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Abstract

Transformer-based Language Models have be-
come ubiquitous in Natural Language Process-
ing (NLP) due to their impressive performance
on various tasks. However, expensive train-
ing as well as inference remains a significant
impediment to their widespread applicability.
While enforcing sparsity at various levels of
the model architecture has found promise in
addressing scaling and efficiency issues, there
remains a disconnect between how sparsity
affects network topology. Inspired by brain
neuronal networks, we explore sparsity ap-
proaches through the lens of network topol-
ogy. Specifically, we exploit mechanisms seen
in biological networks, such as preferential at-
tachment and redundant synapse pruning, and
show that principled, model-agnostic sparsity
approaches are performant and efficient across
diverse NLP tasks, spanning both classification
(such as natural language inference) and gen-
eration (summarization, machine translation),
despite our sole objective not being optimiz-
ing performance. NEUROPRUNE is competi-
tive with (or sometimes superior to) baselines
on performance and can be up to 10x faster
in terms of training time for a given level of
sparsity, simultaneously exhibiting measurable
improvements in inference time in many cases.

1 Introduction

In the past decade, transformer-based models
(Vaswani et al., 2017) leveraging attention mecha-
nisms have led to state-of-the-art performance on
NLP tasks and other multimodal applications, in
both classification and generation settings. Despite
the performance improvements, the computational
overhead required for training, and inference, hin-
ders progress. The models are large and are typi-
cally parameterized by many dense matrices, which
also begs the question as to whether this complexity
is necessary for better performance.

*Equal contribution

Sparsity in general neural networks has been
considered using sparse regularizations on weights
(Liu et al., 2024) and weight thresholding/masking
(Liu et al., 2020). Specifically for transformers, var-
ious attention masking patterns have been studied
(Shi et al., 2020). Another direction for inducing
sparsity is to remove entire attention heads alto-
gether (Michel et al., 2019). Previous sparse meth-
ods, however, give little emphasis to the topology
of the networks being trained (Xia et al., 2022).

In this paper, we study how certain network
topologies can be exploited in transformer-based
large language models (LLMs) to offer sparser
models (in terms of fewer parameters and fewer
attention heads overall) while maintaining perfor-
mance. Our framework, which we call NEURO-
PRUNE, is model-agnostic as well as task-agnostic,
and is a dynamic sparse training method inspired by
biological neuronal networks present in the brain.
For example, (Yuan et al., 2019) discusses two
stages by which connections (synapses) in a neu-
ronal network evolve in the brain. First, an over-
abundance of synapses is created, which is similar
to the pretraining an LLM. In the second stage,
synapses are judiciously removed until stability
in the network is achieved, which is akin to fine-
tuning an LLM for a particular task by inducing
sparsity, or at a higher level, by removing atten-
tion heads. Our framework relates sparsity within
the Multi-Layer Perceptron (MLP) layers and the
attention heads, as well as sparsity at the level of
attention heads, to two distinct processes that take
place during that second stage of neuronal network
development: preferential attachment (i.e. rich-get-
richer) (Lynn et al., 2024) and the elimination of
redundancy (Wang et al., 2011).
Preferential attachment inspired regularization
Within MLP layers and attention heads, NEURO-
PRUNE, is motivated by a well-known network
concept, called preferential attachment, which was
found to be highly relevant in neuronal networks
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Figure 1: Resulting sparsity patterns (≈ 50%, ≈ 90%) as
determined by NEUROPRUNE in an intermediate Transformer
layer of a BERT(-base) model learned on the SST2 GLUE
benchmark dataset (Wang et al., 2019). NEUROPRUNE sparsi-
fies according to a preferential attachment topology as entire
rows/columns of the attention and MLP matrices are zeroed
out. Quantitatively, the standard deviation (sd) between the
connectivity of neurons in the MLP layers increases up to two
orders of magnitude (50%: 12.12, 90%: 4.16) compared with
standard fine-tuning (0.13) as seen in Figure 2, This increase
in sd is indicative of preferential attachment, similar to what
is seen in biological neurons (Lynn et al., 2024), where a min-
imal rich-get-richer mechanism is used to produce sparse and
heavy-tailed networks. The pattern is qualitatively similar for
other layers too, as can be seen in the Appendix.

in the brain (Vértes et al., 2012; Lynn et al., 2024)
over the last two decades. The general notion is that
over time, neurons with more connections build
even more connections, while those with fewer con-
nections are removed. Similarly, our framework
induces weighted l1 sparsity in MLP layers (weight
inversely∝ connectivity/degree) and group sparsity
within attention heads, so that influential neurons
(measured by attention parameters) are maintained
while those with little influence are pruned. Model-
ing the removal of weak synapses is an established
approach (Chechik et al., 1999) to understanding
the refinement process of neurons in the brain. For
LLMs, this effort is illustrated in Figure 1 where,
NEUROPRUNE, sparsifies the parameter matrices
of transformers by zeroing out entire rows in at-
tention and MLP layers. Quantitatively, this non-
uniformity in connectivity is verified in Figure 2.

Redundancy-based pruning While structured
sparsity aims at preferential attachment, such prun-
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Figure 2: Left is the MLP degree distribution for the SST2
dataset using a BERT model indicative of preferential attach-
ment for NEUROPRUNE as sparsity increases (echoing the
degree distribution in brain functional networks (Vértes et al.,
2012)). Standard fine-tuning creates a dense network (black
vertical line). Right we see the non-uniformity in connectivity
at different sparsity %s across GLUE tasks using NEURO-
PRUNE, indicative of this preferential attachment across tasks.
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Figure 3: Left is the fraction of times a head is removed using
NEUROPRUNE when fine-tuning on SST2 with a BERT model.
The overall numbers (blue curve) are averaged across layers
and runs (± sd), where at least 10 heads are removed. We also
show individual layer numbers averaged across runs for the
top three layers where most pruning of heads happens (Figure
7(right)). We see there is a significant bias towards keeping
the last head in each layer leading to a more modular structure
and also showcasing preferential attachment, as neurons from
the previous and next layers will connect only to these heads.
The middle head (head 5) is also maintained more than most
other heads, as it replaces many of the earlier heads. Results
averaged across GLUE tasks on the right are similar.

ing (by zeroing out weights) cannot determine
which connections are redundant. Elimination of
redundant connections is an important aspect of the
refinement process (Wang et al., 2011; Hashimoto
and Kano, 2013) that takes place after the brain
develops very dense networks of connections. In
the case of LLMs, we hypothesize that such redun-
dancy can be measured by similarity between atten-
tion heads, whereupon similar attention heads can
then be merged, resulting in reduced complexity
while maintaining functionality (i.e. performance
is maintained on downstream tasks). Such removal
of redundancy is conjectured in Lichtman and Col-
man (2020) to be unique to the neuron development
in the central nervous system of vertebrates. Fig-
ure 3 illustrates how often heads are found to be
redundant using NEUROPRUNE. Generally, the last
head is found to be the least redundant, while the
middle head also exhibits limited redundancy. In
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Figure 7(right), we see head removal as a function
of layers and find that the last three layers have the
highest number of redundant heads.
Contributions In this paper, we propose a neuro-
inspired topological sparse training algorithm with
custom attention and MLP (structured) sparsity reg-
ularizations based on preferential attachment, and
a novel redundancy-based head pruning scheme,
which we map to the dominating set problem (Allan
and Laskar, 1978) in theoretical computer science.

Our approach has the following benefits:

• It is task agnostic.
• It is easily adaptable to different transformer-

based LLM architectures as it does not add
additional (mask) variables to do the pruning.
We apply it to BERT (encoder), T5 (encoder-
decoder) and OPT (decoder) models.

• It learns sparsity patterns exhibiting principled
topological structure.

• It results in LLMs with a competitive and even
sometimes superior performance on different
benchmarks and tasks (GLUE, summarization,
machine translation), although our proposal
is more neuroscience-motivated than solely
trying to maximize performance.

• It is generally much faster to train than the
competing baselines, with time per epoch be-
ing similar to standard fine-tuning. It also
exhibits inference speedups as the topological
constraints encourage N :M -type sparsity.

2 Notation

A Transformer consists of multiple identical units.
Each unit in turn is comprised of a Multi-Head At-
tention (MHA) Layer and a Feed Forward (FFN)
or MLP Layer (used interchangeably). Each at-
tention layer is partitioned into multiple heads Hi

composed of Query QHi , Key KHi and Value VHi

parameter matrices. If d denotes the embedding
dimension of each token in an input matrix X then,

Hi = softmax

(
XQHiK

T
Hi
XT

√
d

)
XVHi

A MHA layer with k heads computes the atten-
tion of all heads in parallel and concatenates them.
MHA = Concat(H1, . . . ,Hk)W

O, where WO

is an output dense matrix.
The FFN layer in turn has two linear layers, one

to expand the dimensions Lin : Rde ×Rd and the
other to project it back to the original dimension

Lout : Rd × Rde . Typically de >> d (e.g. in
BERT de = 3072 and d = 768) with L denoting
the concatenation of all the MLP layers.

If Q, K, V are the Query, Key, and Value ma-
trices of all the heads in a MHA layer concate-
nated together, then QHi , KHi VHi corresponds
to the (i − 1) dk + 1 to i dk columns in each such
matrix respectively. Let Lin,Hi denote the cor-
responding columns of the MLP and let AHi =
[QHi ,KHi , VHi ].

The use of the superscript in A(l) denotes (at-
tention) layer l of the transformer. We use −→x to
signify that x is a vector.

3 Related Work

Quantization (Ahmadian et al., 2023), Knowledge
Distillation to a smaller model (Gu et al., 2023),
and Model Pruning are some ways to alleviate the
extensive computational cost required by LLMs.
Here we review prior work on model pruning,
which is most relevant to us.

3.1 Unstructured Pruning
Unstructured pruning (Frantar and Alistarh, 2023;
Sun et al., 2023; Han et al., 2016; Tanaka et al.,
2020; Lee et al., 2019) removes the less salient
parameters from the model, thereby achieving spar-
sity. Based on the lottery ticket hypothesis, Frankle
and Carbin (2019) performs iterative magnitude
pruning. Prasanna et al. (2020); Chen et al. (2021)
apply the lottery ticket hypothesis to the BERT
model. This class of pruning algorithms attain high
sparsity while largely maintaining accuracy, but are
mostly post hoc. Moreover, the resulting pruned
models do not provide much inference speedup.

3.2 Structured Pruning
A neural network can be divided into blocks or com-
ponents. For instance, channels, kernels, and lay-
ers for a convolution neural network, an attention
head, and a fully connected layer for a transformer.
Structured Pruning (Anwar et al., 2017; Fan et al.,
2020) involves removing an entire component, thus
eliminating some of the multiply-and-accumulate
computations, thereby accelerating inference.

Head Pruning Michel et al. (2019) were the first
to examine if all the heads are necessary for a BERT
model. They defined the importance of a head by
the drop in performance of the model upon remov-
ing the head. Voita et al. (2019) apply gates to each
head and learn these gates using l0 regularization.
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Li et al. (2021) also learn gates and identifies a
subset of heads for each layer of the BERT model
such that the drop in the model’s performance is
minimal. They sample the top-k heads based on
their importance score and use the Gumbel-softmax
trick to make the top-k formulation differentiable.
This method was shown to have superior results to
other competitors on BERT, and we thus compare
it with NEUROPRUNE’s head pruning strategy.

Block and Layer Pruning Fan et al. (2020) and
Sajjad et al. (2020) experimented with dropping
different transformer layers, such as every alternate
layer, or top-k layers, or middle layers, and found
inference speedups. Lagunas et al. (2021) divide
the MHA and FFN layers into several blocks, and
apply masks to each of the blocks to prune them.

CoFI (Xia et al., 2022) also prunes a transformer
by applying gates to each of the heads mh, one
mask to the entire MHA layer, and finally, one
to the MLP layer in the block. The model is
then trained using l0 regularization to learn these
gates. The sparsity constraints are imposed using
Lagrangian multipliers. To further boost the per-
formance of the pruned model, CoFI jointly prunes
and performs layer-wise distillation.

As NEUROPRUNE also prunes the attention ma-
trices, the feed-forward layer, and attention heads,
this is the closest baseline when varying the percent-
age of sparsity. Note that in contrast to CoFI, we
do not require any additional mask variables where
an architecture has to be modified, and hence, our
approach is easily transferable across model archi-
tectures. We demonstrate this via experiments on
BERT (an encoder-only model), T5 (an encoder-
decoder model), and OPT (a decoder-only model).

4 Method

We propose (topological) sparsification of a Trans-
former block at three levels: i) The two (expand
and contract) Multi-Layer Perceptron (MLP) lay-
ers, ii) the attention layers, and iii) head pruning
at the level of attention layers. Our method, NEU-
ROPRUNE, is detailed in Algorithm 1 with two
sub-procedures given in Algorithms 2 and 3. The
three sparsifications are described next.

4.1 MLP Sparsification
Preferential sparsification of the MLP layers is
conceptually the simplest component of NEURO-
PRUNE. For each Lin and Lout matrix in each
Transformer layer, a weighted l1 penalty is added

Algorithm 1: NeuroPrune
Input: Model M(·;A0, L0) with NL layers,

initial Q, K, V concatenated matrices A(l)
0

and MLP weight matrices L(l)
0 for layer l,

sparsity parameters α, β ≥ 0, # epochs ne,
loss function λ, redundancy threshold θ

for i = 1 to ne do
(Ai, Li)←
SGD

(
λ(M(·;Ai−1, Li−1)) +

∑NL
l=1 αR

(l)
attn(A

(l)
i−1)+βR

(l)
mlp(L

(l)
i−1)

)

# See Eq (1-2) for R(t)
mlp(·), R

(t)
attn(·)

for l = 1 to NL do
# See Algorithm 2
(A

(l)
i , L

(l)
i )←

ELIM_REDUNDANT(A(l)
i , L

(l)
i , θ)

Output: (Ane , Lne)

to the training objective, where the weights for each
row of entries in the matrix are inversely propor-
tional to the (fractional) connectivity of that neuron.
Specifically, let nin,i be the number of entries in
the ith row of Lin with absolute values less than
some small ϵ > 0 (with nout,i similarly defined for
Lout). The MLP regularizer added to the training
loss for layer l is as follows:

R
(l)
mlp(L

(l)) =
1

d
[n

(l)
in,1, ..., n

(l)
in,de

] · |L(l)
in | · 1⃗d (1)

+
1

de
[n

(l)
out,1, ..., n

(l)
out,d] · |L

(l)
out| · 1⃗de

where, |.| denotes an element-wise absolute value
and 1⃗d is a d-dimensional vector of 1s. In essence,
Equation (1) penalizes neurons with less connectiv-
ity more than the densely connected ones. This ex-
plicitly encourages preferential attachment, yield-
ing a training process where sparsely connected
neurons are likely to be weeded out.

4.2 Attention Sparsification
It is not obvious what topological sparsity based
on preferential attachment would entail for atten-
tion. We conceive of a novel way of inducing such
sparsity by leveraging the rich literature on group
sparsity (Bach et al., 2012; Hu et al., 2017).

Considering the connectivity of an input embed-
ding neuron to the output neurons of an attention
layer, it is evident that the ith embedding dimen-
sion only interacts with the ith row of the Q, K and
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Algorithm 2: ELIM_REDUNDANT
Input: Attention layer A = [K,Q, V ],

MLP layer L, k attention head index
subsets H1, ..., Hk, distance threshold θ

Initialize: S = Ik # k dim. identity matrix
# Find similar heads
S[i, j] = 1{l∞(AHi , AHj ) ≤ θ} ∀i, j
no_similar = 1{∑i ̸=j S[i, j] > 0}
if no_similar = 0 then

Output: (A,L)
# Find redundant heads using similarity
# See Algorithm 3
D ← FIND_DOMINATING(S)
# Adjust (A,L) for redundant heads
for i = 1 to k do
J = {Hj |D[i, j] = 1, i ̸= j}
for J ∈ J do

Lin,J = Lin,J + Lin,Hi

Prune(AHi , LHi) from (A,L) if
J ̸= ϕ

Output: (A,L)

V matrices. These interactions can be visualized
as connections to the output neurons. However,
even one non-zero entry in the ith row of Q, K,
V leads to the ith input neuron being connected to
all output neurons. Hence, to remove the effect of
this neuron on the output neurons, one needs to
zero out the ith row in all three matrices. In other
words, a group sparsity penalty, where each group
is a row of the concatenated A = [Q,K, V ] ma-
trix, is desired. Such a penalty encourages sparse
rows to become more sparse as it tries to eliminate
those rows by making them (almost) zero, again
showcasing preferential behavior.

Rather than adding extra masking variables to
implement preferential behavior, we leverage group
sparsity and apply an lqp norm penalty on the rows
of [Q,K, V ], where p = 1 and q = 0.5. The l.51
penalty was seen to be more robust to other choices
in (Hu et al., 2017) as it leads to a sharp reduction in
the parameter values belonging to a group. As such
we add the following regularization, corresponding
to the attention matrix at layer l, to the training loss,
where A(l) is the concatenated [Q,K, V ] matrix:

R
(l)
attn(A

(l)) =
d∑

i=1

√√√√
3d∑

j=1

|A(l)
ij | (2)

Note that the above constraint is applied across
heads in the attention layer as it considers the en-

Algorithm 3: FIND_DOMINATING
Input: Similarity matrix S for k points
Initialize: D = Ik # D[i, j] = 1 indicates
point i can be replaced by point j

# Find redundant points using similarity
for i = 1 to k do

j∗ = i
for j = 1 to k do−→s = S[j∗, :]− S[j, :]

if (1 /∈ −→s and −1 ∈ −→s ) or
(−→s = 0⃗ and j∗ < j) then
j∗ = j

D[i, j∗] = 1
Output: D

tire Q, K, V matrices (hence the inner summation
over 3d entries). Additionally, while the standard
l2 group penalty induces weights within a group
to be similar, this l.51 group penalty allows sparsity
patterns to be learned within a group. For exam-
ple, in Figures 1 and 8, while entire rows are often
removed, we also observe that certain rows only
exhibit sparsity in Q and K while leaving corre-
sponding rows of V dense, which is still valuable
as it indicates that attention may not be required
for those neurons/dimensions.

4.3 Head Pruning

Unlike the attention and MLP sparsifications men-
tioned above, head pruning is done after each epoch
as seen in Algorithm 1 (NEUROPRUNE). The main
idea here is to remove heads in a layer that are simi-
lar to other heads and are hence deemed redundant.
We want to remove as many heads as possible in or-
der to get maximum sparsification. NEUROPRUNE

accomplishes this by determining which heads are
similar to many other heads, and then maintaining
such heads while removing others. Note that simi-
larity is not transitive, and thus removal of heads is
not trivial. Algorithm 2 details these steps.

NEUROPRUNE removes heads that are domi-
nated by other heads, i.e., the dominated head is
similar to only a subset of heads that the dominat-
ing head is similar to. The problem of keeping a
minimum number of heads based on similarity can
be mapped to the dominating set problem (Allan
and Laskar, 1978), where each head is a vertex
and each edge indicates being similar. We want
to find the minimum number of vertices such that
they, along with their adjacent vertices, account
for all the vertices in the graph. This problem is
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NP-Hard and our approach (detailed in Algorithm
3) is a quadratic-time approximation to solve this,
where it biases towards keeping latter heads in a
layer. Since our algorithm also biases towards keep-
ing vertices (heads) with high degrees, our head
pruning scheme also elicits preferential behavior.

An important note to make is that, unlike previ-
ous methods (Michel et al., 2019; Li et al., 2021),
NEUROPRUNE does not prune according to head
importance, but rather head redundancy, and hence
even important heads can get pruned. The exper-
iments indeed show that the average head impor-
tance is quite high across the heads we eliminate.
This can lead to more aggressive pruning and faster
train times as witnessed in our experiments.

4.4 NEUROPRUNE

Algorithm 1 puts together the above regularizations
and head pruning. Our fine-tuning procedure is
very similar to the vanilla Stochastic Gradient De-
scent (SGD) methods (Bottou et al., 2018) that are
typically used for training LLMs. In each epoch,
the SGD(·) term refers to running a single epoch of
any SGD algorithm over a batched dataset. The key
additions made in NEUROPRUNE are the MLP and
attention regularizations, which appear in the objec-
tive being passed to SGD(·). Head pruning is done
after each epoch of stochastic gradient descent in
the inner for loop in Algorithm 1.

Table 1: NeuroPrune (NP) vs l1 pruning on the CNNDaily
summarization dataset using T5-base. FT stands for standard
fine tuning. As an be seen we are most of the time better on
rouge metrics and as well as inference time. The train times
are similar. Best values for each sparsity % (s) are bolded.

s Meth. ↑Rouge ↑Rouge ↑Rouge ↑Rouge ↓Inf. ↓Train
1 2 L Lsum Time(s) Time(s)

0 FT 43.18 20.47 30.77 40.41 0.455 24603

25
NP 43.07 20.34 30.7 40.31 0.451 24620
l1 42.19 20.12 29.29 39.33 0.454 24621

50
NP 41.96 19.52 29.73 39.2 0.442 24605
l1 42.18 19.02 29.29 38.65 0.451 24601

70
NP 41.6 18.45 28.56 37.93 0.431 24623
l1 40.1 18.02 27.51 36.63 0.441 24628

80
NP 36.92 16.78 26.29 34.35 0.427 24614
l1 34.27 14.95 25.11 32.79 0.437 24610

90
NP 33.92 13.78 24.29 31.35 0.415 24602
l1 31.88 11.94 23.18 29.22 0.422 24608

95
NP 32.17 13.72 23.66 30.97 0.406 24610
l1 30.25 11.21 21.42 28.16 0.417 24611

5 Experiments

We now test our method in two different settings:
i) varying sparsity and ii) varying number of heads.
In each setting, we run our method on the GLUE
(Wang et al., 2019) tasks, where the dev set is used

for testing1. For i) we also test our method on the
CNN/Daily Mail (Nallapati et al., 2016) summa-
rization task. For ii) we also run our method on a
machine translation task for German to English on
the IWSLT (Cettolo et al., 2014) dataset.
Baselines and Models: When varying sparsity we
compare against CoFI (Xia et al., 2022), which is a
state-of-the-art (SOTA) method for inducing struc-
tured sparsity in LLMs. Since the author-shared
code is for BERT (encoder) we compare with CoFI
on BERT(-base) for GLUE tasks. We addition-
ally implemented NEUROPRUNE for T5 (encoder-
decoder) (Raffel et al., 2020) and OPT (decoder)
(Zhang et al., 2022) models. Since a CoFI imple-
mentation was not available for T5 and OPT, and
would require modifying the architecture, we apply
l1 sparsity to the attention and MLP blocks of the
transformer as a baseline. For summarization, we
use a T5(-base) model and again l1 as a baseline.

When varying the number of heads, CoFI does
not provide an easy way to control for this number,
and hence we compare against a specialized head
pruning method called Differential Subset Pruning
(DSP) (Li et al., 2021), another SOTA head pruning
method. Here too, code is available for BERT,
but not for T5 or OPT, and hence we compare
NeuroPrune on BERT(-base) for the GLUE tasks.
We do not show head removal results for the other
models as there are no natural baselines like we had
for sparsity (l1). For machine translation, we use
an 18-layer encoder-decoder model with 6 heads
per layer as done in (Li et al., 2021).
Metrics: For performance we report accuracy
(Acc) for the GLUE datasets except COLA where
Mathew’s Correlation (MCorr) is a standard met-
ric, Rouge for summarization and BLEU scores for
machine translation. We also report (average) infer-
ence and train times. Please note that by train time
we mean the total time taken to train the model
using dynamic sparsity and inference time is the
time taken by the model to process a test example
based on the sparse model that has been learned.
Hardware: All experiments were conducted on an
NVIDIA A100 GPU with 40 GB memory.
Setup Details: NeuroPrune results were obtained
by varying α and β from 10−7 to 0.1 in multiples
of 10. The l1 penalty parameter also took these
values. θ took values in {0.15, 0.2, 0.25} for the
head removal experiments where the default was
set to 0.15 for the GLUE and summarization tasks.

1For MNLI we report the matched dev set accuracies.
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Figure 4: Performance (1st column), inference time (2nd column) and train time (3rd column) for NEUROPRUNE and CoFI/l1 on
GLUE tasks at different sparsity percentages. The 1st, 2nd and 3rd rows correspond to BERT-base, T5-base and OPT-125m models
respectively. In the 1st row we see that NEUROPRUNE outperforms CoFI on the smaller GLUE datasets and is competitive on
larger ones, with consistently better inference and train times. In the next two rows, we see that NEUROPRUNE is largely better
than l1 sparsity, especially at intermediate sparsities (25-80%), with notable inference time gains and comparable train time.
Qualitatively, similar results are obtained for T5-large and OPT-1.3b as seen in Figure 11 in the appendix.

It was sufficient to run NeuroPrune for a single
epoch for the larger GLUE datasets (viz. MNLI,
QQP, QNLI and SST2) and the summarization task,
while for the other smaller GLUE datasets we ran it
for 3 to 5 epochs. ϵ for MLP sparsification was set
to 10−4. CoFI finetunes the model before it starts
pruning. For smaller GLUE datasets, finetuning
before pruning epochs is 4 and total epochs is 100,
while for larger datasets, these numbers are 2 and
20 respectively. All the other parameters were un-
changed. To make the comparison fair, we turned
off the distillation option. DSP runs 3 epochs of
joint (finetuning and mask learning) training. For
machine translation, NeuroPrune results were ob-
tained with α ∈ {0.005, 0.01, 0.05, 0.1, 0.25, 0.5},
β ∈ {0.05, 0.1} and θ varying from 0.1 to 0.4 in in-
crements of 0.02. ϵ was set as in GLUE. Since there
was no pretrained model, 15 epochs of pretraining
were done followed by 15 epochs of NeuroPrune
finetuning for a total of 30 epochs. DSP joint train-
ing was also done with a total of 30 epochs.

5.1 Varying sparsity percentage

We report results for sparsity percentages of 25, 50,
70, 80, 90 and 95 for GLUE and summarization.
GLUE: In Figure 4 we see the behavior of our
method on GLUE datasets for BERT, T5, and OPT
models. We see that our method is always com-
petitive with CoFI, outperforming it on the smaller
datasets. This is possible because we do not add
extra variables to the model, which when coupled
with the topological constraints results in stabler
performance. The structured sparsity also gives im-
proved inference times and the train time is much
lower, since not only do we need to run our method
only for a few epochs, but the time per epoch is the
same as standard fine-tuning. CoFI on the other
hand, as recommended in (Xia et al., 2022), re-
quires many epochs of running to reach specified
sparsity levels as it first fine tunes and then prunes.

For T5 and OPT we compare with l1 sparsifica-
tion. As can be seen, NEUROPRUNE is better than
l1 in most cases w.r.t. performance, especially for
in-between sparsities. We believe this happens be-
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Figure 5: Performance (left), inference time (center) and train time (right) for NEUROPRUNE and DSP on GLUE tasks, where
different number of heads are present in a BERT-base model are shown above. NEUROPRUNE is better or similar (rarely worse)
in performance to DSP on most datasets, where it is notably more efficient to train. Inference time is (slightly) improved when
many heads are removed, however, the DSP code (simply) masks heads rather than explicitly pruning them like ours does and
hence if these masked heads are removed the inference time of DSP might also improve as shown in their paper.

cause NEUROPRUNE can choose between attention
or MLP (α, β parameters), on which to sparsify
more when optimizing performance even though
the constraints are structured. We also see benefits
in inference time, again possibly because of the
structured sparsification. Train times are similar
as we run l1 for the same number of epochs as
NEUROPRUNE and its per-epoch time is similar
to that of standard fine-tuning. Performance with
varying sparsity on T5-large and OPT-1.3b are seen
in Figure 11 in the appendix.
Summarization: For summarization we see sim-
ilar qualitative behavior of NEUROPRUNE vs l1
sparsity for the T5 model. NEUROPRUNE is best
on the Rouge metrics and its inference time is also
slightly better. The train times are again similar.

Figure 6: Performance (left) and Efficient Frontier (right) for
NEUROPRUNE and DSP on a German to English translation
task. NEUROPRUNE consistently outperforms DSP across
models with varying numbers of attention heads present and
typically with much high levels of sparsity. The efficient
frontier shows that for similar levels of performance and same
number of heads, NEUROPRUNE finds much sparser models.

5.2 Varying number of heads

Beyond sparsity, we now observe the behavior of
NEUROPRUNE w.r.t. the number of heads pruned.
We roughly keep 10, 25, 50, 75, 100, 125 and 144
(i.e. all) heads. DSP is a strong competitor here.
GLUE: As can be seen we generally perform better
or similar to DSP, but rarely worse. We believe this

is because we have an additional knob of parame-
ter sparsification, which can make heads similar as
sparsity increases and given our novel redundancy-
based head pruning algorithm we can effectively
replace these heads with others keeping the overall
performance of the model largely intact. The train-
ing time for our method is also significantly better
since we can achieve the necessary head pruning
in a few epochs, in addition to the fact that each
epoch takes similar time as standard fine-tuning.
The inference time is better, but that improvement
may be reduced if the DSP code explicitly removed
heads rather than just masking them2.
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Figure 7: Left, we see the relative importance of removed
heads for NeuroPrune and DSP averaged across runs, where
at least 10 heads are removed. We see that NeuroPrune re-
moves more important heads than DSP does because of its
redundancy based head elimination algorithm. Right, we see
the (average) # of heads removed per layer using NeuroPrune
when fine tuning on the GLUE Benchmark datasets with a
BERT(-base) model for cases where at least 10 heads are re-
moved. As can be seen more heads are pruned from the later
layers and the first one as compared to the middle layers.

Machine translation: We see in Figure 6 (left)
that NEUROPRUNE outperforms DSP on a machine
translation task and with higher levels of sparsity.
Figure 6 (right) illustrates efficient frontiers for
both NEUROPRUNE and DSP; each curve offers a
variety of models (varying sparsity and number of
heads present) that achieve roughly similar perfor-

2We use HuggingFace’s prune_heads() function for this.
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mance. NEUROPRUNE clearly dominates DSP in
terms of sparsity. DSP was run for varying numbers
of heads present compared with varying sparsity pa-
rameters for NEUROPRUNE which generated more
models. Unlike with GLUE tasks, we implemented
NEUROPRUNE regularizations and head pruning
within the DSP codebase which uses the fairseq
toolkit (Ott et al., 2019) and used head masking for
pruning. Since attention heads are still attached to
the model, inference and train times between the
methods on this task were similar; however note
that the sparsity led to faster convergence, i.e., sig-
nificantly better performance, for NEUROPRUNE

when the number of heads present was greater than
70. NEUROPRUNE also has the advantage that it
can be adapted to any architecture, whereas DSP
must modify an architecture to include gates. Note
that Li et al. (2021) show results from Michel et al.
(2019) (which significantly underperforms) and
Voita et al. (2019) (which has similar performance
but again requires direct architecture modification).

5.3 Other Insights

Topological sparsity: As seen in Figure 1 (and
Figures 8, 9, 10 in the appendix) we see that our
constraints try to eliminate neurons both in the
MLP layers as well as the attention layers. This
is observed as a row/column (sparsity) pattern in
these matrices. Interestingly, sometimes only the Q
and K entries in a row are sparsified, although the
group sparsity constraint is applied to QKV jointly.
The similarity in sparsification patterns for matri-
ces Q and K directly reflects the symmetry of the
operations they are jointly involved in, when com-
puting the attention coefficients as inner products
of each row of Q with each row of K, compactly as
QK⊤, unlike V which is simply a linear projection
of the token embeddings. The MLP portions, as
seen in Figure 1, exhibit preferential attachment
with increasing sparsity which is consistent with
brain functional networks.
Importance of removed heads: In Figure 7(left),
we see the relative importance of removed heads,
defined as the ratio between the importance of re-
moved heads in a layer to the ones that remain
averaged across all the layers. The individual head
importances are computed as the sum of the abso-
lute output dense weights that emerge from a head.
We see that NEUROPRUNE can prune more impor-
tant heads than DSP as it finds redundant heads,
thereby sparsifying more aggressively, which is ev-

idenced by the faster training time on GLUE tasks
for similar levels of head removal.

Head removal: As seen in Figure 5 there is a high
bias to keep the last head in each layer. This is
because NEUROPRUNE prefers keeping later heads
in a layer if it is similar to a set of heads that another
head may be similar to, thus encouraging more
modularity in a layer. In Figure 7(right) in the
appendix, we see that later layers, and often the
first layer, lose more heads than the intermediate
ones, which is consistent with (Li et al., 2021).

6 Discussion

This work shows that NEUROPRUNE, inspired by
sparsity, modularity, and preferential attachment
topology in brain functional networks, is compet-
itive and sometimes even superior to other SOTA
dynamic sparse training methods, even though it
does not solely try to optimize performance. It is
also more efficient than them in train time with
speed-ups also seen in inference. Not to mention
it is easily transferable across transformer architec-
tures (i.e. encoder, encoder-decoder, decoder) as it
does not require adding additional gating variables
to the architecture or modifying the architecture in
any way. Also note that since dynamic sparse train-
ing and post-pruning are complimentary to each
other one can potentially apply both, that is, the
latter after the former. Moreover, since dynamic
sparse training approaches employ sparsity during
training the benefits of sparsity in terms of stor-
age and also sometimes computation are leveraged
both during training and inference. In contrast,
post-pruning methods apply pruning after (dense)
network training, benefiting from sparsity at infer-
ence alone.

There are multiple avenues for future research.
First, it would be interesting to combine our
redundancy-based and head-importance pruning
methods to produce even more aggressive and ef-
ficient pruning of heads. Second, the structured
strategies we used for fine-tuning could also be
tried during pre-training. Third, one could test
the generalizability of models trained using NEU-
ROPRUNE on related, but different tasks and mea-
sure if similar gains can be secured. We believe
our work will spur further progress on efficient
dynamic sparse training methods that are also per-
formant.
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Limitations

All the datasets we considered were in English. Re-
sults may vary for other languages. We applied
our method to three LLMs, but more architectures
could be tested in the future not to mention more
tasks. Our method although easy to adapt to dif-
ferent architectures while also being efficient, it
does not allow the user to specify the exact number
of heads one wants to prune and architectures are
limited to Transformer based LLMs. This is implic-
itly a function of the threshold θ and the similarity
of the pre-trained/fine tuned heads as well as the
sparsity. We also have three hyper-parameters (α,
β and θ) that need to be specified for each run.

Ethics Statement

Our work could be used to dynamically sparsify
other LLMs and models, while fine tuning or pre-
training. The sparsification may result in reduced
alignment if the LLM is aligned to certain values
and especially if those values are not encapsulated
by the loss function that is used to fine tune using
our method. So although one may use the method
to create smaller models one has to be cognizant
of what aspects may have been lost in the process.
The method is easy to adapt to transformer based
models and hence could possibly be widely used
but improvements such as being able to specify
number of heads etc. might be beneficial in future
versions.
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A Additional Figures

In Figures 8, 9 and 10 we sparsity patterns induced
by NeuroPrune in a BERT-base model at different
sparsity percentages on the SST2 dataset.

Performance with varying sparsity on T5-large
and OPT-1.3b are seen in Figure 11.

Figure 8: Attention layers for BERT model where, top three
rows correspond to standard fine tuning, the next sets of three
correspond to ≈ 25%, ≈ 50% and ≈ 90% sparsity using
NeuroPrune. As can be seen NeuroPrune encourages prefer-
ential attachment topology.

Figure 9: MLP_in layers for BERT model where, top three
rows correspond to standard fine tuning, the next sets of three
correspond to ≈ 25%, ≈ 50% and ≈ 90% sparsity using
NeuroPrune. As can be seen NeuroPrune encourages prefer-
ential attachment topology.
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Figure 10: MLP_out layers for BERT model where, top
three rows correspond to standard fine tuning, the next sets
of three correspond to ≈ 25%, ≈ 50% and ≈ 90% sparsity
using NeuroPrune. As can be seen NeuroPrune encourages
preferential attachment topology.
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Figure 11: Performance (1st column), inference time (2nd column) and train time (3rd column) for NEUROPRUNE and l1 on
GLUE tasks at different sparsity percentages. The 1st and 2nd rows correspond to T5-large and OPT-1.3b models respectively. In
the two rows, we see that NEUROPRUNE is largely better than l1 sparsity, especially at intermediate sparsities (25-80%), with
notable inference time gains and comparable train time. The results are qualitatively similar to those seen with smaller versions
of these models in the main paper.
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