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Abstract

Despite it being the cornerstone of BPE, the
most common tokenization algorithm, the im-
portance of compression in the tokenization
process is still unclear. In this paper, we argue
for the theoretical importance of compression,
that can be viewed as 0-gram language model-
ing where equal probability is assigned to all
tokens.We also demonstrate the empirical im-
portance of compression for downstream suc-
cess of pre-trained language models. We con-
trol the compression ability of several BPE to-
kenizers by varying the amount of documents
available during their training: from 1 mil-
lion documents to a character-based tokenizer
equivalent to no training data at all. We then
pre-train English language models based on
those tokenizers and fine-tune them over sev-
eral tasks. We show that there is a corre-
lation between tokenizers’ compression and
models’ downstream performance, suggesting
that compression is a reliable intrinsic indi-
cator of tokenization quality. These corre-
lations are more pronounced for generation
tasks (over classification) or for smaller mod-
els (over large ones). We replicated a represen-
tative part of our experiments on Turkish and
found similar results, confirming that our re-
sults hold for languages with typological char-
acteristics dissimilar to English. We conclude
that building better compressing tokenizers is
a fruitful avenue for further research and for
improving overall model performance.

1 Introduction

While language modeling pipelines employ a multi-
tude of sophisticated techniques to achieve success
in many NLP tasks, their presupposed tokenization,
i.e., the step of discretizing text into processable
units, is often done with less scrutiny or devia-
tion from the common practices. This tokenization
stage, which segments space-delimited words into
subwords, forms the foundation of most large lan-
guage models (LLMs; Touvron et al., 2023; Gem-

ini, 2023; Groeneveld et al., 2024, inter alia) and
influences their modus operandi in subsequent us-
age. Among other open questions regarding to-
kenization, it is unclear whether tokenization is
even needed (Clark et al., 2022; Xue et al., 2022;
Keren et al., 2022) and how much poor tokeniza-
tion influences model performance, especially for
non-English languages (Klein and Tsarfaty, 2020;
Rust et al., 2021; Gueta et al., 2023).

As the tokenizers serve language models, it is
straightforward that the primary method to assess
their quality is by measuring their contribution to
the model performance over the NLP tasks it is
meant to solve, i.e., evaluating the tokenizers on
tasks extrinsic to tokenization itself. However, this
method requires pretraing expensive LLMs when-
ever an evaluation of a tokenizer is needed. For this
reason an intrisic indicator of tokenization quality
is warrented. And indeed the literature is teem-
ing with intrinsic evaluations of tokenization. For
example, Sennrich et al. (2016) used text compres-
sion as the main indicator of the tokenizer’s intrin-
sic quality, whereas Bostrom and Durrett (2020)
suggested assessing tokenizers based on segmen-
tation overlap with a morphologically segmented
reference.

In this paper we carefully distinguish between
intrinsic and extrinsic evaluation of tokenizers, and
examine to what extent they are correlated. As a
specific intrinsic evaluation we focus on compres-
sion, the metric underpinning BPE (Sennrich et al.,
2016), the most prevalent tokenization algorithm
that requires character co-occurrence statistics over
a large corpus of raw text to achieve minimal length
in tokens. We control the tokenizer’s ability to
compress by limiting its support, i.e., the amount
of data available in the tokenizer’s training corpus.
By doing so we skew the statistics available to the
tokenizer.

We compared tokenizers trained with a million
supporting documents to ones trained on less and
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Figure 1: Generation performance of the various models averaged over both generation tasks. For each model size
the results are presented as relative compared to the 1M-DOC model.

less data, down to a single document, and to a
character-level tokenizer, equivalent to zero sup-
port. We then pre-trained from scratch copies of
a decoder-only transformer-based model (Vaswani
et al., 2017), with the different tokenizers, and fine-
tuned them on several downstream tasks. In this
work we hypothesize that the downstream success
should be correlated with the compression ability
of the underlying tokenizers. We experimented
with three model sizes, tokenizers of six different
volumes of supporting data, and two languages,
English and Turkish.

Our results show that in terms of intrinsic per-
formance, the tokenizers’ compression ability is
highly influenced by the amount of supporting data,
with tokenizers trained on a minimal amount of
data having tokenized texts more than 60% longer
compared to the best compressing tokenizer. How-
ever, the discrepancy in compression is signifi-
cantly more marked for less frequent words.

Extrinsically, we also found that downstream
success monotonically increases with the increase
in the tokenizer’s support. The correlation between
the intrinsic and extrinsic measures of tokenization
quality points to the conclusion that better com-
pressing tokenizers is a desired goal on the road to
better language models. A conclusion that may be
true even for models dealing with other modalities
(Ryoo et al., 2021; Ronen et al., 2023).

While we evaluated the downstream perfor-
mance on both classification and generative tasks,
we observed that the correlation to compression is
stronger for the latter type of tasks. This discrep-
ancy could be attributed to the fact that generative
tasks require the use of the tokenizer more exten-

sively than in classification tasks, aligning with the
number of generation steps involved. We there-
fore conclude that tokenization’s effect is better
assessed through generation tasks, rather than clas-
sification tasks.

Our results also show that smaller models are
especially vulnerable to poor tokenizations, with
the smallest 10m parameter model suffering from
more significant drops in performance compared
to our largest 1B model. Finally, experimentation
with Turkish revealed the same trends, ruling out
the option of an English-specific phenomenon.

In the remainder of the paper we will describe
the common practices in assessing tokenizers (sec-
tion 2) and argue for the theoretical sensibility of
compression as an intrinsic tokenization evaluation
(section 3). We will then describe our experiments
(section 4) and their results (section 5).

2 Measuring Tokenization Quality

From the very early days of NLP, models have al-
ways assumed text discretized to tokens as input
(Winograd, 1971). For the most part, these tokens
were whitespace separated words, but in the recent
decade non-trivial tokenization algorithms have sur-
faced (Mikolov et al., 2012; Sennrich et al., 2016;
Ataman and Federico, 2018), primarily to deal with
unseen tokens without smoothing techniques or
other convoluted methods (Chen and Goodman,
1999). The underlying reasoning behind all modern
tokenization methods is that some subwords, e.g.,
morphemes, may carry independent information
that is of value to the model even if the word as a
whole is rare or unseen. Therefore, better tokeniza-
tion is assumed to improve models’ performance
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TOKENIZER SENTENCE

CHAR _T h i s _i s _a b o u t _c o m p r e s s i n g _t o k e n i z e r s
1-DOC _Th is _is _a b ou t _comp re ss ing _to k en i z ers

10-DOC _This _is _about _comp res sing _to k en iz ers
100-DOC _This _is _about _comp ress ing _tok en izers
1K-DOC _This _is _about _comp ressing _to ken izers
1M-DOC _This _is _about _compress ing _token izers

Figure 2: Six tokenizers differing in the amount of supporting documents tokenizing the same sentence. Note that
better compression is achieved with more support.

over rare words, while also carrying computational
benefits, like smaller models and the elimination of
unknown tokens.

It is not surprising then, that whenever tokenizers
are presented or tested, they are usually accompa-
nied with an array of evaluations that assess the to-
kenization’s influence on the model’s downstream
success, mostly on translation tasks (Kudo, 2018;
Provilkov et al., 2020; Vilar and Federico, 2021;
Saleva and Lignos, 2023), although monolingual
tasks are also used (Yehezkel and Pinter, 2023).

Other works circle back and assess tokenization
with respect to the desiderata it is supposed to
serve as a stand-alone algorithm, independently
from the model trained on top of it. This is done
usually in addition to evaluation over downstream
performance. However, most works disagree on
the desiderata themselves. Many emphasize align-
ment to linguistically meaningful units (Klein and
Tsarfaty, 2020; Hofmann et al., 2021, 2022; Gow-
Smith et al., 2022) or to human cognitive prefer-
ences in general (Beinborn and Pinter, 2023).1 Oth-
ers include analyses of token length and frequency
(Bostrom and Durrett, 2020; Yehezkel and Pinter,
2023), mostly in addition to the above, assuming
that ideal tokenizers use longer and more frequent
tokens.

The two types of tokenization evaluations, ex-
trinsic over downstream success and intrinsic over
a plethora of metrics, are usually not compared
directly. They are only used to demonstrate the
superiority of a specific tokenizer, and the relations
between the evaluation approaches is glossed over.
In this work we explicitly focus on compression as
a potential intrinsic indicator of tokenization qual-
ity, as has been suggested in past works in other set-
tings (Gallé, 2019; Gutierrez-Vasques et al., 2023),

1This line of works may view tokenization as a continu-
ation of unsupervised morphemic segmentation (Creutz and
Lagus, 2002; Virpioja et al., 2013).

and check to what extent it is correlated with ex-
trinsic downstream success. We conclude that com-
pression is a desideratum for tokenization not only
due to its theoretical virtue, expanded on in the next
section, but first and foremost because it correlates
with downstream performance.

3 The Role of Compression in
Tokenization

In the realm of intrinsic measures for evaluating to-
kenization quality, compression particularly stands
out in prominence. It has garnered considerable
attention, notably due to its pivotal role as the cor-
nerstone of the byte pair encoding tokenization
algorithm (BPE; Schuster and Nakajima, 2012;
Sennrich et al., 2016), an algorithm that initially
conceived for general data compression purposes
(Gage, 1994).

Given data composed of sequences of atomic
symbols, the algorithm minimizes the overall data
length, for a given dictionary budget, by iteratively
substituting a new symbol in place of the symbol
pair most frequently occurring in a large corpus of
supporting data. In the domain of language mod-
eling, the symbols are usually characters and the
supporting corpus is a subset of the text designated
to be used as a training set for the language model
which the tokenizer is meant to serve.

But in a sense, compression-driven tokenization
may be viewed as language modeling in and of
itself. Consider that language models are aimed at
assessing and possibly maximizing the likelihood
of produced texts expressed as a product of token
probabilities,

P (x) =
∏

k

P (xk|x1:k−1),

where xk is the kth token in a sentence x. Com-
pression limits the lower bound on this product of
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fractions by minimizing the number of operands,
i.e., minimizing the length of the sequence.

In terms of n-gram language modeling, where
the probability of each token is approximated as
dependent only on a context of length n− 1,

P (x) ≈
∏

k

P (xk|xk−(n−1):k−1),

and the probability of xk given its context is further
approximated by the number of appearances of the
relevant n-gram in a training corpus,

P (xk|xk−(n−1):k−1) ∝ N(xk−(n−1):k),

A compressor may be considered a 0-gram lan-
guage model, where the relevant n-gram is of
length 0 and the probability of each token is not
even a function of its own frequency in the training
data, setting uniformly,

P (xi) = |V |−1,

where |V | is the vocabulary size.
Although simplistic when thinking about lan-

guage modeling with predefined whitespace-
separated words, this type of objective is sensible
when considering that it is used to determine the
symbols themselves.

From this point of view, prioritizing compres-
sion as an indicator for tokenization quality is
very reasonable. Since BPE optimizes an approx-
imation, albeit crude, of the downstream objec-
tive, doing better under this approximated objec-
tive should translate into better downstream perfor-
mance which will justify the focus on compression
as a metric.

Moreover, from an information theoretic per-
spective, Shannon’s source coding theorem (Shan-
non, 1948) links the limit on the compression to
the entropy of the source of the data to be com-
pressed. As language models aim to increase the
log-likelihood of texts, hence decrease the entropy
of the distribution, they inadvertently also increase
the possible compression of the texts. Our claim
is that this relationship is symmetric, and BPE tok-
enizers, as they compress texts, may also inadver-
tently increase their log-likelihood.

We set to empirically examine our hypothesis by
assessing the correlation between the tokenizer’s
compression ability and the performance of lan-
guage models of various sizes over a set of down-
stream tasks.

To explicitly control the compression ability,
while fixing any other intervening factors as much
as possible, we deal only with BPE tokenizers. This
is in contrast with other works that compared com-
pression across different tokenization algorithms
(Gallé, 2019; Schmidt et al., 2024). To create BPE
tokenizers with varied compression rate we recall
that BPE’s maximal compression is guaranteed
only over its supporting corpus. Normally, for large
enough corpora, a minimal discrepancy is assumed
between the character distribution in the corpus
and the “true” distribution in the language. In this
work however, we explicitly emphasize and expand
this discrepancy by limiting the size of the support
to a great extent. We will show that this interven-
tion severely hinders the compression capacity of
the tokenizer and that it also leads to deteriorating
downstream performance.

4 Experimental Setup

4.1 English Experiments

Tokenizers We trained six different tokenizers
with dictionary size of up to 32k tokens.2 Each
tokenizer was supported by a different amount of
documents from the model’s train set: a million
(1M-DOC), a thousand (1K-DOC), a hundred (100-
DOC), ten (10-DOC), one document (1-DOC) and
no documents at all (CHAR). The tokenizers are
initialized with all the relevant symbols - the char-
acters of the alphabet, punctuation marks, and all
foreign characters that appear on the respective
documents.

Models For every tokenizer, we trained decoder-
only transformer-based language models in three
sizes, in terms of number of parameters: 1B, 128m
and 10m. The model sizes exclude the parame-
ters dedicated to the embedding layer, as its size
may differ across tokenizers. See Appendix A for
further details.

Data Pretraining of the English models was ex-
ecuted monolingually using the train split of C4
(Raffel et al., 2020).

Tasks To evaluate the tokenizers’ contribution to
downstream success we finetuned the models over
four tasks. Two classification tasks:

2For some tokenizers with little supporting data, there
were less than 32k strings and sub-strings so the vocabulary
in practice was smaller. See Appendix A for details.
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Tokenizer Token Length Relative Length

1M-DOC 9,336,052 —
1K-DOC 9,541,368 +2%
100-DOC 10,489,029 +12%
10-DOC 15,126,769 +62%
1-DOC 20,647,861 +121%
CHAR 39,480,577 +323%

Table 1: Compression ability of the different tokenizer,
accumulative over the development sets of all down-
stream tasks. Relative length is in comparison to the
1M-DOC tokenizer.

• QQP (Quora Question Pairs3) where the task
is to classify 2 questions as duplicates or not.

• MultiNLI (Williams et al., 2018) where the
model is tested on natural language inference
(NLI) examples from a domain which differs
from the ones appearing at the training set.

And two generation tasks:

• X-Sum (Narayan et al., 2018) where news arti-
cles should be summarized to one single sen-
tence.

• QG-QA (Question Generation over SQuAD;
Rajpurkar et al., 2016) where the task is to
generate questions based on a context para-
graph and an answer.

4.2 Turkish Experiments

To make sure that our results are not due to English-
specific phenomena, we repeat a representative
subest of the experiments with Turkish, an aggluti-
native language with higher morphemes-per-word
ratio. for the purpose of intrinsic evaluation, we
trained six Turkish tokenizers, as we did for En-
glish. However for extrinsic evaluation, due to the
expensive pretraining and finetuning, we trained
models only for three tokenizers: 1M-DOC, 10-
DOC, and CHAR. The models were pretrained on
the train split of the Turkish part of mC4 (Xue et al.,
2021), and finetuned over three tasks: one classifi-
cation task, XNLI (Conneau et al., 2018), and two
generation tasks, XL-Sum (Hasan et al., 2021) and
Question Generation over the TQuAD dataset.4

3https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

4https://tquad.github.io/
turkish-nlp-qa-dataset/

5 Results

5.1 Intrinsic Evaluation

To illustrate the effect of limiting the tokenization
support on the compression ability, we measured
the accumulative length in tokens of the develop-
ment sets of all English downstream tasks.

The results, depicted in Table 1, show that pro-
viding less support severely impedes the tokenizer
ability to compress unseen texts. Note that the in-
flation in texts’ length is not linear. Reducing the
supporting data amount by three orders of mag-
nitude, from 1M-DOC to 1K-DOC, results in only
slightly longer texts, while a reduction in another
three orders of magnitude to the 1-DOC tokenizer
carries an effect much more significant.

5.2 Extrinsic Evaluation

Table 2 summarizes the downstream evaluation re-
sults for all models and all tokenizers over all four
English tasks. Unsurprisingly, it shows that larger
models, in terms of parameters, fare better on all
tasks. Additionally, it shows that all models per-
form better on the classification tasks compared to
the generation tasks. Nevertheless, over most tasks
and model sizes, there is a clear improvement in
performance when the models are equipped with
better supported tokenizers.

Similarly to the intrinsic metric above, the down-
stream improvement is not linear as well. The
improvements achieved by updating the tokenizer
from the 1-DOC to the 10-DOC are more substan-
tial than those from 1K-DOC to 1M-DOC, despite
the introduction of significantly fewer documents.

The findings for the Turkish models in Table 5
demonstrate analogous patterns, indicating that the
results decline as the tokenizer’s support dimin-
ishes. This is again particularly noticeable in the
case of generation tasks.

5.3 Intrinsic-Extrinsic Correlation

To assess the correlation between the tokenizer’s
support and the model’s task performance we com-
puted the Spearman’s ρ coefficient, separately for
each task and each model size. This correlation
coefficient was chosen since it refers to the relative
rank of each data point, thus it does not ascribe
linear importance to the differences in the absolute
number of supporting documents.

The results are shown in Table 3. Note that due
to the small sample size the correlation is statisti-
cally significant (α = 0.05) only for coefficients
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TOKENIZER
TASK

QQP (F1) MULTINLI (Acc.) XSUM (RougeL) QG-QA (RougeL)

1B params

1M-DOC 88.02±0.18 88.24±0.10 47.71±0.02 33.09±0.41

1K-DOC 87.38±0.05 88.32±0.07 47.53±0.04 32.95±0.42

100-DOC 88.30±0.09 88.75±0.11 47.69±0.05 32.99±0.46

10-DOC 87.44±0.07 88.27±0.09 47.07±0.06 30.51±0.61

1-DOC 86.07±0.20 86.67±0.25 46.33±0.11 28.42±0.99

CHAR 83.13±0.23 84.59±0.65 44.69±0.08 24.91±0.55

128m params

1M-DOC 82.13±0.14 85.33±0.16 45.68±0.04 27.66±0.59

1K-DOC 82.29±0.06 85.45±0.18 45.83±0.08 27.37±0.59

100-DOC 81.75±0.28 85.07±0.13 45.53±0.02 26.97±0.64

10-DOC 80.14±0.19 83.76±0.06 45.08±0.04 24.99±0.62

1-DOC 78.71±0.19 82.30±0.31 44.43±0.06 23.9±0.60

CHAR 76.27±0.23 82.10±0.26 43.19±0.06 21.81±0.43

10m params

1M-DOC 71.65±0.81 78.62±0.22 40.92±0.06 22.43±0.44

1K-DOC 69.97±0.11 79.94±0.15 40.69±0.08 22.13±0.53

100-DOC 71.26±0.28 78.57±0.17 41.05±0.02 21.59±0.52

10-DOC 66.51±0.22 75.95±0.24 39.00±0.04 19.73±0.43

1-DOC 66.25±0.11 78.11±0.12 37.01±0.08 18.61±0.40

CHAR 64.01±0.14 75.81±0.77 27.86±0.04 16.92±0.38

Table 2: Results over all downstream tasks, each in terms of its respective metric. Results are averaged over 5
finetues.

MODEL SIZE
TASK

QQP MULTINLI XSUM QG-QA

1B 0.714 0.600 0.943** 0.943**
128m 0.943** 0.943** 0.943** 1.000**
10m 0.943** 0.886* 0.829* 1.000**

Table 3: Spearman’s ρ coefficient for rank correla-
tion between downstream performance and the tokeniz-
ers’ support for all model sizes and tasks. Asterisks
are used to denote statistically significant correlation.
* p < 0.05, ** p < 0.01

MODEL SIZE
TASK

QQP MULTINLI XSUM QG-QA

1B -0.980** -0.974** -0.994** -0.976**
128m -0.971** -0.863* -0.988** -0.949**
10m -0.870* -0.710 -0.996** -0.933**

Table 4: Pearson’s correlation coefficient between
downstream performance and the tokenizers’ compres-
sion as expressed by the dev sets length (see Ta-
ble 1), for all model sizes and tasks. Asterisks
are used to denote statistically significant correlation.
* p < 0.05, ** p < 0.01

larger than 0.829. The results show that, for the
most part, the tokenizer’s support is well correlated
with the model’s overall success, with the clear
exception of classification tasks on the 1B model.

Even starker correlation appears when measur-
ing the Pearson’s correlation coefficient between
downstream performance and the compression it-
self, i.e., to the overall length of the development
sets in tokens, from Table 1. As can be seen in
Table 4, the inverse correlation between length in

tokens and performance is high, with the excep-
tion of classification tasks on the 10m model. Note
that here as well, the small sample size causes the
correlation to be statistically significant only when
above 0.729 in absolute value. No numerical cor-
relation could be computed for the Turkish results
due to the small sample size.

These results point to generation tasks as bet-
ter downstream evaluators of tokenizers, as tok-
enization is less crucial to the models’ success over
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TOKENIZER
TASK

XNLI XLSUM QG-QA

1B params

1M-DOC 79.56 46.48 29.78
10-DOC 79.28 45.92 29.02

CHAR 75.18 40.00 24.69

128m params

1M-DOC 76.23 45.07 27.45
10-DOC 74.83 43.40 26.87

CHAR 68.88 40.33 23.16

10m params

1M-DOC 63.60 37.16 21.76
10-DOC 64.06 37.27 19.95

CHAR 63.73 35.56 16.62

Table 5: Results for the Turkish models over all down-
stream tasks, each in terms of its respective metric: ac-
curacy for XNLI, and RougeL for XL-Sum and QG-
QA.

classification tasks.
In addition to assessing the correlation’s signifi-

cance, Figure 1 visualizes the effect size for both
languages. We averaged the performance over the
generation tasks, as the correlation was less signif-
icant for classification. The graph depicts, sepa-
rately for each model size, the performance with
the various tokenizers compared to the best sup-
ported tokenizer. Notably, while compression con-
sistently correlates with generation performance
across all model sizes, the impact is particularly
pronounced for smaller models.

The parallels drawn between tokenization and
language modeling in section 3 may provide some
explanation to the smaller effect of poorer tokeniza-
tion on larger models. As we claim that compres-
sion is simple language modeling on its own, it
is possible that LLMs that are more powerful lan-
guage models in general are able to allocate re-
sources to compensate for less compressing tok-
enizers.

6 Analysis

Tokenization of Frequent Words To better un-
derstand the source for discrepancy in compression
between tokenizers, we plot in Figure 3 the num-
ber of tokens needed per word with respect to the
word frequency (measured in number of appear-
ances in a sample of 3 million unseen documents
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Figure 3: Number of subwords per English word as
a function of its abundance in 3 million unseen docu-
ments. Averaged over orders of magnitude. The num-
ber words included in each bin is indicated under the x
axis.
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Figure 4: Number of subwords per Turkish word as
a function of its abundance in 3 million unseen docu-
ments. Averaged over orders of magnitude. The num-
ber words included in each bin is indicated under the x
axis.

from mC4). We averaged the token-per-word ratio
over all words whose occurrences are of the same
order of magnitude and provided the number of
words in each bin. A similar analysis was done for
Turkish and it is shown in Figure 4.

The figures show that the token-to-word ratio is
extremely similar across tokenizers for words that
are the most frequent. On the other hand, the differ-
ent tokenizers diverge in token-to-word ratio when
presented with rarer words, with less supported to-
kenizers being more sensitive to word frequency,
compared to better supported tokenizers. It is worth
noting that the same trend applies to the CHAR tok-
enizer, for which the number of tokens per word is
simply its length in characters. This should not be
surprising due to the tendency of frequently used
words to be shorter in accordance to Zipf’s law of
abbreviation (Zipf, 1949).

In addition, as predicted by Zipf’s law (Estoup,
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Figure 5: Downstream success in Rouge-L relative to the 1M-DOC model plotted against the average frequency in
each example. Trend lines were plotted based on the entire data, but for visibility reasons the scatter is based on
averages over bins containing each 2% of data.

1912; Zipf, 1949), the number of frequent words
over which the tokenizers agree is quite small, In
terms of types, but they cover a large portion of the
3 million document sample over which the statistics
were calculated. The English words that appear
at least 106 times in the sampled corpus, 162 in
number, cover 47% of the words in the corpus.
On the other hand, in Turkish, due to the thicker
tail of the Zipf’s distribution of morphologically
rich languages, only 71 words answer this criterion,
covering 26% of the corpus.

We conclude that the discrepancy in compres-
sion ability, as evident in Table 1 stems mostly from
the difference in the compression in less common
words. This tail of less frequent words is consisted
of the semantically interesting words, so it is likely
that this gap in compression causes the gaps in
model performance.

Performance over Frequent Words To comple-
ment the analysis above we also broke down the
results of the generation tasks by average frequency
of the words in the targeted output of each exam-
ple. The results, plotted in Figure 5, include the
difference in Rouge-L per example from the best
1M-DOC model per task and model size. it shows
that the differences between differently tokenizing
models are more pronounced over examples with
rarer words.

Together, this and the previous analysis shed

some light on the reasons for the correlation found
in our main result. We demonstrate that the differ-
ences in performance between the various models
are indeed more pronounced in the presence of rarer
words, which are exactly the words that the tokeniz-
ers compress differently. It is thus highly probable
that word frequency is a major confounding factor
the connects compression with downstream perfor-
mance.

In addition, this analysis may point to the benefit
of challenge sets, comprised of examples with rarer
words, in the evaluation of tokenization.

Similarity between Tokenizers The results so
far compared the output of each model to the target
outputs, where we showed that models are perform-
ing better when equipped with better compressing
tokenizers. In order to show that the models are
also converging towards similar generations, we
plotted, in Figure 6, the pair-wise overlap between
the outputs of all models for the English generation
tasks, measured in Rouge-L .

The analysis shows that, for all tasks and model
sizes, models with similarly supported tokenizers
tend to output similar predictions, regardless of
whether the predictions are similar to the gold tar-
gets. It is also noticeable that, in accordance with
our main results, the differences in the high-support
region are less pronounced than those between the
less supported tokenizers.
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(a) 10m params model, XSum (b) 128m params model, XSum (c) 1B params model, XSum

(d) 10m params model, QG-QA (e) 128m params model, QG-QA (f) 1B params model, QG-QA

Figure 6: Pair-wise rouge scores between outputs of the different models. Darker is higher Rouge-L scores and
higher similarity between outputs. Models with similar number of supporting documents tend to output similar
predictions.

7 Conclusions

In this paper we demonstrated the importance of
compression to tokenization as an intrinsic eval-
uation of tokenization quality that indicates the
performance on extrinsic downstream tasks. We
argued in favor of compression-driven tokenization
from a theoretical perspective, since it may make
the tokenizer act as a simple standalone language
model, and we showed its correlation with down-
stream model success.

Our experiments point to generation tasks as
better downstream evaluators of tokenization since
their results are both more sensitive to the tokenizer
and better correlate with tokenization quality as
expressed in compression ability.

In terms of linguistic diversity, the similarity in
the results and analyses across two very different
languages, English and Turkish, points to our con-
clusions being independent of specific typological
characteristics. Yet, ample room is left for studying
the effects of tokenization on more languages that
are even more typologically diverse. Moreover,
other intrinsic evaluators are still to be assessed
even for the languages we did work with.

We conclude that tokenization matters, as poorly

compressing tokenizers hinder the results of lan-
guage models, and that investment in better com-
pressing tokenizer has a potential of improving
model performance while being relatively cheap in
terms of compute. We therefore call for research to
better understand the factors controlling the qual-
ity of the tokenization and its relation to overall
success of the LLMs.

8 Limitations

The main limitation of this paper has to do with
the amount of resources allocated to this research.
Pretraining our LLMs, especially the 1B parameter
models, requires a lot of compute and repeating
these experiments, in a slightly different setting or
just in order to replicate their results, is an expen-
sive process.

Another limitation has to do with the limited
experiments on non-English languages. Although
we executed several experiments on Turkish, the
cost of pretraining models of up to 1B parameters
prevented us from equating the treatment given to
the two languages as well as adding experiments
in other non-English languages. It is possible, even
if somewhat unlikely, that running the full suite
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of experiments on Turkish would have resulted in
different conclusions. A more reasonable possi-
bility is that running experiments on more typo-
logically diverse languages would yield different
conclusions for these languages. We mitigated this
risk by choosing a language that is extremely dif-
ferent from English.
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A Training Details

Tokenizers were trained on the first documents
in C4, for English, and mC4, for Turkish, as they
are ordered in the Tensorflow Datasets repository.
Therefore, the data for the less-supported tokeniz-
ers is contained in the data for the better supported
ones.

In all cases we limited the vocabulary size to
32k, but in practice, for tokenizers supported by
little data, the vocabulary size was lower than 32k,
since the data did not contain a sufficient number
of words and subwords. Specifically, for English,
the vocabulary size of 100-DOC is 23k, of 10-DOC

– 3.7k, and of 1-DOC – 1k. For Turkish the size of
10-DOC is 9.5k, and of 1-DOC – 3.9k.

In the case of CHAR, supported by no documents
at all, the tokenizer simply breaks all the words into
characters and replaces any foreign character with
the unknown sign.

Models were trained using the T5X framework
(Roberts et al., 2022) on the span corruption task
(Raffel et al., 2020) for 200k training steps, with
a batch size of 512. Every training example was
truncated to the maximal length of 1024 tokens.5

5The fixed example length in terms of tokens leads of
course to differences in the amount of data seen by the models
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The models were finetuned for 4k steps and 20k
steps on the classification and generation tasks, re-
spectively, with a batch size of 128. The decoder-
only models were tasks with the generation of a
gold output when used for classification tasks as
well. For example, in the QQP task the outputs
were assumed to be either duplicated or no dupli-
cated, where any other output considered wrong.
A manual inspection showed that models learned
perfectly to output one of the desired targets.

during training based on their tokenizers. We consider this
as another boon of well-compressing tokenizers, since the
computation budget is usually preset, as it is the case in our
setting.
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