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Abstract

Knowledge distillation optimises a smaller stu-
dent model to behave similarly to a larger
teacher model, retaining some of the perfor-
mance benefits. While this method can improve
results on in-distribution examples, it does
not necessarily generalise to out-of-distribution
(OOD) settings. We investigate two comple-
mentary methods for improving the robustness
of the resulting student models on OOD do-
mains. The first approach augments the dis-
tillation with generated unlabelled examples
that match the target distribution. The second
method upsamples data points among the train-
ing set that are similar to the target distribution.
When applied on the task of natural language in-
ference (NLI), our experiments on MNLI show
that distillation with these modifications outper-
forms previous robustness solutions. We also
find that these methods improve performance
on OOD domains even beyond the target do-
main.1

1 Introduction

Large pre-trained language models can achieve im-
pressive performance across a range of natural lan-
guage understanding tasks (He et al., 2021; Tou-
vron et al., 2023; Brown et al., 2020). However, as
performance has increased, so has the number of
model parameters (Zhao et al., 2023). While large
models can be impractical for many applications,
knowledge distillation can be used to reduce their
size (Sanh et al., 2019; Xu and McAuley, 2022;
Gou et al., 2021). During distillation, a smaller
student model is trained to mimic the behaviour of
a more complex teacher model on its training data,
often improving the performance of the student
model on in-distribution examples. However, this
does not necessarily lead to robust improvements
that generalise to out-of-distribution settings (Du
et al., 2023; Rashid et al., 2021b; Li et al., 2021;

1https://github.com/joestacey/robust_KD

Shao et al., 2021). We investigate two methods for
improving out-of-distribution performance of the
resulting student models: 1) Augmenting the distil-
lation by generating new unlabelled task-specific
examples that match the target distribution, and 2)
Upsampling examples among the training data that
are similar to the target distribution. We show that
these two approaches are orthogonal and can be
effectively combined together.

We use language models (LM) and a multi-
step prompting process to generate additional un-
labelled examples that target a particular task and
domain. While labels for these examples can also
be generated (Liu et al., 2022), our experiments
show that the LM-generated labels are unreliable
and lead to poor performance when used directly
for supervised training of the student model. In-
stead, we use these examples to gather predicted
probability distributions from the teacher models,
then optimise the student models to predict simi-
lar distributions during distillation. This approach
overcomes the issue of noisy labels and manages to
considerably improve student model performance
on out-of-distribution examples. In contrast to prior
work on generating in-domain examples using the
training set (Rashid et al., 2021b; Li et al., 2021;
Tang et al., 2019; Haidar et al., 2022), this study is
the first to investigate the use of generated data to
target specific out-of-distribution domains.

While domain-targeted augmentation of the data
improves performance in many settings, we found
that it has little effect on minority examples2.
Therefore, we investigate an additional method of
upsampling minority examples during distillation,
which substantially improves the performance of
the student model on adversarial NLI test sets. Both
of these methods can be combined together to im-
prove robustness across a range of different NLI
settings. While most distillation is performed with

2A term used to describe examples that counter common
spurious patterns in a dataset (Tu et al., 2020)
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a single teacher model, we also experiment with
these methods by distilling from an ensemble of
models. Ensembles can be used to better identify
minority examples, while also increasing the gen-
eral robustness of the teacher predictions. To the
best of our knowledge, this is the first work to in-
vestigate model ensembles for better identification
of minority examples.

We evaluate the distillation methods on the task
of Natural Language Inference (NLI). In particu-
lar, we aim to improve the robustness of models
trained on SNLI (Bowman et al., 2015) and eval-
uated on MNLI (Williams et al., 2018) (and vice
versa) – a setting where prior work has consistently
found negative results or limited improvements
(Teney et al., 2020; Mahabadi et al., 2020; Belinkov
et al., 2019a; Stacey et al., 2020, 2022a; Kumar and
Talukdar, 2020; Zhao and Vydiswaran, 2021). We
find that our simple but novel approach proves to
be highly effective, combining the strengths of both
LLMs and classification models.

2 Methods

Given either a large teacher model or an ensemble
of teacher models, we aim to distil these models
into a single student model that will perform well
on different, out-of-distribution datasets, while also
performing well on the in-distribution data used to
train the teacher model. In the case of MNLI, our
out-of-distribution data consists of multiple, dif-
ferent domains. By generating additional data for
some of these domains (our target domains), we can
measure how much performance improves on both
the target domains and other out-of-distribution
data comprised of different domains.

2.1 Knowledge Distillation
To maximise in-distribution performance, knowl-
edge distillation often supervises a student model
using a combination of the training labels and the
soft predictions from a teacher model (Hahn and
Choi, 2019; Du et al., 2023). We initially use the
training labels, before the student model learns
from the teacher model predictions for both the
original training data and the augmented data. In
effect, we are distilling one fine-tuned model into
another fine-tuned model, which we find gives us
the best performance. Similar to Li et al. (2021),
we consider squared errors for our distillation loss:

Loss =
N∑

n=1

C∑

c=1

(pn,c − qn,c)
2 (1)

where pn,c are the student predicted probabilities
for the c-th class and n-th observation, and qn,c are
the corresponding teacher predicted probabilities.

For labelled examples (i.e. not for our aug-
mented data), we only include a distillation loss if
either: 1) the teacher predictions are correct, or 2)
the teacher model has a larger predicted probability
for the correct class compared to the student model.
We find that this further improves the performance
of the knowledge distillation baseline.

We additionally consider robustness in a self-
distillation setting, using the same model archi-
tecture for both the student and teacher models
(Furlanello et al., 2018). In this case, we experi-
ment with distilling from an ensemble of teacher
models rather than using a single teacher model.
We consider whether using an ensemble of teacher
models improves robustness, and whether our pro-
posed methods are still effective in this setting. In
these cases, the ensemble distillation loss can be
described as:

Loss =

N∑

n=1

C∑

c=1

(pn,c −
1

E

E∑

i=1

qi,n,c)
2 (2)

where pn,c are the predicted probabilities from the
student model for class c for the n-th observation.
E represents the total number of models in our
ensemble, with qi,n,c representing the predicted
probabilities for the c-th class from the i-th teacher
model on the n-th observation.

2.2 Generating Domain-Targeted Data

For our domain-targeted augmentation (DTA)
method, we consider the MNLI genres as our target
domains. Each of these domains is different from
the single genre contained within SNLI. To im-
prove performance on these out-of-distribution do-
mains, we generate examples from a GPT-3 model
(Brown et al., 2020) to mimic text that may appear
in these genres. To ensure we are testing zero-shot
performance and not few-shot performance, we
do not provide our generator with any examples
from the target genres. Instead, we provide the
generator with a high-level description about the
genre, and ask the model to generate a premise. For
example, for the popular magazine article genre,
we use the prompt: ‘Provide a sentence from a
popular magazine article’. We then generate cor-
responding hypotheses, asking the model to create
a hypothesis for each class (see Appendix F for
our full prompts). While the labels associated with
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each generated example are unreliable, we use this
approach to ensure that our generated examples
are relatively balanced across the different classes.
This method produces related sentence pairs, with
a mixture of entailment, neutral and contradiction
relationships, but without a reliable label that we
can use during training.

The MNLI-matched and MNLI-mismatched val-
idation sets each consist of five, distinct genres.
We generate additional data for 4 of the 5 genres
contained within the MNLI-matched validation set
(we exclude the telephone transcripts genre). Then,
as MNLI-mismatched consists of 5 genres that are
not in MNLI-matched, we use MNLI-mismatched
to test how well the new data augmentation helps
models generalise to new, additional genres. In
total, we generate 47,955 unlabelled sentence pairs
for the 4 MNLI-matched genres.

2.3 Augmentation to Address the NLI
Word-Overlap Heuristic

To examine whether using generated, unlabelled
data during distillation can also help to address
specific, known dataset biases, we also introduce
a word-overlap augmentation (WOA). WOA is a
variation of our DTA method that aims to overcome
the NLI word-overlap bias (McCoy et al., 2019).
The word-overlap bias is a heuristic where sentence
pairs with a high overlap of words are more likely
to be predicted as entailment. HANS measures
model performance on this heuristic, containing
examples where a high lexical overlap no longer
correlates with the entailment class.

To generate the data, first we ask our generator to
provide a short sentence, specifying a conjunction
that must be included from a list of 60 conjunc-
tions (ensuring variety in the linguistic structure
of our premises). To prevent the model creating a
second sentence very similar in meaning, the list
of words is then shuffled with the conjunction re-
moved (see Figure 3). We use the generator to
exclude examples where both sentences have es-
sentially the same meaning, or where the generator
finds one of the sentences to be incoherent. In total,
4,695 additional examples were created. Similar to
our domain-targeted augmentation, the augmented
data contains both entailment and non-entailment
examples, but no labels are provided.

2.4 Distilled Minority Upsampling
While our domain-targeted augmentation improves
performance on different, unseen domains, it is un-

likely to help with in-domain minority examples.
We therefore introduce distilled minority upsam-
pling (DMU) as a new method for improving model
robustness, upsampling minority examples during
knowledge distillation. We are motivated by cre-
ating complementary methods that can improve
robustness on both minority examples and on dif-
ferent, out-of-distribution domains.

DMU is inspired by Just Train Twice (JTT) (Liu
et al., 2021a), which Du et al. (2023) introduce to a
student-teacher setting by identifying examples that
a teacher model has misclassified and upsampling
these examples when training the student model.
Unlike JTT, our DMU method: 1) upsamples the
minority examples during distillation rather than
during fine-tuning, combining the benefits of both
knowledge distillation and the additional supervi-
sion for minority examples, and 2) identifies mi-
nority examples as observations that the student
model, rather than the teacher model, has misclas-
sified. These changes result in a step-change in
performance, with DMU substantially outperform-
ing JTT on SNLI-hard (Gururangan et al., 2018).
Additionally, we improve DMU by using an ensem-
ble of models to identify the minority examples,
defining minority examples as observations mis-
classified by any model in the ensemble.

A summary of how both DTA and DMU are
applied together is provided in Figure 1.

3 Experiments

3.1 Distillation Setup

We experiment extensively with our new robust-
ness methods across different distillation settings.
While generative language models have shown ex-
cellent performance on a wide range of tasks, re-
cent work has found that they still underperform
on NLI compared to discriminative models (Chen
et al., 2023; Wei et al., 2023). Therefore, we use
generative models only for example generation and
fine-tune pre-trained discriminative models for the
NLI classification task. We evaluate the following
combinations of teacher and student models: 1) a
TinyBERT (Jiao et al., 2020) student model and
a BERT (Devlin et al., 2019) teacher model, 2) a
BERT student model and a BERT teacher model, 3)
a DeBERTa (He et al., 2021) student model and a
DeBERTa teacher model, 4) a BERT student model
and a DeBERTa teacher model and 5) a TinyBERT
student model and a DeBERTa teacher model. In
settings 2 and 3 (using self-distillation), we exper-
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Step 1: Initial fine-tuning

Teacher(s) Student(s)
This creates fine-tuned student & teacher models

Step 2: Identify minority examples

i. We evaluate the fine-tuned models on the training 
set, labelling examples misclassified by any student

Step 3: Generate DTA data

i. Generating domain-targeted premise statements 

We fine-tune our teacher and student models 
using the training set

ii. Generating class-conditioned hypotheses
iii. Discarding (inaccurate) label information

Step 4a: Identify when KD is required

Teacher(s) Labels

We supervise the student model, finding a 
distillation loss using as the sum of 
squared errors between the student and 
teacher soft predictions. 

Pn,c are the soft student probabilities for 
observation n, and class c, while qi,n,c are 
the soft teacher probabilities for the i-th 
teacher model

If teacher prediction 
is correct, proceed 
with KD. 

Student

Else, if the teachers 
are more correct 
than the student, 
proceed with KD 

Step 4b: KD supervision

Labelled 
KD data

Get mean of 
teacher soft 
predictions

Unlabelled 
KD data

Training data

Ii. We then upweight these minority examples in our 
labelled KD data

Minority ex.
Labelled 
KD data

Proceed with KD

Unlabelled KD data

Step 4: KD process

We generated unlabelled data in a specific, 
targeted domain:

During training, we identify which labelled examples should be included for the KD supervision:

Figure 1: The full process for applying our DTA and DMU methods together. This diagram includes an explanation
of how ensembles can be used in both DTA (with an ensemble of student models) and DMU (with an ensemble of
student and/or teacher models).

iment with using an ensemble of teacher models.
For each result, we report an average from 10 dif-
ferent seeds, performing significance testing3 in
each case.

We additionally experiment with applying DMU
when distilling a RoBERTa-large (Liu et al., 2019)
teacher model into a distil-RoBERTa student
model, providing a comparison with previous work.
This involves training on MNLI, and testing out-of-
distribution performance on HANS. We addition-
ally test our word-overlap augmentation method in
this same setting.

3.2 Domain-Targeted Augmentation
When applying our domain-targeted augmenta-
tion (DTA) method, we primarily use SNLI as
our in-distribution data and MNLI as our out-of-
distribution data, using our generated examples
for MNLI as unlabelled data during the distilla-
tion. We test out-of-distribution performance on
both MNLI-matched and MNLI-mismatched, de-
spite only generating data for the genres contained
within MNLI-matched. We perform additional ex-
perimentation using MNLI as the training data and
SNLI as the out-of-distribution data. The data is
generated for SNLI using the same process as de-
scribed for MNLI, with 47,898 unlabelled exam-

3We use two-tailed bootstrapping hypothesis testing (Efron
and Tibshirani, 1993) to test statistical significance.

ples created for SNLI. To show the effect of our
domain-targeted augmentation, we compare our re-
sults to standard knowledge distillation only using
the training data. We also provide a baseline that
uses the augmented data as labelled data during
training, using the label that the hypotheses were
conditioned over during the data generation. An
additional smoothing baseline is also provided, as
proposed by Du et al. (2023), which raises each
class prediction by the teacher to the power of 0.9
before normalizing these scores.

3.3 Distilled Minority Upsampling

As DMU provides additional supervision to mi-
nority examples which counter common spurious
correlations, this is likely to improve performance
on minority examples rather than on other unseen
out-of-distribution datasets. We therefore train our
model on SNLI and evaluate performance on SNLI-
hard (Gururangan et al., 2018), a test set that has
been widely used to test robustness (Mahabadi
et al., 2020; Belinkov et al., 2019a,b; Sanh et al.,
2021). Additionally, we experiment with using an
ensemble of models to better identify the minority
examples, before performing the distillation using
an ensemble of teacher models. We also compare
DMU with a JTT baseline (Du et al., 2023).
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Model In-Distribution Out-of-Distribution

SNLI-dev SNLI-test SNLI-hard MNLI-mm MNLI-m

BERT -> TinyBERT:

BERT teacher 91.03 90.59 80.31 75.01 74.97

TinyBERT baseline 77.99 78.25 56.98 55.50 54.24
Baseline w/ labelled aug. data 77.72 78.18 56.73 46.47 45.55

JTT1,2 76.96 76.25 55.93 52.66 52.00
KD (standard distillation) 80.11 80.34 60.02 57.69 55.82

KD + Smoothing1 80.09 80.33 60.07 57.71 55.83

Ours:
DMU 80.00 80.25↓ 65.94↑ 55.86↓ 54.08↓
DTA 80.16 80.51↑ 60.26↑ 59.94↑ 57.17↑

DTA with DMU 80.11 80.43↑ 66.04↑ 59.01↑ 56.54↑

Table 1: Accuracy of a TinyBERT model (4.4 million parameters), compared to a BERT model (110 million
parameters) distilled into a TinyBERT model. We compare performance of standard knowledge distillation to
our approach using domain-targeted data augmentation and our DMU approach. We also compare with KD with
smoothing (Du et al., 2023)1 and a JTT baseline (Liu et al., 2021a; Du et al., 2023)1,2. MNLI-m and MNLI-mm
refer to the MNLI matched and mismatched validation sets respectively. All distillation and DMU results are an
average from 10 seeds. ↑ and ↓ represent statistically significant results (p < 0.05), with all p-values displayed in
Table 12. The best results are in bold.

4 Results

4.1 Domain-Targeted Augmentation

Our domain-targeted augmentation (DTA) sig-
nificantly improves performance on the out-of-
distribution MNLI-matched dataset for every con-
dition we tested. In the case where a BERT
model is distilled into a TinyBERT model, out-
of-distribution performance on MNLI-matched is
+1.35% higher when compared to applying a knowl-
edge distillation baseline (Table 1). When distilling
a DeBERTa teacher model into either a BERT or
TinyBERT student model, we see improvements
of 1.8% and 1.61% percentage points respectively
(see Table 6 and Table 8).

Not only does the augmented data improve per-
formance on MNLI-matched in the targeted do-
mains, but also on MNLI-mismatched, which con-
sists of different domains. We observe statistically
significant improvements on MNLI-mismatched
for every combination of teacher and student mod-
els that we tested (see Table 1, Table 2, Table 6
and Table 8), showing that our method can also
improve performance on domains that were not
included in the augmented data. While not the
focus of our work, we also observe a very small
but statistically significant improvement on the in-

distribution SNLI-test set in each case. Finally, we
see similar improvements when training on MNLI
and testing on SNLI (see Table 7).

If the augmented data is used as labelled data
(using the label the generated hypothesis was con-
ditioned on), out-of-distribution performance on
MNLI is substantially worse than the baseline. In-
terestingly however, the inclusion of this labelled
data has little impact in-distribution.

4.2 Distilled Minority Upsampling

For each condition we tested, DMU significantly
improves performance on the SNLI-hard test set
(see Table 1, Table 6 and Table 8). When using a
BERT teacher and TinyBERT student model, this
improvement is substantial, with 5.92% higher ac-
curacy than the knowledge distillation baseline (Ta-
ble 1). This improvement on SNLI-hard contrasts
with the results from DTA, which does not sub-
stantially improve performance on these minority
examples.

While previous work using JTT in a teacher-
student setting uses the teacher model to identify
minority examples (Du et al., 2023), we find better
performance when using the student model to iden-
tify minority examples (see Appendix Table 11 for
results using teacher-identified minority examples).
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Out-of-Distribution
MNLI-mm MNLI-m

BERT -> BERT:

BERT baseline 75.01 74.97

KD 75.42 75.50
DTA (Ours) 75.77↑ 75.86↑

KDens (Ours) 75.90 75.98
DTAens (Ours) 76.42↑ 76.45↑

DeBERTa -> DeBERTa:

DeBERTa baseline 84.78 84.56

KD 85.24 84.83
DTA (Ours) 85.68↑ 85.20↑

KDens (Ours) 85.52 85.29
DTAens (Ours) 86.18↑ 85.77↑

Table 2: DTA is tested in a self-distillation setting, using
either a single teacher or an ensemble of teachers. All
distillation results are an average from 10 seeds. ↑ and
↓ represent statistically significant results (p < 0.05),
testing the significance of DTA compared to standard
knowledge distillation. The best results are in bold.

Method Test SNLI-Hard ∆

Baseline 78.25 56.98
JTT 76.25 55.93 -1.05
KD 80.34 60.02 +3.04

DMU 80.25↓ 65.94↑ +8.96
DMUup 80.88↑ 66.42↑ +9.44

DMUfull 81.01↑ 66.48↑ +9.50

Table 3: Performance of JTT (Liu et al., 2021a; Du
et al., 2023) compared DMU using a TinyBERT stu-
dent and BERT teacher model. DMUup uses a single
teacher model but upsamples examples that any model
in an ensemble incorrectly predicted, while DMUfull
also uses an ensemble of teachers during distillation.
All DMU results are an average from 10 seeds. ↑ and ↓
represent results that are statistically significant results
(p < 0.05).

DMU and DTA are complementary, and when
applying both methods we see statistically signif-
icant improvements on MNLI-matched, MNLI-
mismatched and SNLI-hard in every condition
tested (see Table 1, Table 6 and Table 8). While
including DMU with DTA can reduce performance
on MNLI compared to only using DTA (see Ta-

ble 1), there are corresponding substantial im-
provements on SNLI-hard. On the other hand,
including DTA with DMU mitigates some of the
limitations of using DMU, which can otherwise
have reduced performance on MNLI-matched and
MNLI-mismatched, or reduced performance in-
distribution (see Table 1 and Table 8).

4.3 Distilling from an Ensemble of Teacher
Models

Performing distillation with an ensemble of teacher
models has significantly better performance, both
in-distribution and out-of-distribution, compared
to distillation with a single teacher model. This is
the case for both our BERT and DeBERTa mod-
els (see Table 9). Additionally, we find that our
domain-targeted data augmentation significantly
improves performance when combined with an en-
semble of teacher models. This is the case when
using either a BERT or DeBERTa model as the stu-
dent and teacher (see Table 2 and Table 10). While
these improvements are small, in the case of BERT
including our augmented data with the ensemble
improves performance on MNLI matched and mis-
matched by 58% and 47% relative to the baseline.

We also find that we can improve DMU by using
an ensemble to identify minority examples, upsam-
pling examples that have been incorrectly predicted
by any model in an ensemble (DMUup in Table
3). In this case, DMUup improves performance
by 9.44% compared to the baseline student model.
This ensemble consists of the student model, and
7 other models consisting of the same architec-
ture. Additionally, instead of using a single teacher
model (DMUup), an ensemble of teacher models
can also be used during the distillation (DMUfull in
Table 3), slightly improving performance.

4.4 Improving Robustness against the
Word-Overlap Heuristic

We find that our word-overlap augmentation
(WOA) improves performance on the adversarial
HANS dataset after training on MNLI (Table 4), al-
though without setting a new state-of-the-art result.
Previous work augments the training data with a
large number of training examples (392,702, the
same size as the MNLI training set) (Li et al., 2021),
whereas we only augment the data with 4,695 exam-
ples which we upsample (x10). When we include
our small number of domain-targeted observations,
we achieve more than half the out-of-distribution
improvements compared to the prior work while
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Method MNLI-m HANS #aug

Teacher and student models

RoBERTa-large 89.6 76.6
DistilRoBERTa 83.8 59.9

Without augmentation

Annealing-KD1 84.5 61.2 -
KD 84.1 61.8

DMUfull 84.2 65.9 -

With augmentation

ComKD2 87.2 68.6 393k
WOAens 84.3 65.1 5k

WOA**ens 81.6 68.3 5k

Table 4: Accuracy is displayed on MNLI-matched (in-
distribution), and HANS (out-of-distribution). ** refers
to the setting where we only perform the distillation step
on the augmented data. We compare our results to pre-
vious sota results improving robustness for knowledge
distillation: 1 Jafari et al. (2021), and 2 Li et al. (2021).
The best results are in bold.

only using a fraction (1.2%) of the additional exam-
ples. Directly applying our DMU method proves
to be highly effective in this setting, outperforming
previous work without any data augmentation.

4.5 Comparison to Previous
OOD-Performance on MNLI

Improving performance out-of-distribution on
MNLI after training on SNLI remains a challeng-
ing task. Despite extensive prior work evaluating
models in this condition, few approaches yield out-
of-distribution improvements. We compare this
prior work to our own results using self-distillation
with BERT and DeBERTa. We find that distilla-
tion using both our domain-targeted augmentation
and using an ensemble of teachers outperforms
all previous work (Table 5). While adversarial
training using a single hypothesis-only adversary
(Belinkov et al., 2019a) produced larger improve-
ments, this work involved hyper-parameter tuning
on MNLI-mismatched for a model evaluated on
MNLI-matched, and vice versa. On the other hand,
our experiments also do not assume the availabil-
ity of any MNLI examples to use as a validation
set. Previous related work includes debiasing tech-
niques that aim to improve zero-shot performance
(Belinkov et al., 2019a; Stacey et al., 2020; Ma-
habadi et al., 2020; Teney et al., 2020), in addition

to previous work incorporating human explanations
when training (Zhao and Vydiswaran, 2021; Kumar
and Talukdar, 2020; Stacey et al., 2022a).

5 Related Work

5.1 Improving Robustness in Knowledge
Distillation

To improve robustness in knowledge distillation,
previous methods have involved smoothing the
teacher predictions (Du et al., 2023; Jafari et al.,
2021), or using additional unlabelled training data
during the distillation (Rashid et al., 2021b; Li et al.,
2021). The smoothing methods either smooth the
teacher model predictions more at the beginning of
training (Jafari et al., 2021), or based on the diffi-
culty of each example (Du et al., 2023). We find
that our results outperform a smoothing baseline
proposed by Du et al. (2023).

Most similar to our approach of using additional,
unlabelled data during distillation, Rashid et al.
(2021b); Li et al. (2021); Haidar et al. (2022) aug-
ment their model with additional training examples
that are created by perturbing existing observations.
This involves randomly masking words, before re-
placing these words using a generator that is trained
to maximise the difference between the student
and teacher predicted probabilities (Rashid et al.,
2021b; Li et al., 2021; Haidar et al., 2022) and their
intermediate representations (Haidar et al., 2022).
Further work involves perturbing existing exam-
ples without an adversarial objective (Tang et al.,
2019; Jiao et al., 2020), and perturbing additional
language data not related to NLI into additional
NLI examples (Rashid et al., 2021a). Previous
work measures adversarial robustness using HANS
(Li et al., 2021; Rashid et al., 2021b; Du et al.,
2023; Haidar et al., 2022). We compare our DMU
and WOA methods to Li et al. (2021) and Jafari
et al. (2021), the state-of-the-art results for robust
knowledge distillation on HANS with and without
additional data augmentation.

5.2 Upsampling Minority Examples

Tu et al. (2020) introduce the term minority ex-
amples to describe instances which counter the
spurious correlations present in a dataset. Upsam-
pling these minority examples during training has
been shown to improve model robustness (Liu et al.,
2021a; Yaghoobzadeh et al., 2021; Du et al., 2023).
While Liu et al. (2021a) identify minority exam-
ples as training examples that are misclassified
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MNLI-mm MNLI-m MNLI-all
Method Baseline Acc Imp Acc Imp Acc Imp

Hyper-parameter tuning on MNLI

Negative sampling1
LSTM 43.66 -3.91 43.76 -2.10 43.71 -3.01

Hyp-only adversary1
LSTM 49.24 +1.67 47.24 +1.38 48.24 +1.52

Ensemble-adversaries2
LSTM 52.81 -0.10 54.18 +0.80 53.49 +0.35

Product of Experts3
BERT 73.49 -0.49 73.61 -0.79 73.55 -0.64

Debiased Focal Loss3
BERT 74.00 +0.02 73.58 -0.82 73.79 -0.40

No hyper-parameter tuning on MNLI

Rationale supervision4
BERT 73.36 +0.84 73.19 +0.91 73.28 +0.87

KD BERT 75.50 +0.53 75.42 +0.41 75.46 +0.47
NILE5

RoB. 77.22 -2.07 77.07 -2.22 77.15 -2.14
LIREx6

RoB. 79.79 +0.06 79.85 -0.27 79.82 -0.10
KD DeB. 84.83 +0.27 85.24 +0.46 85.04 +0.37

Ours:
KDens+aug BERT 76.42 +1.41 76.45 +1.48 76.43 +1.44
KDens+aug DeB. 86.18 +1.40 85.77 +1.21 85.98 +1.31

Table 5: A comparison of work testing zero-shot performance on the MNLI matched and mismatched sets after
training on SNLI (MNLI-all combines both validation sets). Performance of each method is compared to their
respective baselines to show when further out-of-distribution improvements are achieved. RoB. stands for RoBERTa,
while DeB stands for DeBERTa. 1 Belinkov et al. (2019a), 2 Stacey et al. (2020), 3 (Mahabadi et al., 2020), 4 Stacey
et al. (2022a), 5 Kumar and Talukdar (2020), 6 Zhao and Vydiswaran (2021). Methods 4, 5 & 6 include the use of
human annotated rationales (Camburu et al., 2018).

by a model trained on that data, Yaghoobzadeh
et al. (2021) additionally consider instances that
have been properly classified at some point during
training, but are then misclassified later in training.
Rather than upsampling minority examples, Ko-
rakakis and Vlachos (2023) introduce a minimax
objective to improve robustness, upweighting the
loss of examples during training to maximise the
training loss. Du et al. (2023) adapt these ideas to a
student-teacher setting, upsampling training exam-
ples that a teacher model has misclassified when
training a student model. We directly compare our
DMU method to this approach, showing substantial
improvements in robustness.

5.3 Language Model Data Augmentation for
Knowledge Distillation

Using language models to generate additional data
has previously shown promising results in a data-
free setting. Ma et al. (2022) generate synthetic
examples based on the topics present in the training
data, using the generated data to perform knowl-
edge distillation in a data-free setting.

Alternatively, without being provided with a

more specific prompt, language models can be fine
tuned on the training data to generate additional
training examples that can be used with the distil-
lation (He et al., 2022b). Language models can
also be used to modify spans in NLI examples,
creating new counterfactual examples (Chen et al.,
2022), before an NLI model decides whether the
perturbed counterfactual examples have the desired
class. Rather than creating counterfactual training
data, or perturbing existing training examples, we
generate data that specifically targets new, addi-
tional domains.

5.4 Knowledge Distillation with Ensembles

Knowledge distillation is most commonly applied
to distil a single, more complex teacher model into
a smaller student model with fewer parameters (He
et al., 2022a; Salmony and Faridi, 2022; Gou et al.,
2021). However, ensembles of models can also be
distilled into a single model (Hinton et al., 2015;
Asif et al., 2020; Freitag et al., 2017). We find
that the in-distribution improvements from using
an ensemble of teacher models are accompanied
by out-of-distribution improvements. Moreover,
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using these ensembles are complementary to our
domain-targeted data augmentation method.

6 Conclusion

We introduce domain-targeted augmentation and
DMU as two methods to improve out-of-
distribution robustness in NLI. In the case of
the domain-targeted augmentation, using the ad-
ditional, generated examples during knowledge dis-
tillation proves to be a highly effective technique,
outperforming all previous work that measures out-
of-distribution robustness on MNLI. Not only do
we find that performance is better on the targeted
domains, but performance is also better for do-
mains that were not included in the augmented
data. We also find that our DMU method produces
substantial improvements on SNLI-hard, helping
the student model to make better predictions for
minority examples. Using ensembles can help both
methods, improving how minority examples are
identified for DMU, and improving the teacher dis-
tributions for our domain-targeted augmentation.

We also find that our WOA method can im-
prove robustness on HANS, showing that using
unlabelled data during distillation can also target
specific, known dataset biases.

Limitations

The main limitation of our domain-targeted data
augmentation is the cost of generating the un-
labelled examples using GPT3 (approximately
100USD for the experiments provided). As a result,
while we perform extensive experimentation on
NLI datasets (with over 200 experiments), we do
not also apply this method to other NLP tasks. We
choose to focus on NLI, as many previous works on
robustness evaluate on this task. Our experimenta-
tion is also limited to single sentence NLI datasets
such as MNLI, SNLI and HANS, and therefore
the findings may not necessarily generalise to NLI
datasets with longer hypotheses and premises such
as ANLI (Nie et al., 2020) or ConTRoL (Liu et al.,
2021b).

In this work we show that including the domain-
targeted augmentation benefits other domains that
the data was not generated for. We demonstrate
this by creating data to mimic the domains within
MNLI-matched, before testing performance on
MNLI-mismatched which contains a different set
of domains. However, as there are similarities
between examples in MNLI matched and mis-

matched, further work could test the extent that
these benefits generalise to different tasks or do-
mains.

Additionally, in Table 5, we provide all results
known to us from methods that train on SNLI and
test zero-shot performance on MNLI. While this
previous work contains a variety of methods, in-
cluding different debiasing techniques, not all NLI
debiasing methods have been evaluated in this set-
ting.

Finally, for our DTA method it is possible that
our GPT-3 generator model has seen data from
the target domain during pretraining. However, on
inspection, the unlabelled examples generated by
GPT-3 did not closely resemble the data in MNLI.
This is likely because we generated the data in sev-
eral stages, first asking the model for an ‘example
extract from [target domain]’ to create a premise
statement. This prompt refers to a broad topic
and is very unlikely to result in GPT-3 generating
premises specifically from MNLI. The second sen-
tence (the hypothesis) is generated to be relevant
specifically to a given premise - if the premise is
not from MNLI then the hypothesis would not be
either.
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A Additional results

We provide additional results from training the stu-
dent and teacher models on MNLI, and testing zero-
shot performance on SNLI (Table 7). For these
experiments, we use a BERT teacher model and
TinyBERT student model. We find that these re-
sults mirror the results from training on SNLI and
testing on MNLI (see Table 1), with 2.01% and
1.96% point improvements on the validation and
test sets compared to applying knowledge distilla-
tion without the unlabelled augmented data. For
these experiments, we use the mismatched valida-
tion set as our validation set for early stopping.

We also provide experimental results when using
a DeBERTa model as a teacher model, and either a
BERT model or a TinyBERT model as the student
(see Table 6 and Table 8). In these settings, we
also see improvements from our domain-targeted
augmentation, with improvements of 1.84% on
MNLI-mismatched, and improvements of 1.8% on
MNLI-matched for a BERT student model, com-
pared to improvements of 2.4% and 1.61% with
a TinyBERT student model. When applying our
DMU method with a DeBERTa teacher model, we
also see statistically significant improvements on
SNLI-hard (see Table 6 and Table 8).

Additionally, we test our DMU method when
using the teacher models to identify minority ex-
amples instead of using the student models. In this
case, we use either a single teacher model, or an
ensemble of teacher models to identify these exam-
ples. Our results show worse performance when
using a teacher model to identify minority exam-
ples, compared to when using a student model (see
Table 11).

B Performance of LLMs on NLI

There is currently a lack of evidence that LLMs
outperform other transformer-based classification
models on NLI, especially considering the number
of model parameters. While LLMs have shown in-
creasingly impressive performance across a range
of different tasks, this is not the case with NLI.
Chen et al. (2023) find significant robustness degra-
dation on NLI when using GPT-3.5-turbo, despite
finding better performance on other tasks. This
work includes an evaluation of GPT-3.5-turbo on
both SNLI and MNLI (Chen et al., 2023).

Similar findings have been found across other
NLI datasets. For example, Wei et al. (2023) ap-
ply a Chain-of-Thought GPT-3.5-turbo model, with
performance substantially below previous work us-
ing a DeBERTa-v3 baseline (Stacey et al., 2023).

C Robustness in NLI

Improving model robustness for Natural Language
Inference (NLI) is a well studied area, where ro-
bustness is measured either by testing performance
on adversarial datasets such as HANS or the NLI
stress tests (Naik et al., 2018). Alternatively, robust-
ness is measured using unseen, out-of-distribution
test sets such MNLI (Williams et al., 2018), a
challenging robustness setting where existing de-
biasing methods often do not improve performance
(Belinkov et al., 2019a; Mahabadi et al., 2020).
There has been some success improving out-of-
distribution performance on MNLI (Stacey et al.,
2022a; Teney et al., 2020; Belinkov et al., 2019a),
particularly in a reduced-data setting (Stacey et al.,
2022b; Mahabadi et al., 2021), however, most meth-
ods do not lead to any improvements (Zhao and Vy-
diswaran, 2021; Kumar and Talukdar, 2020; Cam-
buru et al., 2018; Belinkov et al., 2019a; Mahabadi
et al., 2020).

D Model Parameters

Our DeBERTa model consists of 184 million pa-
rameters, compared to 110 million parameters for
BERT and 4.4 million parameters for tinyBERT.
When distilling RoBERTa, our RoBERTa model
consists of 355 million parameters, compared to 83
million for distil-RoBERTa. Over 200 experiments
are conducted, consisting of approximately 2500
GPU hours using RTX6000 GPUs.
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Model In-Distribution Out-of-Distribution

SNLI-dev SNLI-test SNLI-hard MNLI-mm MNLI-m

DeBERTa -> BERT:

DeBERTa teacher 93.32 92.53 84.64 84.78 84.56

BERT baseline 91.03 90.59 80.31 75.01 74.97
KD 91.66 91.04 81.26 75.21 75.61

DTA (Ours) 91.77↑ 91.14↑ 81.42 77.05↑ 77.41↑
DMU (Ours) 91.77↑ 91.17↑ 81.62↑ 75.05 75.55

DTA with DMU (Ours) 91.84↑ 91.16↑ 81.64↑ 76.72↑ 77.41↑

Table 6: Our domain-targeted augmentation method is compared to a knowledge distillation baseline. These
experiments use a DeBERTa teacher model and BERT student model. Results use one random seed. All distillation
and DMU results show the accuracy from an average of 10 random seeds. ↑ and ↓ represent results that are
statistically significant with p < 0.05. The best results are in bold.

Model In-Distribution Out-of-Distribution

MNLI-mm MNLI-m SNLI-dev SNLI-test SNLI-hard

BERT -> TinyBERT:

BERT teacher 84.64 84.38 79.31 80.09 71.3

TinyBERT baseline 65.62 63.89 52.77 52.59 42.90
KD 68.23 66.72 55.78 55.90 46.15

DTA (Ours) 68.45↑ 66.97↑ 57.79↑ 57.86↑ 46.36

Table 7: Evaluating our domain-targeted augmentation when training on MNLI and testing zero-shot performance
on SNLI. Performance is compared to knowledge distillation without the augmented data, and also a TinyBERT
baseline. MNLI-mismatched is our validation set. As SNLI-hard specifically considers minorty examples for models
trained on SNLI, we do not also test DMU in this setting. All distillation results show the accuracy from an average
of 10 random seeds. ↑ and ↓ represent results that are statistically significant with p < 0.05. The best results are in
bold.

Model In-Distribution Out-of-Distribution

SNLI-dev SNLI-test SNLI-hard MNLI-mm MNLI-m

DeBERTa -> TinyBERT:

DeBERTa teacher 93.32 92.53 84.64 84.78 84.56

TinyBERT baseline 77.99 78.25 56.98 55.50 54.24
KD 80.00 80.24 59.85 57.67 55.90

DTA (Ours) 80.02 80.40↑ 60.11↑ 60.07↑ 57.51↑
DMU (Ours) 79.26↓ 79.41↓ 65.39↑ 54.45↓ 53.00↓

DTA with DMU (Ours) 79.33↓ 79.65↓ 65.44↑ 58.94↑ 56.51↑

Table 8: Accuracy of a TinyBERT model, compared to a DeBERTa model distilled into a TinyBERT model. We
compare performance of standard knowledge distillation to our approach using domain-targeted data augmentation.
The best results are in bold. All distillation and DMU results show the accuracy from an average of 10 random
seeds. ↑ and ↓ represent results that are statistically significant with p < 0.05. No early stopping was included for
our DMU experiments. The best results are in bold.
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Model In-Distribution Out-of-Distribution

SNLI-dev SNLI-test SNLI-hard MNLI-mm MNLI-m

BERT -> BERT:

BERT baseline 91.03 90.59 80.31 75.01 74.97

KD 91.43 90.72 80.57 75.42 75.50
KDens (Ours) 91.59↑ 90.94↑ 80.81↑ 75.90↑ 75.98↑

DeBERTa -> DeBERTa:

DeBERTa baseline 93.32 92.53 84.64 84.78 84.56

KD 93.56 92.70 84.90 85.24 84.83
KDens (Ours) 93.73↑ 92.89↑ 85.06 85.52↑ 85.29↑

Table 9: Knowledge distillation for self-distillation is tested for a single teacher model compared to an ensemble
of teacher models. All distillation results are an average from 10 random seeds. ↑ and ↓ represent results that are
statistically significant with p < 0.05. The best results are in bold.

Model In-Distribution Out-of-Distribution

SNLI-dev SNLI-test SNLI-hard MNLI-mm MNLI-m

BERT -> BERT:

BERT baseline 91.03 90.59 80.31 75.01 74.97

KD 91.43 90.72 80.57 75.42 75.50
DTA (Ours) 91.40 90.78 80.70 75.77↑ 75.86↑

KDens (Ours) 91.59 90.94 80.81 75.90 75.98
DTAens (Ours) 91.65 91.00 81.00 76.42↑ 76.45↑

DeBERTa -> DeBERTa:

DeBERTa baseline 93.32 92.53 84.64 84.78 84.56

KD 93.56 92.70 84.90 85.24 84.83
DTA (Ours) 93.55 92.69 84.84 85.68↑ 85.20↑

KDens (Ours) 93.73 92.89 85.06 85.52 85.29
DTAens (Ours) 93.74 92.82 84.97 86.18↑ 85.77↑

Table 10: As Table 2 only shows results on MNLI, this table contains self-distillation results from all sets, including
SNLI-dev, SNLI-test and SNLI-hard. All distillation results are an average from 10 random seeds. ↑ and ↓ represent
results that are statistically significant with p < 0.05. We test the significance of the domain-targeted augmentation
compared to standard knowledge distillation. The best results are in bold.

E Details of experimental setup

To generate our domain-targeted data for MNLI, we
use a text-curie-001 GPT-3 model to generate both
the premises and hypotheses. However, when gen-
erating the additional data for HANS, we use text-
davinci-003. We use the more expensive davinci
model for this setting, as generating sentences that
only contained specific words that we provided
proved to be a more difficult task for text-curie-

001.

We train all baseline models using a learning
rate of 10−5 for 2 epochs using cross entropy loss,
with the exception of Distil-RoBERTa (used as the
student model in the MNLI-HANS setup). For
Distil-RoBERTa and RoBERTa-large, to create a
baseline similar to previous work, we train with
learning rates of 2 × 10−5 and 5 × 10−6 respec-
tively, in the case of Distil-RoBERTa training for
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8 epochs. All baselines are trained with a linear
learning rate (increasing for the first half of train-
ing, before decreasing for the second half). We use
deberta-v3-base for our DeBERTa model, and bert-
base-uncased for our BERT model. All baseline
models are implemented from HuggingFace (Wolf
et al., 2020). When using ensembles of BERT
models, the eight models we use are different pre-
trained models from Sellam et al. (2021) to max-
imise the variability between each BERT model.

The distillation stage is performed for 10 epochs
with a learning rate of 10−6, with early stopping ap-
plied if there is no improvement within five epochs.
The early stopping was not applied when using self-
distillation, where we tested using an ensemble of
teacher models. In this case, we chose the student
model as the model with the best validation perfor-
mance from the ensemble. Therefore, as the teacher
models had lower validation performance than the
student, the student validation performance was
also likely to decrease during training. We also do
not perform early stopping when evaluating on the
adversarial HANS dataset, as performance on both
MNLI-validation sets are likely to decrease as a re-
sult of improvements in HANS, or when distilling a
DeBERTa teacher into a TinyBERT student model
using DMU, where we do not see improvements in
the validation set.

When applying Just Train Twice (JTT) or DMU,
the minority examples are upsampled by 6 times,
as Liu et al. (2021a) use for MNLI. We also upsam-
ple our augmented data for HANS (by 10 times),
as we have fewer examples compared to MNLI
(4,695 for HANS, compared to 47,955 for MNLI
and 47,898 for SNLI). For DMUfull, we use an en-
semble of 8 models, whereas the self-distillation
experiments use an ensemble of 7 models (as one
of the 8 models is used as the student model).

F Full prompts

As described in Figure 2, first a prompt is pro-
vided to our generator model that asks the generator
to create an example extract from a specified do-
main. For the popular magazine article domain, this
prompt asks for an ‘Example extract from a popu-
lar magazine article:’, while for the travel guide the
prompt is ‘Example extract from a travel guide:’,
and for the fiction genre the prompt asks for ‘Ex-
ample extract from a fiction book:’. The fourth do-
main is extracts from government websites, where
there are several different subcategories provided in

Method Test SNLI-Hard ∆

Baseline 78.25 56.98
JTT 76.25 55.93 -1.05
KD 80.34 60.02 +3.04

Ours:
DMUteach 80.80 60.88 +3.90
DMUt-up 80.78 61.15 +4.17

DMUt-full 80.98 61.64 +4.66

Table 11: Performance of a JTT baseline (Liu et al.,
2021a; Du et al., 2023) compared to our DMUteach
method upsampling minority examples during the distil-
lation that a single teacher model has misclassified. We
up-sample examples that any model in an ensemble of
teacher models incorrectly predicted while still using a
single teacher model during the distillation (DMUt-up),
or also using an ensemble of teacher models for the
distillation (DMUt-full). For DMUt-full, the same teacher
models are used to identify the minority examples as
those used during the distillation process. The baseline
is a TinyBERT student, while JTT and KD methods use
a BERT teacher.

MNLI, either using press releases, letters, speeches
or reports. For this fourth domain, we therefore
use the following prompts: ‘Example extract from
a press release on a public domain government
website:’, ‘Example extract from a letter on a pub-
lic domain government website:’, ‘Example extract
from a speech on a public domain government web-
site’ and ‘Example extract from a report on a public
domain government website:’. The premise gen-
eration is zero-shot, with no examples provided to
the generator. For the hypothesis generation, three
examples from the in-distribution training data are
provided. The three examples provided are differ-
ent depending on the class (see Figure 4).

When generating data for SNLI, we generate the
the premises using the prompt: ‘Example flickr
image caption:’, with the hypotheses generated in
the same method described above. As we are using
MNLI training data for this setting, the examples in
the prompts are provided from the MNLI training
data (see Figure 5).

When generating premises for either MNLI or
SNLI, only sentences that were at least 8 charac-
ters long were included. Premises that finished
with a question mark were also not included in the
augmented data. If more than one sentence was
provided by the generator, and the first sentence
did not meet this criteria, then we considered the
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second sentence as a possible premise.

Example extract from a popular magazine article: 

If you’re considering prescription drugs to treat 
a medical condition, talk to your doctor first 

Provide a sentence implied by the premise:

Prescription drugs can have serious 
side effects

Figure 2: Our generator model is asked to create a sen-
tence (premise) about a specified genre, before being
asked to create a hypothesis that is either implied by
the premise, contradicts the premise, or is neutral with
respect to the premise. As the hypotheses generated
are not faithful to the desired labels (as with this exam-
ple), we use these examples as unlabelled data during
knowledge distillation.

Step 1:

I bought this book for my sister

Step 2: *Shuffle words and remove conjunction words*

Create a short sentence using the word for:

Step 3: Make a very short sentence only using the words:

sister, book, this, my, bought, I 
Only use some of the words:

Step 4:

I bought this book

Is the sentence above mostly a coherent 
sentence? Answer Yes or No:

Yes

Step 5: Does sentence 1 have essentially the 
same meaning as sentence 2? 

Answer Yes or No:

No

Figure 3: The process for generating augmented data for
our word-overlap augmentation (WOA). In step 4, the
model is asked if both the premise and the hypothesis
are mostly coherent sentences. In this step, the premise-
hypothesis pair is only added to our augmented dataset
if the model answers ’yes’ for both the premise and the
hypothesis. Finally, the sentence pair is only included if
the model answers ‘no’ to the final question in step 5.

Finally, the prompts used for HANS are provided
in Figure 3.

G Supporting P-values

In Table 12 we provide the full p-values supporting
the statistical testing reported in Table 1, Table 2,
Table 6, Table 8 and Table 10.
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Figure 4: Prompts used to generate hypotheses for MNLI, where <Premise> contains the premise generated by the
generator model.
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Figure 5: Prompts used to generate data hypotheses for SNLI, where <Premise> contains the premise generated by
the generator model.
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Model In-Distribution Out-of-Distribution

SNLI-dev SNLI-test SNLI-hard MNLI-mm MNLI-m

BERT -> TinyBERT:
DMU 0.0796 0.0034↓ <0.0001↑ <0.0001↓ <0.0001↓
DTA 0.2076 <0.0001↑ 0.0068↑ <0.0001↑ <0.0001↑

DTA with DMU 0.9564 0.0042↑ <0.0001↑ <0.0001 ↑ <0.0001↑
BERT -> BERT:

DTA 0.4092 0.1580 0.0682 0.0004↑ 0.0026↑
DTA (ens) 0.0846 0.2238 0.0916 <0.0001↑ <0.0001↑

DeBERTa -> DeBERTa:
DTA 0.5366 0.7934 0.6014 <0.0001↑ <0.0001↑

DTA (ens) 0.6592 0.0570 0.2154 <0.0001↑ <0.0001↑
DeBERTa -> BERT:

DMU 0.0102↑ 0.0296↑ 0.0134↑ 0.0896 0.5460
DTA 0.0148↑ 0.0372↑ 0.1446 <0.0001↑ <0.0001↑

DTA with DMU 0.0026↑ 0.0148↑ 0.0008↑ <0.0001↑ <0.0001↑
DeBERTa -> TinyBERT:

DMU <0.0001↓ <0.0001↓ <0.0001↑ <0.0001↓ <0.0001↓
DTA 0.7730 <0.0001↑ 0.0238↑ <0.0001↑ <0.0001↑

DTA with DMU <0.0001↓ <0.0001↓ <0.0001↑ <0.0001↑ <0.0001↑

Table 12: P-values for our main results tables, comparing our methods to standard knowledge distillation. We use
two-tailed bootstrapping hypothesis testing (Efron and Tibshirani, 1993) to test statistical significance. ↑ represents
results where there is a significant improvement compared to the baseline, whereas ↓ represents results that are
significantly worse than the baseline. For the BERT -> BERT and DeBERTa -> DeBERTa settings, we compare our
DTA method to standard knowledge distillation, while our DTA (ens) method is compared to standard knowledge
distillation using an ensemble of teacher models.
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