
Findings of the Association for Computational Linguistics ACL 2024, pages 2547–2556
August 11-16, 2024 ©2024 Association for Computational Linguistics

VISPool: Enhancing Transformer Encoders with Vector Visibility Graph
Neural Networks

Tuna Alikaşifoğlu and Arda Can Aras and Aykut Koç
Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Türkiye

UMRAM, Bilkent University, Ankara, Türkiye
{t.alikasifoglu,can.aras,aykut.koc}@bilkent.edu.tr

Abstract
The emergence of transformers has revolution-
ized natural language processing (NLP), as ev-
idenced in various NLP tasks. While graph
neural networks (GNNs) show recent promise
in NLP, they are not standalone replacements
for transformers. Rather, recent research ex-
plores combining transformers and GNNs. Ex-
isting GNN-based approaches rely on static
graph construction methods requiring excessive
text processing, and most of them are not scal-
able with the increasing document and word
counts. We address these limitations by propos-
ing a novel dynamic graph construction method
for text documents based on vector visibility
graphs (VVGs) generated from transformer
output. Then, we introduce visibility pooler
(VISPool), a scalable model architecture that
seamlessly integrates VVG convolutional net-
works into transformer pipelines. We evaluate
the proposed model on the General Language
Understanding Evaluation (GLUE) benchmark
datasets. VISPool outperforms the baselines
with less trainable parameters, demonstrating
the viability of the visibility-based graph con-
struction method for enhancing transformers
with GNNs.1

1 Introduction

The advent of transformer-based models has signif-
icantly propelled recent advancements in natural
language processing (NLP), particularly in natural
language understanding (NLU). Transformers, in-
troduced by Vaswani et al. (2017), paved the way
for models like GPT (Radford et al., 2019) and
BERT (Devlin et al., 2019) and their variants. Due
to their ability to capture long-range dependencies
and contextual information, these models outper-
form previous methods in various NLU tasks.

In parallel, graph neural networks (GNNs) have
been introduced as potent tools for processing struc-

1The source code is available at https://github.com/koc-
lab/vispool and all experiment runs can be inspected through
WandB dashboard at https://wandb.ai/tunakasif/vispool.

tured data, including graphs in NLP tasks. The
GNNs can effectively capture underlying relation-
ships and dependencies by leveraging message-
passing techniques (Kipf and Welling, 2017; Xu
et al., 2019). Notably, Kipf and Welling (2017)
introduced graph convolutional networks (GCNs),
which have been adapted for text-based graphs in
models like TextGCN (Yao et al., 2019) and Ten-
sorGCN (Liu et al., 2020), along with other GNN-
based methods in NLP (Li et al., 2016; Veličković
et al., 2018; Schlichtkrull et al., 2018; Wu et al.,
2019; Brody et al., 2022). These methods have
shown promise in various NLP tasks by effectively
aggregating information from underlying graphs.

However, most GNNs work with a transduc-
tive structure that combines all training and test
instances (nodes) in a single graph and makes pre-
dictions for the test nodes. Therefore, adding new
training instances or getting predictions on new
test instances changes the graph structure, mak-
ing the previously trained weights obsolete and
requiring re-training of the network. Hence, com-
pared to transformer-based approaches, on their
own, GNNs do not perform as well in inductive
learning settings, where the model is required to
generalize to unseen data and continuously applied
after training. The inherent transductive nature of
GNNs also raises an important caution by depart-
ing from the traditional assumption of completely
unseen test data. These limitations have led to the
development of (1) inductive GNNs (Huang et al.,
2019; Nikolentzos et al., 2020; Zhang et al., 2020),
(2) transductive methods that combine transform-
ers with GNNs (Zhang and Zhang, 2020; Lin et al.,
2021; Aras et al., 2024), and finally (3) transform-
ers with inductive GNNs (Huang et al., 2022).

Transductive GNN methods are mostly built on
a single large graph structure for the entire corpus
with both training and test data, so they are nei-
ther applicable to unseen data nor scalable with the
increasing document and word counts (Yao et al.,

2547

mailto:t.alikasifoglu@bilkent.edu.tr
mailto:can.aras@bilkent.edu.tr
mailto:aykut.koc@bilkent.edu.tr
https://github.com/koc-lab/vispool
https://github.com/koc-lab/vispool
https://wandb.ai/tunakasif/vispool


Figure 1: The overall representations of baseline and the proposed method. The base classifier (upper path) consists
of fully connected layers, which is the current norm for transformer-based classification/regression. The proposed
VISPool architecture (lower path) that maps document embeddings to graphs and passes to GCN layers.

2019; Lin et al., 2021). Although the current induc-
tive GNN methods construct individual graphs for
each document, they rely on static graph construc-
tion methods based on statistical metrics such as
term frequency-inverse document frequency (TF-
IDF), point-wise mutual information (PMI), and
co-occurrences (Zhang et al., 2020; Huang et al.,
2022). These methods require extensive text pre-
processing and are still prone to scalability issues.

In a different vein, visibility graphs (VGs) have
been introduced as a novel approach for mapping
time series data into a graph (Lacasa et al., 2008;
Luque et al., 2009; Bozkurt and Ortega, 2022; Gao
and Ge, 2024). Then, Ren and Jin (2019) ex-
tends the notion to vector visibility graphs (VVGs)
to map multivariate time series. The constructed
graphs enable the extraction of sequential relations,
facilitating improved analysis and insights. Re-
cent studies introduce GNNs with VG (Xuan et al.,
2022; Aslan and Choi, 2024), but to our knowledge,
VVG-based GNN has not been proposed before.

In a broader perspective, transformers generate
document embeddings as multivariate time series
with inherent sequential relations, where VVGs are
designed to capture sequential relations. In con-
trast to statistical methods, VVG preserves sequen-
tial topology and can utilize transformer output
without text processing. To leverage these capa-
bilities, in this work, we propose (1) a novel ap-
proach to generate dynamic graphs per document
by constructing VVGs from transformer represen-
tations and (2) a novel scalable architecture, visi-
bility pooler (VISPool), that seamlessly integrates

VVG-based GCNs into transformer pipelines and
enhances performance on General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang
et al., 2018).

2 Method

We first briefly outline the mainstream approach
and then introduce our novel model for enhanc-
ing transformer encoders with VVG-based GCNs,
where both architectures are shown in Fig. 1.

2.1 Transformer Encoder and Base Classifier

For a given corpus batch of B documents, a tok-
enizer with a fixed sequence length of L, and a pre-
trained transformer encoder with D-dimensional
hidden output, the transformer encoder generates
a B × L × D dimensional tensor representation
for the document batch. The representation con-
tains B sequences of L-length and D-dimensional
embeddings. The mainstream approach uses these
embeddings with a classifier or regressor head, im-
plemented as fully connected layers. Then, fine-
tune the whole network for final predictions on the
NLU task. We refer to this approach as base classi-
fier and represent it as the upper path in Fig. 1.

2.2 Our Approach: VISPool

We introduce VVG-based dynamic graph construc-
tion in Section 2.2.1 and a GCN-based model archi-
tecture in Section 2.2.2. We refer to the overall as
VISPool and represent it as the lower path in Fig. 1.

2548



2.2.1 Graph Construction Module
Broadly, the transformer encoders generate an em-
bedding matrix of size L×D for a single document.
Due to the structure’s intrinsic sequential nature,
each document embedding is a D-dimensional, L-
length multivariate time series. This section de-
scribes how we leverage this structure with VVGs
to construct dynamic graphs for each document.

Visibility Graph For an N -length time series
{(ti, xi)}N−1

i=0 , with values xi ∈ R sampled at time
instance ti ∈ R, the VG is introduced as a mapping
from (ti, xi) instance to corresponding graph node
vi (Lacasa et al., 2008). The graph edges are de-
termined based on a selected visibility criterion, so
the unweighted adjacency matrix entries are:

Ai,j =

{
1 if nodes vi and vj are visible,
0 otherwise.

(1)

The adjacency can also be weighted based on a met-
ric, e.g., the absolute value difference, inverse time
difference, etc. Let (ti, xi) and (tj , xj) be arbitrary
endpoints, with in-between instances (tk, xk) such
that i < k < j. The nodes vi and vj are connected,
i.e., visible, if the visibility criterion is satisfied
for all in-between points. A visibility criterion is
defined by line-of-sight principle where the two
most common ones, natural (Lacasa et al., 2008)
and horizontal (Luque et al., 2009), are defined
as Eqs. (2) and (3), respectively:

xj − xi
tj − ti

<
xj − xk
tj − tk

, (2)

xk < min(xi, xj). (3)

Then, A is defined in a left-to-right directed man-
ner, i.e., for i < j, so it is upper triangular. How-
ever, the graph can be converted to an undirected
graph by equating Aj,i to Ai,j .

Limited Penetrability The described visibility
criteria are strict and require all in-between values
to satisfy the criterion. However, Ting-Ting et al.
(2012) show relaxing the criterion and allowing
a K number of violations increases robustness to
noise and is referred to as limited penetrability.

Vector Visibility Graph The VVG generalizes
the VG to map a multivariate time series to a
graph (Ren and Jin, 2019). For an M -dimensional,
N -length multivariate time series {(ti,xi)}N−1

i=0 ,
the VVG is constructed by mapping each vector

xi ∈ RM at time instance ti ∈ R to a correspond-
ing node vi. The projection magnitudes are used
since the vectors are not directly comparable in the
visibility criteria. The projection magnitude of a
vector xj onto xi is defined as:

∥xi
j∥2 ≜ ∥projxi

(xj)∥2 =
⟨xi,xj⟩
∥xi∥2

. (4)

Then, all value comparisons in the criteria are re-
placed with the corresponding projection magni-
tudes. Both visibility criteria and limited penetra-
bility can be directly generalized to VVGs. The
vector visibility criteria are generalized for natural
and horizontal as Eqs. (5) and (6), respectively:

∥xi
j∥2 − ∥xi

i∥2
tj − ti

<
∥xi

j∥2 − ∥xi
k∥2

tj − tk
, (5)

∥xi
k∥2 < min(∥xi

i∥2, ∥xi
j∥2). (6)

In this context, each document embedding is repre-
sented as a multivariate time series in the form of
{(ti,xi)}L−1

i=0 with token embeddings xi ∈ RD and
equally spaced time instances ti = i. Therefore,
we propose mapping each of the B document em-
beddings at the transformer output to a VVG with
selected criteria and limited penetrability, resulting
in B number of A ∈ RL×L. Then, these graphs
are ready to be used in GCN layers. Since the em-
beddings are updated with training, the graphs are
dynamic and updated accordingly.

2.2.2 Graph Convolutional Network Layers
We directly feed the generated VVG adjacencies
A ∈ RL×L to GCN layers (Kipf and Welling,
2017), since GCNs are the most widely used GNN
structures. The ℓth-layer input-output node embed-
ding relation of the GCN is defined as follows:

H(ℓ+1) = ϕ(AH(ℓ)W(ℓ)), (7)

where ϕ is an activation function, H(ℓ) ∈ RL×dℓ

is the ℓth-layer dℓ-dimensional node embeddings,
and W(ℓ) ∈ Rdℓ×dℓ+1 is a trainable weight ma-
trix. Note that H(0) is the initial node embeddings
and can be set based on the application at hand,
e.g., identity matrix, GloVe embeddings (Penning-
ton et al., 2014), etc. We use the transformer en-
coder document embeddings, i.e., the output of
the transformer, as the initial node embeddings
H(0) ∈ RL×D in Eq. (7). Note that we propose a
batched version of the GCN, which means training
a single weight matrix W(ℓ) for the ℓth-layer on all
B graphs in the batch.

2549



Model AVG
Single Sequence Similarity and Paraphrase Natural Language Inference

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE WNLI
Acc/F1 Acc/F1 P/SP m/mm

DistilBERT
Base Classifier 79.44 55.54 91.63 85.78/89.78 90.39/86.61 82.23/80.01 81.83/82.32 89.62 60.65 56.34
VISPool-NVVG 79.07 53.87 90.14 83.58/88.74 90.51/86.83 82.22/80.17 82.44/81.88 88.43 62.82 56.34
VISPool-HVVG 78.97 53.67 90.48 84.07/88.86 89.44/85.54 82.56/80.56 81.90/82.54 89.62 61.01 56.34
VISPool-LP-NVVG 79.76 54.77 91.40 86.27/90.23 89.76/85.67 82.39/80.26 82.39/82.71 89.04 65.70 56.34
VISPool-LP-HVVG 79.89 57.09 91.74 85.78/89.98 90.52/86.93 82.42/80.20 82.08/82.41 89.93 63.18 56.34

ALBERT
Base Classifier 82.07 53.77 91.17 88.97/91.76 90.28/86.48 87.67/85.54 84.01/84.47 90.24 76.17 56.34
VISPool-NVVG 81.73 55.70 92.89 89.71/92.54 90.32/86.48 85.60/83.12 83.93/81.81 90.43 73.65 56.34
VISPool-HVVG 81.83 57.54 88.76 89.71/92.52 89.82/85.81 85.87/83.57 84.23/83.11 90.40 76.17 56.34
VISPool-LP-NVVG 82.60 60.45 93.00 89.95/92.81 90.57/86.86 85.52/82.82 84.34/84.88 90.85 75.45 56.34
VISPool-LP-HVVG 82.74 59.41 93.12 89.46/92.48 90.55/86.80 86.23/83.56 84.25/84.54 91.21 77.62 56.34

Table 1: Maximum achieved scores on the GLUE validation (dev) sets (scaled by 100). We report the corresponding
metric for each task (1) Matthews correlation for CoLA (2) Pearson/Spearman correlation for STS-B (3) accuracy/F1
for MRPC and QQP (4) accuracy for all other tasks, where, for MNLI, both on the matched and mismatched sets.

Summary Instead of directly passing the docu-
ment embeddings to the classifier, we propose to
map them to graphs and pass them through GCN
layers. On top of the transformer’s contextual in-
formation, our motivation is to capture relational
information with GCNs and ultimately enhance
the transformer’s performance. For mapping, we
propose a VVG-based dynamic graph construction
that does not require text processing. The method
is also scalable since the graph sizes are only de-
pendent on the selected tokenizer sequence length
L, which is usually chosen as {128, 256, 512}.

3 Experiments

We evaluate our approach by addressing whether,
given a pre-trained transformer, the VVG-based
GCNs can enhance the performance in NLU com-
pared to the base classifier. Due to their lightweight
but competitive performance, we choose Distil-
BERT (Sanh et al., 2019) and ALBERT (Lan et al.,
2019) as base transformers and use their corre-
sponding tokenizers, both provided by Hugging
Face2. Up to this point, the process is identical for
the base classifier and VISPool. Then, for the base
classifier, we use SequenceClassifier2 head.

On the other hand, for the VISPool path, we im-
plement a fast and parallel VVG generation process,
along with a batched GCN layer implementation
that extends the notion in PyTorch Geometric (Fey
and Lenssen, 2019), to minimize the computational
overhead, resulting in similar training times with

2We use models from huggingface.co/distilbert/distilbert-
base-uncased and huggingface.co/albert/albert-base-v2.

the base classifier. Further details of the experi-
mental setup, including model details and computa-
tional infrastructure, are provided in Appendix B.

3.1 Datasets
We conduct experiments on the GLUE (Wang et al.,
2018) datasets, which have become the standard
benchmark for NLU assessment, where the individ-
ual dataset information is detailed in Appendix A.

3.2 Hyperparameter Tuning
For the base classifier, we conduct an individual
grid search on each dataset with five seeds and four
learning rates suggested by Devlin et al. (2019).
We report the scores on the best-performing overall
seed and best learning rate for each dataset. For fair-
ness, we use the selected seed for VISPool and em-
ploy Bayesian hyperparameter optimization (De-
wancker et al., 2015). The list of hyperparameters
and their distributions are detailed in Appendix B.4.

3.3 Results
We use DistilBERT and ALBERT transformer mod-
els and compare the base classifier with unweighted
and undirected VVG-based VISPool variants with
natural (NVVG) and horizontal (HVVG) visibil-
ity criteria described in Section 2.2.1. We also
provide the limited penetrable (LP) variants with
K ∈ {1, . . . , 5} allowed violations (K is treated
as a hyperparameter). Since test labels are not pub-
licly available, as a common practice, we report the
maximum achieved scores on the validation (dev)
sets in Table 1 where the best scores are embold-
ened.

2550

https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/distilbert/distilbert-base-uncased
https://huggingface.co/albert/albert-base-v2


On the GLUE benchmark, with fewer trainable
parameters, the VISPool-LP variants systemati-
cally outperform baselines, improving the overall
average score. On the other hand, even though the
strict versions’ overall average is not better, they
still provide improvements in some datasets; there
are even cases where they are top performers.

Since relaxing the visibility criteria with limited
penetrability results in denser graphs, i.e., graphs
with more connections, it can be said that VISPool
variants usually perform better with less sparse
graph representations. We highlight that the only
differences between the variants are the parameters
for the VVG graph they generate. Therefore, as the
results in Table 1 suggest, the performance of VIS-
Pool is highly dependent on the quality of the graph
construction, which is adjusted by the hyperparam-
eters of visibility criteria (natural or horizontal) and
the limited penetrability K. With the hyperparame-
ter space we cover, VISPool provides performance
improvements over base classifiers up to 13% for
certain tasks in GLUE benchmarks, resulting in
a promising approach for enhancing transformer
performance.

4 Conclusion

In this work, we demonstrate both the viability of
the VVG approach for graph construction and the
effectiveness of the proposed VISPool architecture
for enhancing transformer encoders with GNNs in
NLU tasks. VISPool is shown to be successful in
aggregating relational information that contextual
transformers cannot capture. Therefore, we believe
that the VVG-based dynamic graph construction is
a promising approach for NLP tasks thanks to not
needing excessive text processing and being more
scalable than existing approaches. The proposed
VISPool architecture can be further explored and
extended by weighted VVGs and applications to
other inductive NLP tasks that can benefit from
transformer enhancements with GNNs.

Limitations

Even though the variants of VISPool outperform
the baseline models, the performance is affected by
the choice of VVG type, i.e., the visibility criterion
and the number of allowed violations (penetrable
limit). In other words, the model performance de-
pends on the quality of the VVG construction and
the transformer encoder output used as the initial
node embeddings. Therefore, the model may not

perform well on tasks where the transformer en-
coder output is insufficient to capture the initial
contextual information within the document or the
VVG construction is inadequate to capture the re-
lational information. Furthermore, naturally, the
VISPool depends on the availability of pre-trained
transformer encoders, and in the absence of such, a
pre-training step is required.

Acknowledgements

The work of Tuna Alikaşifoğlu and Arda Can
Aras is supported by Türk Telekomünikasyon A.Ş.
within the framework of the 5G and Beyond Joint
Graduate Support Program coordinated by the In-
formation and Communication Technologies Au-
thority. The work of Aykut Koç was supported by
the 2023 BAGEP Award of the Science Academy.

References
Arda Can Aras, Tuna Alikaşifoğlu, and Aykut Koç.

2024. Graph receptive transformer encoder for text
classification. IEEE Transactions on Signal and In-
formation Processing over Networks, 10:347–359.

Hacı İsmail Aslan and Chang Choi. 2024. VisGIN:
Visibility graph neural network on one-dimensional
data for biometric authentication. Expert Systems
with Applications, 237:121323.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second PASCAL recognising
textual entailment challenge.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The fifth
PASCAL recognizing textual entailment challenge.

Ecem Bozkurt and Antonio Ortega. 2022. Non-negative
kernel graphs for time-varying signals using visibility
graphs. In 2022 30th European Signal Processing
Conference (EUSIPCO), pages 1781–1785.

Shaked Brody, Uri Alon, and Eran Yahav. 2022. How
attentive are graph attention networks? In Interna-
tional Conference on Learning Representations.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Zihang Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2017. Quora question pairs.

2551

https://doi.org/10.1109/tsipn.2024.3380362
https://doi.org/10.1109/tsipn.2024.3380362
https://doi.org/https://doi.org/10.1016/j.eswa.2023.121323
https://doi.org/https://doi.org/10.1016/j.eswa.2023.121323
https://doi.org/https://doi.org/10.1016/j.eswa.2023.121323
https://doi.org/10.23919/EUSIPCO55093.2022.9909594
https://doi.org/10.23919/EUSIPCO55093.2022.9909594
https://doi.org/10.23919/EUSIPCO55093.2022.9909594
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://api.semanticscholar.org/CorpusID:233225749


Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluat-
ing predictive uncertainty, visual object classification,
and recognising tectual entailment, pages 177–190.
Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ian Dewancker, Michael McCourt, and Scott Clark.
2015. Bayesian optimization primer.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on
Paraphrasing.

Matthias Fey and Jan E. Lenssen. 2019. Fast graph
representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on
Graphs and Manifolds.

Meng Gao and Ruijun Ge. 2024. Mapping time series
into signed networks via horizontal visibility graph.
Physica A: Statistical Mechanics and its Applications,
633:129404.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9. Association for Computa-
tional Linguistics.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong
Zhang, and Houfeng Wang. 2019. Text level graph
neural network for text classification. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3444–3450, Hong Kong,
China. Association for Computational Linguistics.

Yen-Hao Huang, Yi-Hsin Chen, and Yi-Shin Chen.
2022. ConTextING: Granting document-wise con-
textual embeddings to graph neural networks for in-
ductive text classification. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 1163–1168, Gyeongju, Republic of Korea.
International Committee on Computational Linguis-
tics.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations.

Lucas Lacasa, Bartolo Luque, Fernando Ballesteros,
Jordi Luque, and Juan Carlos Nuño. 2008. From
time series to complex networks: The visibility graph.
Proceedings of the National Academy of Sciences,
105(13):4972–4975.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2019. ALBERT: A lite BERT for self-
supervised learning of language representations.
CoRR, abs/1909.11942.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard S. Zemel. 2016. Gated graph sequence
neural networks. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings.

Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Kun Kuang, Jiwei Li, and Fei Wu. 2021. BertGCN:
Transductive text classification by combining GNN
and BERT. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1456–1462, Online. Association for Computational
Linguistics.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv.
2020. Tensor graph convolutional networks for text
classification. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 8409–
8416.

B. Luque, L. Lacasa, F. Ballesteros, and J. Luque. 2009.
Horizontal visibility graphs: Exact results for random
time series. Phys. Rev. E, 80:046103.

Giannis Nikolentzos, Antoine Tixier, and Michalis
Vazirgiannis. 2020. Message passing attention net-
works for document understanding. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8544–8551.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
EMNLP, pages 2383–2392. Association for Compu-
tational Linguistics.

2552

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1345
https://doi.org/10.18653/v1/D19-1345
https://aclanthology.org/2022.coling-1.100
https://aclanthology.org/2022.coling-1.100
https://aclanthology.org/2022.coling-1.100
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1073/pnas.0709247105
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.1103/PhysRevE.80.046103
https://doi.org/10.1103/PhysRevE.80.046103
https://doi.org/10.1609/aaai.v34i05.6376
https://doi.org/10.1609/aaai.v34i05.6376
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162


Weikai Ren and Ningde Jin. 2019. Vector visibility
graph from multivariate time series: a new method
for characterizing nonlinear dynamic behavior in two-
phase flow. Nonlinear Dynamics, 97(4):2547–2556.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th Inter-
national Conference, ESWC 2018, Heraklion, Crete,
Greece, June 3-7, 2018, Proceedings, pages 593–607,
Berlin, Heidelberg. Springer-Verlag.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP, pages 1631–1642.

Zhou Ting-Ting, Jin Ning-De, Gao Zhong-Ke, and Luo
Yue-Bin. 2012. Limited penetrable visibility graph
for establishing complex network from time series.
Acta Physica Sinica, 61(3):030506.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP. Associa-
tion for Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint 1805.12471.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of NAACL-HLT.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplify-
ing graph convolutional networks. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 6861–6871. PMLR.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In International Conference on Learning
Representations.

Qi Xuan, Jinchao Zhou, Kunfeng Qiu, Zhuangzhi Chen,
Dongwei Xu, Shilian Zheng, and Xiaoniu Yang. 2022.
Avgnet: Adaptive visibility graph neural network and
its application in modulation classification. IEEE
Transactions on Network Science and Engineering,
9(3):1516–1526.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):7370–7377.

Haopeng Zhang and Jiawei Zhang. 2020. Text graph
transformer for document classification. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8322–8327, Online. Association for Computational
Linguistics.

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen
Wen, and Liang Wang. 2020. Every document owns
its structure: Inductive text classification via graph
neural networks. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 334–339, Online. Association for
Computational Linguistics.

A Detailed Description of GLUE Datasets

We obtain the GLUE datasets from the Hugging
Face datasets library3 and use the provided train
and validation (dev) splits. We describe the indi-
vidual datasets below, then give the training and
validation splits, evaluation metrics, and the num-
ber of labels in Table 2.

CoLA The Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2018) is a binary classifica-
tion task for single sentences that aims to classify
whether an English sentence is linguistically ac-
ceptable correctly.

SST-2 The Stanford Tree Sentimentbank (Socher
et al., 2013) is a binary classification task for single
sentences based on film reviews containing human
sentiment annotation.

MRPC The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) consists of sen-
tence pairs extracted from online news sources with
human annotations. A similarity and paraphrase
classification task classifies whether the sentences
in the pair are semantically equivalent.

3https://huggingface.co/datasets/glue

2553

https://doi.org/10.1007/s11071-019-05147-7
https://doi.org/10.1007/s11071-019-05147-7
https://doi.org/10.1007/s11071-019-05147-7
https://doi.org/10.1007/s11071-019-05147-7
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.7498/aps.61.030506
https://doi.org/10.7498/aps.61.030506
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446
https://doi.org/10.18653/v1/w18-5446
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1109/TNSE.2022.3146836
https://doi.org/10.1109/TNSE.2022.3146836
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.18653/v1/2020.emnlp-main.668
https://doi.org/10.18653/v1/2020.emnlp-main.668
https://doi.org/10.18653/v1/2020.acl-main.31
https://doi.org/10.18653/v1/2020.acl-main.31
https://doi.org/10.18653/v1/2020.acl-main.31
https://huggingface.co/datasets/glue


QQP Quora Question Pairs (Chen et al., 2017)
is a binary classification task to determine whether
two questions asked on Quora are semantically
equivalent.

STS-B The Semantic Textual Similarity Bench-
mark (Cer et al., 2017) consists of sentence pairs
drawn from news headlines and other sources.
Compared to other tasks in GLUE, STS-B is a
regression task since the pairs are annotated with
a score from 1 to 5, denoting the similarity of two
sentences in terms of semantic meaning.

MNLI Multi-Genre Natural Language Inference
is a large-scale, crowdsourced entailment classifi-
cation task consisting of sentence pairs (Williams
et al., 2018). The aim is to predict the relation
between the pair, whether the sentences are an en-
tailment, contradiction, or neutral.

QNLI The Question Natural Language Inference
is a binary classification conversion of the Stan-
ford Question Answering Dataset (Rajpurkar et al.,
2016) by Wang et al. (2018).

RTE The Recognizing Textual Entailment (RTE)
datasets come from a series of annual textual en-
tailment challenges by combining the data from
RTE1 (Dagan et al., 2006), RTE2 (Bar Haim
et al., 2006), RTE3 (Giampiccolo et al., 2007), and
RTE5 (Bentivogli et al., 2009).

WNLI The Winograd Schema Challenge is a
reading comprehension task (Levesque et al., 2011),
although the GLUE webpage indicates issues with
the dataset. We obtained the same result for all
models, consistent with the reported results in the
original DistilBERT approach (Sanh et al., 2019).

Dataset Evaluation Metric Train Validation Number of
Split Split Labels

CoLA Matthews Corr. 8,551 1,043 2
SST-2 Accuracy 67,349 872 2
MRPC Accuracy/F1 3668 408 2
QQP Accuracy/F1 363,846 40,430 2
STS-B Pearson/Spearman Corr. 5,749 1,500 1
MNLI Accuracy 392,702 9,815/9,832 3
QNLI Accuracy 104,743 5,463 2
RTE Accuracy 2,490 277 2
WNLI Accuracy 635 71 2

Table 2: Number of documents in training and valida-
tion splits, evaluation metric, and number of labels of
the GLUE datasets. The STS-B is a regression task with
a single label; the remaining are classification tasks. For
the MNLI task, both matched and mismatched valida-
tion splits are provided M/MM.

B Model and Experimental Setup Details

B.1 Model Naming
The BERT (Devlin et al., 2019) architecture con-
tains a fully connected BertPooler layer that takes
the output representation corresponding to the first
token and uses it for downstream tasks. Since we
propose an alternative vector visibility graph-based
batched GCN architecture, we name our model as
VISPool.

B.2 Model Details
The DistilBERT and ALBERT transformer models
contain 66.4 and 11.7 million trainable parameters,
respectively. On top of this structure, the base clas-
sifier (embraced as SequenceClassifier from Hug-
ging Face) adds two fully connected layers (1) a
pre-classifier of both input and output dimensions
of 768 and (2) a classifier with input dimension
768 and output dimension matching the number
of labels in the dataset, which is in {1, 2, 3} for
GLUE datasets as provided in Table 2.

On the other hand, in VISPool architecture, we
replace these two fully connected layers with GCN
layers. Since we use the transformer encoder
outputs as the initial node embeddings, we have
H(0) ∈ RL×D. As we describe in Appendix B.4,
we choose L = 128 and D = 786 due to base
language model selection. To have a matching di-
mensionality in Eq. (7), the first dimension of W(0)

needs to be set to D = 786. In this context, we only
set a single hidden dimension H ∈ {128, 512} to
describe GCN layers: (1) first GCN layer with
input dimension of D = 768 and output dimen-
sion of H and (2) second GCN layer with input
dimension of H and output dimension of ⌊H/2⌋.
Finally, we add a fully connected layer at the end
with the input dimension of ⌊H/2⌋ and the output
dimension of the number of labels in the dataset.
In GCN layers, we use ReLU activation functions,
and for tasks with a number of labels more than
one, we add log-SoftMax to match the negative
log-likelihood loss. For the STS-B dataset, this is
omitted since minimum squared error (MSE) loss
is utilized.

With these architectures, on top of the trans-
former encoder, we provide the number of trainable
parameters in the base classifier and the VISPool
in Table 3.

We also want to indicate that our source code
is publicly available, allowing a more transparent
analysis of implementation details.

2554



Model Trainable Parameter
Count

Base Classifier 591,360
VISPool-128 hidden 106,624
VISPool-512 hidden 524,800

Table 3: Number of trainable parameters for different
models on datasets with a number of labels 2.

B.3 Computing Infrastructure

We run our experiments on the GPU cluster of
our research team. Experiments are mostly run on
multiple NVIDIA 1080Ti GPUs, but depending
on the availability of the cluster, 2080Ti and 3090
GPUs are also utilized. According to the run gen-
eration and last heartbeat timestamp logs of WandB
experiments, we use ∼4400 total GPU hours. This
duration also includes the GPU hours used in the
development process. We publicly share every sin-
gle experiment run through WandB dashboard to
be transparent regarding model performance and
system usage.

B.4 Hyperparameters

Devlin et al. (2019) suggests learning rates of
{2× 10−5, 3× 10−5, 4× 10−5, 5× 10−5} for the
transformer encoder. Therefore, the base classi-
fier’s fine-tuning process is set to a grid search be-
tween these learning rates and five different seeds
of {40, 41, 42, 43, 44}. Within these seeds, 42 is
the top performing in the overall average. There-
fore, we conduct a hyperparameter search on VIS-
Pool with a single seed of 42. We provide the
summary for the list and distributions of the hy-
perparameters used in experiments in Table 4. We
further explain our approach as follows.

As a common practice, we have fixed selections
of batch size as 32 and tokenizer length as 128.
Also, with the choice of the language model as
DistilBERT (base-uncased) and ALBERT (base-
v2), we overall have (B,L,D) = (32, 128, 768).
Therefore, we only have the transformer encoder’s
learning rate as a hyperparameter. We choose the
learning rate to be uniform in [10−5, 10−4] to en-
capsulate the suggested values.

On the VVG side, we have a categorical parame-
ter of visibility “type”, either natural or horizontal.
In addition, penetrable limit K is also treated as
a hyperparameter. Technically, K can be as large
as the sequence length L, but it would generate a

Hyperparameter Distribution
Encoder
learning rate ∼ Uniform(10−5, 10−4)

VVG
type ∈ {natural, horizontal}
penetrable limit ∈ {0, 1, 2, 3, 4, 5}
GCN
learning rate ∼ Uniform(10−5, 10−2)
dropout ∼ Uniform(0.1, 0.5)
hidden dimension ∈ {128, 512}
pooling ∈ {[CLS],mean,max }

Table 4: The hyperparameter distributions utilized dur-
ing the experiments, where the categorical distributions
have the same initial sampling probability.

fully connected graph. Since large K can create un-
necessary edges in the VVG, we experiment with
K ∈ {0, 1, 2, 3, 4, 5} to also decrease the search
grid. We highlight that K = 0 corresponds to strict
visibility criteria.

Finally, on the GCN side, along with the clas-
sical hyperparameter selections of learning rate,
dropout, and hidden dimension, we also provide
an option to select the pooling method at the end.
By default, BERT variants pool the [CLS] tokens
at the end, but due to the provided architecture,
we also have the flexibility to choose how to treat
the pre-logits. We experiment with classical ap-
proaches of still using [CLS] token (taking the first
embedding), using mean and max approaches.

Last but not least, due to common practice, we
use Adam with weight decay as an optimizer for
both base classifier and VISPool, with default
values of PyTorch implementation: (β1, β2) =
(0.9, 0.999), ϵ = 10−8 and weight decay λ = 0.01.
We publicly share the best-performing hyperparam-
eters and the runs that achieve maximum scores
directly with WandB dashboard.

B.5 Graph Visualization
Finally, we demonstrate the gradual change of the
VVG representations during the training in Fig. 2.
We provide an example for the first document of
the RTE dataset with the setting of a DistilBERT
transformer and VISPool-NVVG variant. We both
provide the graph and the binary representations
of the adjacency matrix to provide intuition for the
generated graphs, where they visualize the connec-
tions between L = 128 tokens. We provide eps
format images and suggest zooming in for details
of the figures.

2555



0

1

2

3

4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
2425262728293031323334353637383940

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58
59

60

61

62

63

64

65

66

67

68

69
70
71
72
73
74
75
76
77

78
79

80
81

82
83

84
85

86
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101
102103

104
105

106
107

108
109

110
111

112
113

114
115
116
117
118
119
120
121
122
123

124

125

126

127

(a) Epoch 1, VVG (b) Epoch 1, Binary Adjacency

0

1

2

3

4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
2425262728293031323334353637383940

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58
59

60

61

62

63

64

65

66

67

68

69
70
71
72
73
74
75
76
77

78
79

80
81

82
83

84
85

86
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101
102103

104
105

106
107

108
109

110
111

112
113

114
115
116
117
118
119
120
121
122
123

124

125

126

127

(c) Epoch 5, VVG (d) Epoch 5, Binary Adjacency

0

1

2

3

4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
2425262728293031323334353637383940

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58
59

60

61

62

63

64

65

66

67

68

69
70
71
72
73
74
75
76
77

78
79

80
81

82
83

84
85

86
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101
102103

104
105

106
107

108
109

110
111

112
113

114
115
116
117
118
119
120
121
122
123

124

125

126

127

(e) Epoch 10, VVG (f) Epoch 10, Binary Adjacency

Figure 2: Gradual change of the first document of the RTE dataset with the setting of a DistilBERT transformer and
VISPool-NVVG variant. Left-hand side subfigures represent the generated VVG at each epoch, whereas right-hand
side subfigures are the binary representation of their adjacency matrices, where black pixels indicate a connection
between nodes. For epochs 1, 5, and 10, we obtain validation accuracies of 47.29%, 52.70%, and 62.82%, with
graph sparsities of 29.15%, 28.44%, and 33.29%, respectively.

2556


