result:

break

# Step 6: Return the result

return result

from typing import List

def rescale_to_unit(numbers: List[float]) -> List[float]:

""" Given list of numbers (of at least two elements), apply a linear transform to that 

list,

such that the smallest number will become 0 and the largest will become 1

>>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])

[0.0, 0.25, 0.5, 0.75, 1.0]

Let's complete the following code step by step.

"""

# Step 1: Find the smallest and largest numbers in the list

smallest = min(numbers)

largest = max(numbers)

# Step 2: Calculate the difference between the largest and smallest numbers

difference = largest - smallest

# Step 3: Create a new list to store the rescaled numbers

rescaled_numbers = []

# Step 4: Loop through each number in the original list

for number in numbers:

# Step 5: Apply the linear transform to each number

rescaled_number = (number - smallest) / difference

# Step 6: Add the rescaled number to the new list

rescaled_numbers.append(rescaled_number)

# Step 7: Return the new list

return rescaled_numbers

def strlen(string: str) -> int:

""" Return length of given string

>>> strlen('')

0

>>> strlen('abc')

3

Let's complete the following code step by step.

"""

# 1. Initialize a variable to store the length of the string

length = 0

# 2. Use a for loop to iterate through each character in the string

for char in string:

# 3. Increment the length variable by 1 for each character

length += 1

# 4. Return the length variable

return length

{task description}

Code Generation

Figure 15: Few-Shot CoT Prompts for Code Generation Tasks.
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Zero-Shot 

You are a master at debugging code. Please correct the following buggy code.

-buggy code:

{buggy_code}

-correct code:

{task_description}

Few-Shot

You are a master at debugging code. Please correct the following buggy code.

-buggy code:

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):

if idx == idx2:

distance = abs(elem - elem2)

if distance < threshold:

return True

return False

-correct code:

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):

if idx != idx2:

distance = abs(elem - elem2)

if distance < threshold:

return True

return False

. . .

-buggy code:

{buggy_code}

-correct code:

{task_description}

Code Repair

Figure 16: Zero-Shot and Few-Shot Prompts for Code Repair.
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Few-Shot CoT

You are a master at debugging code. Please correct the following buggy code.

<buggy_code>

from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:

"""Input to this function is a string containing multiple groups of nested parentheses. 

Your goal is to separate those group into separate strings and return the list of those. 

Separate groups are balanced (each open brace is properly closed) and not nested within each 

other.Ignore any spaces in the input string.

"""

result = []

current_string = []

current_depth = 0

for c in paren_string:

if c == ')':

current_depth += 1

current_string.append(c)

elif c == '(':

current_depth -= 1

current_string.append(c)

if current_depth == 0:

result.append(''.join(current_string))

current_string.clear()

return result

</buggy_code>

<repair_method>

The error in the original separate_paren_groups function lies in the handling of parentheses. 

The function incorrectly increments current_depth when encountering a closing parenthesis and 

decrements it when encountering an opening parenthesis. This leads to an incorrect count of 

the depth of parentheses.To fix the issue, we should increment current_depth when an opening 

parenthesis is encountered and decrement it when a closing parenthesis is encountered. This 

ensures that the depth is properly tracked, and we append characters to current_string based 

on the correct conditions.

</repair_method>

<correct_code>

from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:

"""Input to this function is a string containing multiple groups of nested parentheses. 

Your goal is to separate those group into separate strings and return the list of those. 

Separate groups are balanced (each open brace is properly closed) and not nested within each 

other.Ignore any spaces in the input string.

"""

result = []

current_string = []

current_depth = 0

for c in paren_string:

if c == '(':

current_depth += 1

current_string.append(c)

elif c == ')':

current_depth -= 1

current_string.append(c)

if current_depth == 0:

result.append(''.join(current_string))

current_string.clear()

return result

</correct_code>

<buggy_code>

{buggy_code}

</buggy_code>

<repair_method>

Code Repair

Figure 17: Few-Shot CoT Prompts for Code Repair.
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{buggy_code}

The above code may contain errors.

Please check the implementation of the function and provide a method for modification based 

on your knowledge. No need to provide the modified code.

Modification method： Repair Method Generation

Self-Refine

{buggy_code}

The above code contains errors.

Please check the implementation of the function and fix the code based on the modification 

method.

modification method:{motification_method}

Correct the code: Code Repair

Figure 18: Prompts Used in Self-Refine Model. The instructions for generating code repair plannings and code
repair are shown.

You are an student assistant with excellent code repair capabilities. You can attempt to fix 

the bugs in the code based on the error messages. Please make sure to carefully check every 

potentially problematic area and make appropriate adjustments and corrections.

- buggy code:

{buggy code}

When testing the above code, errors occurred: {error_message} , some test cases did not pass! 

Please check the implementation of the function and fix the code based on your knowledge.

Correct the code:

Error Msgs

Figure 19: Prompts Used in Error Msgs Model. It conduct code repair by directly using the code error messages.
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