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Abstract

N-gram language models (LMs) are the inno-
vation that first made large-vocabulary con-
tinuous automatic speech recognition (ASR)
viable. With neural end-to-end ASR archi-
tectures, however, LMs have become an af-
terthought. While the effect on accuracy may
be negligible for English and Mandarin, jetti-
soning the LM might not make sense for the
world’s remaining 6000+ languages. In this
paper, we investigate the role of the LM in
low-resource ASR. First we ask: does using an
n-gram LM in decoding in neural architectures
help ASR performance? While it may seem
obvious that it should, its absence in most im-
plementations suggests otherwise. Second, we
ask: when an n-gram LM is used in ASR, is
there a relationship between the size of the LM
and ASR accuracy? We have discovered that
gut feelings on this question vary considerably,
but there is little empirical work to support any
particular claim. We explore these questions
“in the wild” using a deliberately diverse set of 9
very small ASR corpora. The results show that:
(1) decoding with an n-gram LM, regardless of
its size, leads to lower word error rates; and (2)
increasing the size of the LM appears to yield
improvements only when the audio corpus it-
self is already relatively large. This suggests
that collecting additional LM training text may
benefit widely-spoken languages which typi-
cally have larger audio corpora. In contrast, for
endangered languages where data of any kind
will always be limited, efforts may be better
spent collecting additional transcribed audio.

1 Introduction

Including an n-gram language model (LM) during
decoding within an automatic speech recognition
(ASR) system is a long-established critical prac-
tice (Lucassen and Mercer, 1984; Jelinek, 1976;
Bahl et al., 1983, 1989). This has motivated appre-
ciable research exploring different ways to build
or augment LMs in order to improve ASR accu-

racy (Celebi et al., 2012; Bellegarda, 2004; Sagae
et al., 2012; Sheikh et al., 2024).

With recent advances in end-to-end neural ASR,
the role of the LM has diminished somewhat dra-
matically (Hannun et al., 2014; Watanabe et al.,
2018), with the LM becoming largely optional.
Using an LM in decoding is often challenging
within many state-of-the-art deep learning ASR
toolkits, where it is typically a poorly documented
command-line option or a feature that users them-
selves must implement (Conneau et al., 2020b).

A number of studies have incidentally shown
that decoding with an LM within s.o.t.a. neural
architectures yields competitive or superior perfor-
mance (Wang et al., 2022; Liu et al., 2019; Baevski
and Mohamed, 2020; Meng et al., 2021; Javed et al.,
2022), but the impact of the LM in these papers
is discussed briefly, if at all. Additionally, the lan-
guages in these studies – typically English – are
not at all constrained by data availability. Recent
work by Javed et al. (2022) on 40 Indian languages
with more limited resources shows a consistent
improvement in accuracy when using an LM, but
the corpora are still enviably large, with over 17K
hours of audio and billions of words.

Two recent studies probe the effect of LM size
on ASR performance in more genuinely under-
resourced settings. Sikasote and Anastasopoulos
(2022a) report that a larger LM actually yields
mildly worse performance for a 19-hour Bemba
corpus. Liu et al. (2023b) explore the effect of LM
size in six small corpora, finding a lack of word
error rate (WER) improvement when using larger
LMs, even in simulated low-resource settings.

The contradictory results in this prior work raise
two questions. First, is an n-gram LM still a valu-
able component in ASR when resources are lim-
ited? Second, if using an LM does make a dif-
ference, how much additional text data beyond the
transcripts of the audio training data should be used
to train the LM – or in other words, how large
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should the LM be? Training on additional texts
could decrease the out-of-vocabulary (OOV) rate
and reduce the overall sparsity of the LM, but the
impact of the LM and its size on ASR accuracy
remains strangely unexplored with few studies ad-
dressing the issue directly or thoroughly (Sikasote
and Anastasopoulos, 2022a; Liu et al., 2023b).

This study aims to provide empirical evidence
to answer these research questions. We explore
the impact of decoding with LMs of different sizes
within two ASR architectures on a diverse set of
small corpora. We very deliberately choose to work
with many corpora of varying sizes, recording qual-
ity, and linguistic properties rather than simulating
a range of sizes using a single corpus. We conduct
further regression analyses to explore for each lan-
guage whether ASR performance is impacted by
LM size and other factors of interest.

Addressing these questions has important im-
plications for creating ASR datasets for under-
resourced languages. For many indigenous and
endangered languages, additional texts for training
larger LMs often come from a domain (e.g., the
Bible) that is drastically different from that of the
audio (e.g., linguistic fieldwork). This sort of do-
main mismatch might yield richer LMs that poorly
model the target data. An improved understanding
of the impact of n-gram LMs on ASR accuracy
in such settings can help language communities
choose how to allocate their limited resources for
building more robust ASR systems.

2 Related work

There has been continuous progress over the past
decade in advancing ASR technologies for low-
resource languages (Thomas et al., 2013; Cui
et al., 2014; Shi et al., 2021). Some of these lan-
guages, such as Wolof (Gauthier et al., 2016) and
Swahili (Gelas et al., 2012), have large speaker
populations; with reasonable time and financial
support, more data is obtainable. For others, es-
pecially indigenous and endangered languages, it
is difficult to collect additional data, but ASR can
facilitate the creation of this data (Shi et al., 2021;
Prud’hommeaux et al., 2021; Bartelds et al., 2023;
Le Ferrand et al., 2023).

Our work goes beyond prior work that exam-
ines the impact of n-gram LMs on ASR perfor-
mance (Sikasote and Anastasopoulos, 2022a; Javed
et al., 2022; Liu et al., 2023b). First, we study nine
languages from six language families, covering a

diverse set of typological properties. Second, we
compare two ASR architectures (Section 3.3) for
each language. This experimental design allows us
to see whether the impact of LM size is consistent
across both languages and models.

3 Experiments

It is not our goal to find the best performing ASR
architecture or parameterizations. We are also not
comparing WER across languages, a meaningless
exercise given the range of languages and corpus
size. Instead, our goal is to examine, for each
language, the effect of (1) decoding with an LM in
an end-to-end system, and (2) increasing the size of
the LM, in order to see whether similar qualitative
trends hold across these nine diverse languages.

3.1 Data sources

We use ASR datasets from nine typologically
diverse languages, spanning six language fam-
ilies (see Table 1). Among these languages,
Bemba (Sikasote and Anastasopoulos, 2022b),
Wolof (Gauthier et al., 2016), Swahili (Gelas et al.,
2012), Fongbe (Laleye et al., 2016) (Niger-Congo),
Iban (Juan et al., 2014, 2015) (Austronesian) are
widely-spoken under-resourced languages (Liu
et al., 2022). The datasets for these five languages
are publicly available and include additional texts.
The dataset for Quechua is taken from the 2022
AmericasNLP Workshop Shared Task1. Additional
texts are sourced from Agić and Vulić (2019); Or-
tiz Suárez et al. (2019); Conneau et al. (2020b);
Wenzek et al. (2020), and Zevallos and Bel (2023).
Hupa (Dene/Athabaskan) is a critically endangered
language of North America with audio data de-
rived from fieldwork and additional texts from a
published grammar (Goddard, 1904). The corpus
for Bininj Kunwo, an Arnhem language spoken
in the Northern Territory of Australia, and that
for Kréyol Gwadloupéyen, a French-based creole
spoken on Guadeloupe (Glaude, 2013), consist of
fieldwork recordings with additional texts from the
Bible. The last three corpora were shared with us
by the linguists who collected the data and are not
currently publicly available.

3.2 LM settings

We explore three LM training settings, which we
refer to as NO_LM, LM_BASE, and LM_LARGE.

1turing.iimas.unam.mx/americasnlp/2022_st.html
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Language Audio Audio Additional Audio Audio LM_BASE LM_LARGE LM
Name sources quality texts train test size size ratio

Bemba books, radio variable religious 19h17m 4h49m 97,148 4,711,467 48.50
Wolof Wiki, Bible high Wiki, Bible 13h27m 3h21m 106,563 708,202 6.65
Swahili news variable news, books 7h17m 1h49m 72,979 29,237,493 400.63
Iban radio, tv high news 6h49m 1h42m 57,755 2,140,207 37.06
Fongbe daily living high news, Bible 5h44m 1h26m 45,567 1,035,713 22.73
Quechua conversation variable religion, gov’t 2h59m 0h44m 15,484 2,374,371 153.34
Hupa fieldwork variable grammar 1h16m 19m 7,345 48,731 6.63
Kréyol fieldwork variable Bible 59min 15min 8,857 24,336 2.75
Kunwok fieldwork variable Bible 51min 11min 4,660 281,582 60.43

Table 1: Descriptive statistics. Languages are ordered by total audio size. Numerical counts are those in the the most
recently updated public repositories. LM size is the number of LM training tokens. Ratio is LM_LARGE:LM_BASE.

NO_LM means that a LM is not included in decod-
ing. Both LM_BASE and LM_LARGE are trigram
LMs; the former is trained on the transcripts of the
acoustic training data, whereas the latter includes
those transcripts plus all the additional text data.

3.3 ASR frameworks

We experiment with two ASR architectures (see
also Appendix B). Kaldi DNN is a hybrid fully
connected DNN implemented with the Kaldi
toolkit (Panayotov et al., 2015), following the de-
fault sequence training parameters from Karel’s
recipe2. Prior work shows reasonable performance
from this DNN architecture in low-resource set-
tings (Morris et al., 2022). Training and decoding
within Kaldi requires an LM. For Wav2Vec2, we
fine-tune from the pre-trained Wav2Vec XLSR-53
multilingual model (Conneau et al., 2020a), built
upon the Wav2Vec 2.0 framework (Baevski et al.,
2020) (see Table 4, Appendix A for training param-
eters). The test data is decoded without an LM and,
using CTC decoding, with the two trigram LMs.3

For evaluation, we use random splits (Liu et al.,
2023a), which yield more reliable estimates of per-
formance that the “held-out speaker” approach. We
randomly divide the dataset into 80:20 training and
test sets, three times. We report the WER score
averaged over the three splits.

3.4 Regression analysis

To further validate the effect of LM size on WER,
we apply regression modeling. For each language,
we first calculate the WER of every LM-decoded
test utterance, which serves as the outcome vari-
able in the regression. The variable of interest
is the LM size, the number of tokens in the LM

2https://kaldi-asr.org/doc/dnn1.html
3Grid search for the α and β LM parameters yields no

appreciable WER improvement (Table 5 in Appendix C).

training corpus. We include perplexity (PPL) and
out-of-vocabulary (OOV) rate as control variables.
All fixed-effects have interactions with each other.
Given that different LM training settings appear to
influence the performance of Kaldi and Wav2Vec2
differently (Section 4; Table 2), we fit separate
regression models for each. Recall that with the
corpora we have, it is not our goal, nor is it appro-
priate, to compare WER across languages. Rather,
we investigate whether the impact of LM size is
consistently observed for every language. To that
end, we employ a separate regression model for
each language-architecture combination. (Every re-
sulting dataset has a reasonable size, ranging from
1,290 for Kréyol to 15,510 for Bemba given each
acoustic model.) This setup also means that the
coefficient values for the same factors are not com-
parable across languages. In cases where speaker
(or session, for Swahili) information is provided,
we include the speaker/session of the utterance as
a random effect, leading to a mixed-effects regres-
sion structure; otherwise a linear regression model
is applied (Hupa, Quechua, Kréyol, and Kunwok).

4 Results

The WER results are presented in Table 2 (see
also Table 5, Appendix C). First, it seems that hav-
ing an LM, regardless of its size, leads to better
performance. All WER results with LM_BASE

and LM_LARGE are lower than those derived
from NO_LM. Secondly, and counterintuitively
for some readers, a larger LM does not increase
accuracy for all languages. For Bemba and Swahili,
a larger LM yields moderate improvement, but in
other cases, regardless of the architecture, the WER
for LM_LARGE and LM_BASE are comparable,
or the WER for LM_LARGE is slightly worse.

Results from the regression analysis lend support
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Language Model NO_LM LM_BASE LM_LARGE

Bemba Kaldi - 45.71 42.05
Wav2Vec2 43.38 38.60 37.33

Wolof Kaldi - 31.78 31.93
Wav2Vec2 21.71 12.64 13.80

Swahili Kaldi - 32.44 26.08
Wav2Vec2 31.74 25.92 24.61

Iban Kaldi - 14.54 12.95
Wav2Vec2 41.24 19.92 19.96

Fongbe Kaldi - 55.94 60.28
Wav2Vec2 16.49 13.68 15.88

Quechua Kaldi - 63.65 61.94
Wav2Vec2 81.35 65.73 66.81

Hupa Kaldi - 55.83 56.55
Wav2Vec2 75.92 50.18 49.29

Kréyol Kaldi - 87.75 87.94
Wav2Vec2 74.34 62.80 62.65

Kunwok Kaldi - 70.85 71.03
Wav2Vec2 76.83 54.84 54.51

Table 2: WER results for all languages, ordered by
audio corpus size. NO_LM is not applicable to Kaldi.

Language PPL OOV (%)

LM_BASE LM_LARGE LM_BASE LM_LARGE

Bemba 929.41 2517.17 16.26 9.59
Wolof 93.84 73.53 19.61 19.14
Swahili 366.79 583.78 9.60 2.49
Iban 96.56 101.99 3.07 0.94
Fongbe 22.18 112.34 43.35 43.34
Quechua 2034.23 1314.97 34.20 23.68
Hupa 206.96 212.92 36.43 32.37
Kréyol 158.99 178.43 38.67 34.00
Kunwok 177.35 872.32 47.82 40.43

Table 3: Average perplexity and OOV rates of the tran-
scripts of the acoustic test data.

to these observations. When using Kaldi (Table 6
in Appendix D), there is a significant positive co-
efficient for LM size for all languages, indicating
that a larger LM leads to a higher (worse) WER.
These findings largely align with Table 2. Why,
then, are the average WERs lower for LM_LARGE

for Bemba and Swahili under Kaldi? The regres-
sion results suggest a relationship between LM size
and WER when utterance perplexity and OOV rate
are controlled for. Regression results for Wav2Vec2
resonate with patterns from Table 2 as well: while
there is a significant negative coefficient for LM
size for Bemba and Wolof, we fail to see the same
pattern for other languages.

Why then does having a larger LM not improve
model performance? We offer a few conjectures.
First, we note in Table 1 that the LM size ratio for
some languages is quite small (e.g., Hupa: 6.63;
Kréyol: 2.75), while for Bemba, Swahili, Iban and
Kunwok, where a larger LM does reduce WER,
LM_LARGE is proportionally much higher than
LM_BASE. The only exception is Quechua, whose
LM size ratio ranks third but the WERs between
the two settings are roughly the same.

This brings to our second conjecture: the domain
mismatch between the transcribed audio sources
and the additional texts may decrease ASR ac-
curacy with LM_LARGE. For Quechua, Hupa,
Kréyol, and Kunwok, the test data comes from
everyday speech, whereas the additional texts are
technical or religious texts. To explore this idea, we
approximate domain similarity by measuring the
average perplexity of the transcripts of the acoustic
test data under the two LMs (the vocabularies for
the two LMs were kept the same). As shown in
Table 3, the perplexity scores for LM_LARGE are
higher across languages (with exceptions for Wolof
and Quechua) to different extents, suggesting that
domain mismatch may play a role in the lack of
WER improvement with LM_LARGE.

Finally, we consider the OOV rates of the acous-
tic test data. OOV rate will logically decrease
with a larger LM, which could in turn yield a
lower WER score. This seems true for Bemba,
Swahili, Iban and Kunwok. For Wolof and Fongbe,
LM_LARGE does not reduce the OOV rate much.
On the other hand, for Quechua, Hupa, and Kréyol,
the larger LM does not contribute to improved ac-
curacy despite the lower OOV rate. One noticeable
feature of these three languages is that they have
relatively little audio training data available, which
possibly subsumes the potential effect of LM size.

5 Conclusions and Future Work

Our results over nine languages, corroborated with
regression analysis, show that: (1) decoding with
an LM yields consistently lower WER; (2) a larger
LM infrequently improves ASR accuracy. We pro-
pose that in order for a larger LM to be helpful,
it needs to: (1) be much larger relative to the size
of the transcripts of the audio; (2) result in lower
OOV rates for the audio test data; (3) be coupled
with sufficient audio training data.

We hope these results can be taken as guidance
for ASR dataset creation strategies for low-resource
languages. For widely-spoken languages, where
additional text data is often readily available, re-
sources might be best directed toward gathering
that data. For indigenous and endangered lan-
guages, limited resources might be better spent
ethically increasing the amount of audio data.

In addition to experimenting with more lan-
guages, particularly endangered languages, we see
designing informative data selection and data aug-
mentation methods for LM building as a fruitful
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avenue for future work. This in turn can perhaps
mitigate the issues of (audio) data limitations par-
ticularly for endangered languages.

6 Limitations

We would like to acknowledge two main limita-
tions of our work: the number of languages and the
number of model architectures studied. Given that
our experiments target low-resource languages, this
is naturally constrained by the lack of ASR dataset
availability for languages as such. One possible so-
lution is to create artificial low-resource scenarios
from large datasets for languages with abundant
training data in order to expand the language diver-
sity covered in this work.

In terms of model architectures, here we explore
Kaldi and Wav2Vec2 XLSR-53, two frameworks
that have been shown empirically to work well in
settings with limited training data. That said, it
would be worthwhile in the future to employ other
end-to-end systems (Shi et al., 2021) in order to
test their limits in building language technology for
low-resource languages.

7 Ethics Statement

We include a total of 10 datasets covering nine
languages in our study. Of these datasets, six are
publicly available. The data for Hupa, Kréyol, and
Kunwok are developed in-house through academic
relations with the respective speech communities
of these languages; applications of these datasets
are carefully considered via personal connections
with elders and researchers from the communities.
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A Parameterization for Wav2Vec2

The parameterization for Wav2Vec2 is presented in
Table 4.

B Details of Computing Infrastructures

All models are trained on research computing clus-
ters. For Kaldi, each model is trained on a sin-
gle Nvidia A100 GPU with 8GB of memory, and
Wav2Vec with 16GB of memory.

C Full WER Results

The WER results from Wav2Vec2 with grid search
are presented in Table 5.

D Regression Results

Regression results given different model architec-
tures for our variable of interest, LM size (the num-
ber of tokens used to train the language model), and
the two control variables, the perplexity (PPL) and
OOV are presented in Table 6 (Kaldi) and Table 7
(Wav2Vec2).
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Parameter Value
Number of Epochs 30
Early Stopping Patience 7
Training Batch Size 16
Evaluation Batch Size 8
Warmup Size 1/10 of total stepsize
Gradient Accumulation Size 2
Learning Rate 3e-4 (3e-5 for Iban, Quechua, Hupa)

Table 4: Parameters used to train Wav2Vec XLSR-53.

Language Model LM_BASE LM_LARGE

Bemba Wav2Vec2 38.19 37.02
Wolof Wav2Vec2 12.90 13.36
Swahili Wav2Vec2 25.83 26.40
Iban Wav2Vec2 20.17 19.87
Fongbe Wav2Vec2 14.16 16.04
Quechua Wav2Vec2 68.61 67.82
Hupa Wav2Vec2 50.50 49.18
Kréyol Wav2Vec2 60.67 60.67
Kunwok Wav2Vec2 54.33 54.33

Table 5: WER results from grid search for the dataset(s) of all languages, ordered by the amount of audio data in
total. Note that we only performed grid search for when an LM is included for decoding; grid search in this case is
not applicable to Kaldi.

Language Factor Coef. 95% CI
Bemba LM size 1.97 (1.85, 2.08)

PPL 0.25 (-0.002, 0.51)
OOV 0.46 (0.38, 0.53)

Wolof LM size 3.57 (3.51, 3.62)
PPL -0.21 (-4.22, 3.46)
OOV 0.23 (0.20, 0.27)

Swahili LM size 1.44 (1.40, 1.48)
PPL 0.85 (0.73, 0.97)
OOV 0.14 (0.06, 0.23)

Iban LM size 2.61 (2.28, 2.93)
PPL -4.69 (-5.72, -3.67)
OOV -1.60 (-3.49, 0.30)

Hupa LM size 9.75 (8.40, 11.09)
(coarse) PPL 1.70 (-1.16, 4.56)

OOV 1.92 (1.42, 2.41)

Language Factor Coef. 95% CI
Fongbe LM size 2.44 (2.33, 2.55)

PPL 5.70 (5.10, 6.29)
OOV 0.21 (0.18, 0.23)

Quechua LM size 5.99 (3.66, 8.32)
PPL 2.88 (-1.85, 7.61)
OOV 1.10 (0.26, 1.94)

Hupa LM size 2.57 (1.25, 3.89)
(verified) PPL -1.18 (-3.75, 1.39)

OOV 0.27 (-0.16, 0.70)
Kréyol LM size 4.92 (2.23, 7.61)

PPL -0.38 (-5.73, 4.97)
OOV 0.37 (-3.55, 1.09)

Kunwok LM size 0.02 (-0.15, 1.97)
PPL -0.67 (-1.03, -3.05)
OOV 0.05 (0.01, 0.08)

Table 6: Mixed-effects regression results for each language with WER results derived from Kaldi. CI stands for
Confidence Interval. A significantly positive coefficient value indicates that the factor leads to a higher WER.

Language Factor Coef. 95% CI
Bemba LM size -0.01 (-0.02, -0.003)

PPL 0.01 (-0.01, 0.03)
OOV -0.001 (-0.004, 0.01)

Wolof LM size -0.01 (-0.01, -0.002)
PPL -0.03 (-0.06, -0.01)
OOV -0.01 (-0.01, -0.002)

Swahili LM size -0.01 (-0.01, -0.003)
PPL 0.04 (0.03, 0.05)
OOV -0.06 (-0.07, -0.05)

Iban LM size -0.01 (-0.02, 0.002)
PPL -0.03 (-0.07, 0.01)
OOV 0.005 (-0.07, 0.08)

Hupa LM size 0.02 (-0.07, 0.11)
(coarse) PPL 0.09 (-0.10, 0.28)

OOV -0.02 (-0.05, 0.02)

Language Factor Coef. 95% CI
Fongbe LM size 0.01 (-0.01, 0.02)

PPL 0.21 (0.14, 2.82)
OOV 0.004 (0.0004, 0.01)

Quechua LM size 0.02 (-0.02, 0.06)
PPL 0.10 (0.02, 0.18)
OOV 0.02 (0.01, 0.04)

Hupa LM size 0.04 (-0.05, 0.13)
(verified) PPL 0.16 (-0.02, 0.34)

OOV 0.02 (-0.01, 0.05)
Kréyol LM size -0.12 (-0.46, 0.22)

PPL -0.20 (-0.88, 0.48)
OOV -0.03 (-0.12, 0.06)

Kunwok LM size -0.01 (-0.06, 0.03)
PPL 0.01 (-0.09, 0.11)
OOV 0.01 (-0.002, 0.02)

Table 7: Mixed-effects regression results for each language with WER results derived from Wav2Vec2. CI stands for
Confidence Interval. A significantly positive coefficient value indicates that the factor leads to a higher WER.
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