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Abstract

Today’s most accurate language models are
trained on orders of magnitude more language
data than human language learners receive—
but with no supervision from other sensory
modalities that play a crucial role in human
learning. Can we make LMs’ representa-
tions and predictions more accurate (and more
human-like) with more ecologically plausible
supervision? This paper describes LexiCon-
trastive Grounding (LCG), a grounded lan-
guage learning procedure that leverages visual
supervision to improve textual representations.
LexiContrastive Grounding combines a next-
token prediction strategy with a contrastive vi-
sual grounding objective, focusing on early-
layer representations that encode lexical infor-
mation. Across multiple word-learning and
sentence-understanding benchmarks, LexiCon-
trastive Grounding not only outperforms stan-
dard language-only models in terms of learning
efficiency in small and developmentally plau-
sible data regimes, but also improves upon
vision-and-language learning procedures in-
cluding CLIP, GIT, Flamingo, and Vokeniza-
tion. Moreover, LexiContrastive Grounding im-
proves perplexity by around 5% on multiple
language modeling tasks compared to other
models trained on the same amount of text data.
This work underscores the potential of incorpo-
rating visual grounding into language models,
aligning more closely with the multimodal na-
ture of human language acquisition.

1 Introductions

Neural language models (LMs; Devlin et al., 2018;
Liu et al., 2019; Radford et al., 2019; Brown et al.,
2020) have shown utility in modeling aspects of
human language processing, including neuronal
responses to linguistic stimuli (Schrimpf et al.,
2021; Caucheteux and King, 2022; Goldstein et al.,
2022) and data about human language production
(Arehalli and Linzen, 2020) and comprehension

(Wilcox et al., 2020). Nevertheless, these mod-
els currently lack plausibility as models of human
cognitive development. This discrepancy primar-
ily stems from the immense volume of training
data necessitated for effective LM performance,
surpassing—by orders of magnitude—the linguis-
tic input received during human language acqui-
sition (Zhang et al., 2020; Warstadt and Bowman,
2022). Specifically, children may be exposed to
at most sixty million words in their first five years
(Frank, 2023), whereas training modern LMs re-
quires hundreds of billions of words. Can insights
from human language acquisition guide the training
of new LMs that are both better cognitive models
and more sample-efficient in an absolute sense?

A key contrast in language learning between
humans and LMs is that humans ground language
learning in perceptual signals across various modal-
ities, encompassing hearing, touch, and vision
(Clerkin et al., 2017; West and Iverson, 2017;
Seidl et al., 2023; Schroer and Yu, 2023). Multi-
modal training has also been studied in natural
language processing as a potential avenue towards
more human-like language learning (Bisk et al.,
2020). Encouragingly, recent years have witnessed
a surge in the development of multi-modal mod-
els and learning algorithms, primarily tailored for
tasks requiring simultaneous reasoning across both
modalities (Radford et al., 2021; Wang et al., 2022;
Alayrac et al., 2022; Singh et al., 2022; Lu et al.,
2022; Tan and Bansal, 2020). However, none of
these multi-modal models have been shown to learn
language more efficiently than language-only mod-
els. In fact, Zhuang et al. (2023) show that sev-
eral different visual-language models (CLIP, GIT,
and Flamingo) learn word meanings less efficiently
than models trained on language alone. This find-
ing suggests that these existing visual-language
learning algorithms cannot model how humans
leverage vision to help learn language. However,
Zhuang et al. (2023) also find that vision-language
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Figure 1: LexiContrastive Grounding models leverage visual information to facilitate word learning when
they are trained on image-caption datasets. A. Pretraining schema for the LexiContrastive Grounding models.
The images are sent to a frozen visual encoder pretrained using unsupervised learning algorithms to generate image
features. These image features and the hidden representations of the first layer after the token-embedding layer are
used to compute a vision-language contrastive loss. This loss is added to the next-token prediction loss to form the
final loss. B. Results from the grounded-only learning scenario on word-learning benchmarks for LexiContrastive
Grounding (●), Language-Only (■), CLIP (◆), GIT (▼), and Flamingo (✖). The X-axis is plotted in the log
scale. Each point represents the average performance from four models initialized from different random seeds, and
the line width represents the S.E.M. from these four models. C. Results from the mixed-learning scenario on the
language modeling and the word learning benchmarks. We also add LexiVoken Grounding (✚) and Vokenization
(♦) models. The ungrounded dataset is Smashwords-5M. Different dots of the same color represent models with
different random initialization seeds.

contrastive learning (Radford et al., 2021) with im-
ages and single words yields representations that
are sometimes comparably well aligned with hu-
man judgments, but qualitatively different from,
representations learned from text alone.

Inspired by these findings, we propose a new
visually grounded language learning procedure we
call LexiContrastive Grounding (LCG), which com-
bines the next-token prediction objective and a
word-level contrastive visual grounding objective.
Crucially, we apply this contrastive objective to the
early-layer representations in the LM, as these rep-
resentations are closer to containing only lexicon-
level information.

Unlike the methods studied by Zhuang et al.
(2023), we find that LexiContrastive Ground-
ing yields improved learning efficiency compared
to language-only models in small and develop-
mentally plausible data regimes. We evaluate it,
and other visual-language learning procedures, on
two learning scenarios: grounded-only and mixed
ungrounded-grounded language learning. In both
scenarios, we systematically vary the size of the
training datasets. Additionally, we vary the source
of the ungrounded corpus in the mixed-learning
scenario with a focus on the amount of data chil-
dren can receive. After training the models on
the same amount of text data, we evaluate them
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on tasks that assess different aspects of word and
language learning, including semantic similarity
judgment, lexical relation and semantic norm pre-
diction, and language modeling. LexiContrastive
Grounding outperforms existing methods on most
of the evaluated benchmarks, demonstrating a con-
sistent and significant benefit of visual grounding
on language modeling compared to the language-
only models when trained on the same text data.

To the best of our knowledge, LexiContrastive
Grounding is the first multi-modality learning algo-
rithm to transfer benefits from visual grounding to
(unconditional) language modeling when learning
from the same amount of text data. These results
show how natural language semantics can be better
acquired by grounded learning, and suggest steps
toward human-level efficiency in language learning
with LMs.

2 Background

Grounded language learning algorithms in AI.
In recent years, there have been notable advance-
ments in multi-modality learning. For instance, the
Vokenization model (Tan and Bansal, 2020) finds
contextually relevant images (called “vokens”) for
language tokens and uses the vokens to addition-
ally supervise the LMs. Although the Vokenization
model is shown to outperform language-only base-
lines on language-understanding benchmarks like
MNLI (Williams et al., 2017), the model is first fine-
tuned on the corresponding training sets of these
benchmarks. This finetuning process makes it un-
clear whether the learned representation is directly
better than the representations of the language-
only models. The CLIP model produces transfer-
able visual representations and word representa-
tions that demonstrate strong performance on cer-
tain tests of word similarity (Radford et al., 2021;
Wolfe and Caliskan, 2022), after being trained con-
trastively on a massive amount of image-caption
pairs. In contrast, GIT is a generative model that
achieves state-of-the-art performance on various
visual-language tasks, such as image captioning
and visual question answering, through utilizing
visual inputs to condition next-word predictions
(Wang et al., 2022). The related Flamingo model
also yields strong results on these tasks by employ-
ing visual representations to modulate attention in a
transformer language model (Alayrac et al., 2022).

Models of human language acquisition using
ungrounded and grounded learning algorithms.

Huebner et al. (2021) and Warstadt et al. (2023)
target grammar learning in models trained on small
ungrounded datasets. Chang and Bergen (2022)
analyze word-acquisition trajectories in language-
only models, but their focus on model surprisal
changes during training makes their findings less
relevant to learning word meanings. For grounded
models, Berger et al. (2022) and Portelance et al.
(2023) propose multi-modality algorithms for un-
derstanding word acquisition, with specific empha-
sis on word categories and function words, respec-
tively. Vong et al. (2024) apply a CLIP-like learn-
ing algorithm on first-person videos collected from
children and report that the trained visual-language
model yields good performance in visual-referent
mapping tasks on the same child’s experience
and modest generalization ability to out-of-domain
datasets. Zhuang et al. (2023) evaluate multiple
existing visual-language models on word-learning
benchmarks and show that visual-grounding yields
limited and conditioned help in low-data regimes.
Our work introduces a stronger visual-language
learning algorithm that outperforms these existing
algorithms in different learning scenarios.

3 LexiContrastive Grounding

Zhuang et al. (2023) find that vision-and-language
contrastive learning (Radford et al., 2021) applied
to images and individual words within correspond-
ing captions produces surprisingly high-quality
word representations. Indeed, across multiple word-
learning benchmarks, Zhuang et al. (2023) report
that this image-word contrastive learning objective
is more efficient than the next-token prediction ob-
jective on learning to relate words in a human-like
way and to predict their semantic features. More-
over, they find that having more context in the
linguistic input than a single word yields lower
efficiency in learning word meanings, with the
image-sentence contrastive learning objective be-
ing significantly less efficient compared to both
the image-word and the language-only objective.
More importantly, the image-word and language-
only representations differ from each other as only
the one learned with visual grounding encodes the
meanings of concrete words in a more human-like
way compared to less concrete words. This dis-
tinction indicates that a stronger model might be
produced by combining these two learning algo-
rithms in some way.

Intuition: Motivated by this, we first compute a
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cross-modality contrastive learning loss on repre-
sentations from the first hidden layer of the model
(see Fig. 1A). We select the representations of
the first layer because they merge less informa-
tion from the linguistic context. To enforce these
representations to encode even less context, we fur-
ther limit the attention operation of the first layer
to only attend to the previous two tokens. The
cross-modality contrastive loss is then computed
from all the token-level representations from the
first layer of all examples within a batch. This
loss differs from the loss computed by CLIP be-
cause CLIP extracts a single sentence-level repre-
sentation for the whole caption while we use all
available token-level representations from the early
layer. We then linearly mix this contrastive loss
with the next-token prediction loss on the whole
caption to get the final loss (see Fig. 1A).

Objective function: To be more concrete, let
(vi, ci) denote the pairs of image (vi) and cap-
tion (ci) within one batch, where i ranges from
1 to batch size n and ci contains mi tokens:
(ti,1, ti,2, . . . , ti,mi). We then use f1

L(ci) to rep-
resent the output of the first hidden layer of the
neural language model. Because f1

L(ci) is a ma-
trix of shape mi × d, where d is the dimension for
the hidden representation in the model, we define
f1
L(ci, j) to be the j-th column of this matrix. As-

suming that fV (vi) represents the visual feature
computed from a visual encoder fV , the matching
score s(i, j, k) between vi and f1

L(ck, j) is then
defined as:

s(i, j, k) = (MV fV (vi))
⊤MLf

1
L(ck, j)/τ

τ is a trainable positive value, while MV and ML

are d× d matrices. The contrastive loss is then:

Lc =
n∑

i=1

mi∑

j=1

1

2

es(i,j,i)∑n
k=1 e

s(k,j,i)
+

1

2

es(i,j,i)

neg(i, j)

neg(i, j) = es(i,j,i) +
n∑

k=1

mk∑

o=1

(1− δi(k))e
s(i,o,k)

where δi(k) is 1 when k = i and 0 otherwise. The
final loss on this grounded batch is then:

Lg = λcLc + Ll

where Ll represents the next-token prediction loss
on the captions.

Visual encoder. Following Zhuang et al. (2023),
we use a Vision Transformer (ViT; Dosovitskiy

et al., 2020) pretrained on unlabeled ImageNet im-
ages using the DINO algorithm (Caron et al., 2021),
which is a strong unsupervised visual learning al-
gorithm. The image feature is the hidden represen-
tation at the [CLS] token from the last layer.

4 Experiment setup

4.1 Training Datasets

The grounded datasets contain image-caption
pairs from the Conceptual-Captions-12M dataset
(Changpinyo et al., 2021). We only used images
that were valid in August of 2022. In the mixed
learning scenario, we use samples from the Smash-
words containing 5M and 15M tokens as well
as a subset of CHILDES (MacWhinney, 2014)
containing 5M tokens as the ungrounded dataset.
These three ungrounded datasets cover widely
available corpus comprising a significant part of
the training materials of high-performing LMs
(Smashwords) and more development-relevant cor-
pus (CHILDES). The training in the mixed learning
scenario simultaneously draws two batches from
both the ungrounded and grounded datasets and
optimizes a linear mix of the two losses. The mix-
ing weight is varied across multiple choices and
decided based on the perplexity measure on the
validation set of the ungrounded dataset.

4.2 Evaluation benchmarks

We evaluate our models on four of the word-
learning evaluation benchmarks proposed by
Zhuang et al. (2023): Word Relatedness, Seman-
tic Feature Prediction, Lexical Relation Prediction,
and Context Understanding benchmarks. Our se-
lection covers lexical-level and sentence-level eval-
uations. This selection includes benchmarks where
visual grounding has shown benefits in low-data
situations, specifically the Word Relatedness and
Semantic Feature Prediction benchmarks, as well
as two other benchmarks where grounding has not
proven to be helpful. Additionally, we also evaluate
the perplexity of the trained models in the mixed-
learning scenario on the held-out test set of the
ungrounded dataset. Since these benchmarks are
proposed by Zhuang et al. (2023), we only briefly
introduce them here.

Lexical-level: Word Relatedness Benchmark.
This benchmark evaluates model performance on
predicting human word relatedness judgments us-
ing MEN (Bruni et al., 2012), focusing on semantic
similarities between word pairs (see Fig. 1B). Mod-
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els are assessed by extracting word representations,
calculating pairwise cosine similarities, and then
comparing these to human judgments via Spearman
correlations to identify the optimal layer.

Lexical-level: Semantic Feature Prediction
Benchmark. This benchmark evaluates LMs
through semantic norm prediction tasks, using a
dataset by Buchanan et al. (2019), where human
annotators list features of words (see examples in
Fig. 1B). The evaluation involves training a lin-
ear probe on model-derived word representations
to predict these features, selecting the best layer
based on validation set accuracy, and reporting its
performance on a separate test set.

Lexical-level: Lexical Relation Prediction
Benchmark. This benchmark assesses the abil-
ity of models to accurately predict complex word
relationships (such as synonyms, hyponyms, etc.)
using the CogALex-V dataset (Santus et al., 2016).
This dataset comprises over 2500 word pairs in
both training and test sets, to evaluate model pre-
cision in classifying word pairs into five cate-
gories: synonymy, antonymy, hypernymy, part-
whole meronymy, and random (see examples in
Fig. 1B). A similar linear probing method is ap-
plied here to the difference between two word rep-
resentations to predict the lexical relations.

Sentence-level: Context Understanding
Benchmark. This benchmark tests if models
can discern appropriate contexts for word usage.
Its creation involves selecting real sentences
featuring target words from online sources, then
altering these sentences to create inappropriate
contexts for the words (see examples in Fig. 1B).
Model performance is evaluated based on their
ability to correctly identify the original sentence
as more probable than its modified counterpart.
The original benchmark created by Zhuang et al.
(2023) generates sentence pairs for nouns, verbs,
and adjectives, which divides the benchmark into
three sub-benchmarks. We report the average
performance across these three sub-benchmarks.

Language Modeling: Perplexity. We evalu-
ate the perplexity measure on the held-out sets of
the ungrounded datasets in the mixed-learning sce-
nario. The perplexity is measured for words in the
sequence with at least 64 and at most 127 prior
tokens as the context. Because all our models use
the same tokenizer, their perplexity measures are
directly comparable.

4.3 Baselines

Language-Only Models. We train these models
only using image captions or the ungrounded in-
put. The training uses the next-token prediction
objective function. We use a six-layer variant of
the GPT-2 architecture (Radford et al., 2019), fol-
lowing Zhuang et al. (2023). This shallower archi-
tecture performs similarly to its deeper counterpart
in the tasks we evaluate (Zhuang et al., 2023).

CLIP. We train the CLIP models following the
visual-language contrastive learning objective pro-
posed by Radford et al. (2021). This objective
optimizes the language model to produce a caption
embedding that is similar to its corresponding im-
age embedding and dissimilar to embeddings of
other images. During training, we freeze the visual
encoder to be the DINO-pretrained ViT and train
the language model from scratch. Although we still
call the trained models CLIP models, they are not
the models pretrained by Radford et al. (2021).

Flamingo. This model utilizes visual representa-
tions to modulate attention within the transformer
(Alayrac et al., 2022). This modulation is per-
formed by additional cross-attention layers added
between the original self-attention layers. The
whole model, including both the cross-attention
and the self-attention layers, is then trained from
scratch using the next-token prediction objective.
When Flamingo is trained on ungrounded input, the
cross-attention layers are not used. Although these
cross-attention layers contain additional trainable
parameters, they are not used during our evaluation
since we use language-only input.

GIT. This algorithm treats the image feature as
part of the linguistic context by concatenating it
with the output of the word-embedding layer (Wang
et al., 2022). The concatenated representation is
then sent to the transformer to perform the same
next-token prediction task.

Vokenization. This algorithm (Tan and Bansal,
2020) first trains a contextual token-image match-
ing model on image-caption pairs. Since the algo-
rithm aims to use visual information to improve
text-only language modeling performance, we
only test this algorithm in the mixed ungrounded-
grounded learning scenario. We then run this
matching model on both ungrounded and grounded
datasets to map each of the contextualized token
representations to the image that is the most seman-
tically relevant to the representation. Following
Tan and Bansal (2020), we choose the image from

235



an independent dataset (Visual Genome; Krishna
et al., 2017) that is not used in either of the learning
scenarios we evaluate. The index of the selected
image is then used as the “voken”. The final train-
ing loss on both ungrounded and grounded datasets
is to simultaneously predict the next token as well
as the next voken using two readout heads.

4.4 Training Details

We set λc in our algorithm to be 0.3. This choice
is supported by ablation studies in Sec. 5.4. For
the grounded learning scenario, we vary the dataset
size from 4.3K to 2.1M image-caption pairs. These
pairs are used to train the models for multiple
epochs. Following Zhuang et al. (2023), the num-
ber of epochs is determined independently for
each dataset scale by the loss on the validation
set. For the mixed-learning scenario, we simulta-
neously train the models on both ungrounded and
grounded input. For each of the three ungrounded
datasets (Smashwords-5M, Smashwords-15M, and
CHILDES-5M), we vary the size of the correspond-
ing grounded dataset so that it contains either half,
the same amount, or double the number of tokens
compared to the ungrounded dataset. This yields
nine training setups in total. In each of these train-
ing setups, the loss is a linear mix of two losses
computed separately from each input. We vary this
mix weight among several candidate values and
select the best one according to the perplexity mea-
sure on the validation set of the ungrounded dataset.
This selection is independently done for each setup
and each learning algorithm.

The code for training and evaluating can
be found at https://github.com/EvLab-MIT/
LexiContrastiveGrd. More details can be found
in Appendix A.1.

5 Results

5.1 In the grounded-only learning scenario,
LCG learns word meanings more
efficiently than Language-Only models

We first show the results from the grounded-only
learning scenario. On the Word Relatedness and
Semantic Feature Prediction benchmarks, LexiCon-
trastive Grounding models achieve significantly
better results on all the dataset scales compared
to all the other models, including both Language-
Only models and other multi-modality learning
models (see Fig. 1B, left two panels). Although
Zhuang et al. (2023) also reported benefits from

visual grounding on these two benchmarks, their
benefits are only in low-data regimes and become
smaller in larger datasets, while our LCG algo-
rithm yields consistent benefits up to the largest
scale. Even on the other two benchmarks where
visual grounding was not found useful by Zhuang
et al. (2023), LCG performs slightly but signif-
icantly better than all the other models in small
dataset scales (see Fig. 1B, right two panels). The
improvement on the Context Understanding bench-
mark also shows that our algorithm better learns
not just word-level but also sentence-level repre-
sentations than other models. Taken together, these
results show that LexiContrastive Grounding effec-
tively leverages visual information to facilitate the
learning of word meanings and outperforms both
language-only and other visual-language learning
algorithms on word learning.

5.2 In the mixed learning scenario,
LCG improves language modeling across
different data sources and scales

Both humans and models receive ungrounded lan-
guage input during learning and need to learn in a
mixed scenario. To explore whether visual ground-
ing helps language learning in this mixed scenario,
we train models on both grounded and ungrounded
datasets. This also addresses potential concerns
that the GIT and Flamingo models only receive
image-caption input in the grounded-only scenario
and, therefore, suffer from a domain change when
they are tested in language-only evaluation bench-
marks. We additionally test the Vokenization learn-
ing algorithm in this mixed scenario because this al-
gorithm was proposed to leverage visual-language
alignment to advance the learning on language-only
input (Tan and Bansal, 2020).

We find that the LCG algorithm achieves bet-
ter performance than existing algorithms on gen-
eral language modeling, measured by perplexity
in the held-out set of ungrounded datasets (see
Fig. 1C, the leftmost panel). This improvement
is robust with respect to the sources of the un-
grounded dataset and the sizes of both the grounded
and ungrounded datasets (see Appendix Fig. 4).

Furthermore, we develop an additional algorithm
by using the Vokens acquired in the Vokenization
process to also ground the lexicon-level represen-
tations. We use this new algorithm, called LexiVo-
ken Grounding, to verify that the Vokens computed
by us encode meaningful signals and support the
choice of using cross-modality contrastive learning
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objective as the grounding objective. Indeed, we
find that the LexiVoken Grounding models yield
better results than Language-Only models on the
perplexity measure but still underperform the Lexi-
Contrastive Grounding models.

In addition to the improvement in perplex-
ity, LexiContrastive Grounding also illustrates ad-
vances in the Word Relatedness and Semantic Fea-
ture Prediction benchmarks (see Fig. 1C). Inter-
estingly, the Vokenization and LexiVoken Ground-
ing models outperform the other models on the
Lexical Relation Prediction benchmark, suggest-
ing that the voken signals help encode semantic
relations between words.

5.3 Concrete words are better learned by
LCG compared to abstract words

Zhuang et al. (2023) show that visual grounding
facilitates the learning of concrete words more than
abstract words. Using a similar analysis method,
we also find that the LexiContrastive Ground-
ing models trained on 2.1M image-caption pairs
relate the concrete words in a more human-like
way than the abstract words (see Fig. 2A and Ap-
pendix A.2). Since concreteness does not influ-
ence how human-like the Language-Only models
relate different words, our finding suggests that
the LexiContrastive Grounding models yield more
human-like representations because they better ac-
quire the meanings of concrete words compared to
the Language-Only models.

Zhuang et al. (2023) also report that visual
grounding contributes little to acquiring related-
ness structure in verbs, since the grounding uses
visual features from static images, which may only
contain limited information about actions. After
evaluating the Word Relatedness benchmark using
a human judgment dataset collected for verb pairs
(SimVerb-3500; Gerz et al., 2016), we find that our
LexiContrastive Grounding models perform highly
similarly to the Language-Only models. This find-
ing suggests that grounding on more than static
images is possibly needed to yield more human-
like representations.

Finally, we explore how the better language mod-
eling performance in the mixed learning scenario
can be partially explained by the fact that Lex-
iContrastive Grounding models better represent
concrete words. We calculate the averaged per-
formance of next-token predictions for each word
across the entire test set. We then compare the
performance of LexiContrastive Grounding and

Language-Only models for each word and investi-
gate whether this performance difference is depen-
dent on the concreteness of the word. As shown in
Fig. 2C, concrete words are indeed more accurately
predicted by LexiContrastive Grounding models
compared to Language-Only models. This suggests
that part of the lower perplexity of LexiContrastive
Grounding models in the mixed learning scenario
is due to the more human-like representations of
concrete words in these models.

5.4 Ablation studies support the algorithm
design of LCG

To validate the algorithm design of LexiContrastive
Grounding, we perform ablation studies on this al-
gorithm and compare the performance of the ab-
lated algorithms to the original performance on the
word-learning benchmarks when all of them are
trained on grounded-only datasets. As seen in Fig.
3, LexiContrastive Grounding models achieve gen-
erally better results than the other ablated models.

6 Discussion

In this paper, we introduce LexiContrastive
Grounding, a visually grounded language learn-
ing objective motivated by models of grounded
language acquisition in humans. LCG combines
next-token prediction with a word-level contrastive
visual grounding objective applied to early-layer
representations. LCG not only outperforms other
visual-language learning algorithms across various
benchmarks, including evaluations of similarity,
lexical relations, and semantic norms, but also sur-
passes traditional language-only models in learn-
ing efficiency on language modeling. This result
underscores the potentially significant benefits of
visual grounding in language modeling, offering
insights into the role of multimodal learning in
human-like language acquisition and suggesting
a pathway toward more efficient and cognitively
aligned language learning technologies.

Our analysis shows that the word meanings ac-
quired by LexiContrastive Grounding are more
human-like when the words are concrete. This
concreteness-based bias should not exist for a
perfectly human-aligned word-meaning encoding.
Therefore, this shows that the representations
learned by LexiContrastive Grounding still differ
from those in human adults. One possible ex-
planation for this difference is that an additional
learning mechanism is needed to augment the Lex-
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Figure 2: LexiContrastive Grounding models better learn concrete words than Language-Only models. A.
Scatter plot for an analysis on the word-relatedness benchmark for the LCG model trained with 2.1M image-caption
pairs. Each point on the plot corresponds to a pair of words, with its Y-value indicating the relative rank obtained by
sorting the word pairs based on the difference between human and model judgments. A greater Y-value signifies
a closer resemblance to human judgment. Additionally, linear regression lines are depicted on the graph along
with their respective 95% confidence intervals. B. The results of SimVerb-3500, a word-relatedness benchmark
evaluating models only on verb words. The marker-to-model map is the same as that in Fig. 1. C. Distributions of
the per-word prediction performance difference between LexiContrastive Grounding and Language-Only models
grouped by concreteness of words. The prediction performance is the negative loglikelihood of the corresponding
word averaged across all appearances in the test dataset. The LexiContrastive Grounding and Language-Only
models are taken from the “same” condition in Fig. 1C. A positive difference means that the LexiContrastive
Grounding model is better than the Language-Only model.
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iContrastive Grounding algorithm to better learn
abstract words. Another possible explanation is
that our training corpus needs to be closer to what
human adults perceive in both its quantity and dis-
tribution. Since we only have at most 50M tokens
in the training set, our learned representations may
better capture what children have compared to what
adults have. More experiments are needed to test
these explanations.

Because LexiContrastive Grounding yields ben-
efits on language modeling through leveraging vi-
sual grounding, just as (sighted) children leverage
visual input during language learning, our approach
may be useful as a model of grounded language ac-

quisition in humans. We note, however, that there
may be significant differences between the visual
encoder used in our approach and human visual
encodings—although the current DINO-pretrained
ViT has been shown to be similar to the ventral
visual stream of human and non-human primate
adults (Zhuang et al., 2021; Konkle and Alvarez,
2022; Zhuang et al., 2022), it is unclear whether
this visual encoder accurately models the visual sys-
tem of children. Moreover, the data that this visual
encoder is trained on, which is ImageNet (Deng
et al., 2009) without its labels, is also very different
from what children perceive during their develop-
ment. Training the visual encoder on datasets like
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SAYCam (Sullivan et al., 2020) is needed to better
capture the development dynamics in children.
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Limitations

One limitation of our study is that we only aim to
use visual grounding to help learn language but not
to predict the coupled text. Therefore, the LexiCon-
trastive Grounding algorithm likely underperforms
the GIT and Flamingo models on image captioning
tasks. To address this, our algorithm needs to be
augmented with an extra mechanism to leverage
the visual feature to help predict tokens, such as
what is implemented in GIT and Flamingo.

Another limitation of our study is that the new
algorithm only grounds the lexicon-level represen-
tations on visual input, which potentially limits the
benefit on syntax learning from visual grounding.
Although it is unclear whether such benefits exist,
allowing a potential pathway for the visual features
to contribute to syntax learning is an interesting
and important next step.

Finally, the visual encoder used in our algorithm
is pretrained using DINO and frozen during lan-
guage learning. Zhuang et al. (2023) have shown
that using a better pretrained visual encoder and
finetuning it during language learning both yields
better word-learning performance. Similar experi-
ments will be useful to explore how changing the
visual encoder can influence the performance of
our models.
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A Methods

A.1 Training and Evaluating Details
Network Architecture and Tokenizer. We em-
ploy a six-layer Transformer network (Vaswani
et al., 2017) for all our models, featuring per-
token hidden representations with a dimension of
768. Each layer is equipped with 12 attention
heads, and the feedforward layers post-attention
boast an intermediate dimension of 3072. The
tokenizer, borrowed from BERT (Devlin et al.,
2018), offers a vocabulary size of 30,522. Cru-
cially, we tie the weights of the word-embedding
layer with those in the final output layer, a strat-
egy found to be vital for the success of grounded
models. For visual encoding, we utilize features
extracted via pretrained weights from Huggingface
(Wolf et al., 2020), specifically using the model ID
facebook/dino-vitb16.

Optimization Details. In both grounded-only
and mixed-learning scenarios, each model under-
goes training across multiple epochs on the datasets.
For grounded-only training, the specific number of
epochs is adjusted based on dataset sizes and deter-
mined through loss evaluation on the test dataset.
We use a batch size of 128 for all models except
for CLIP, which is trained using a larger batch size
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of 512. AdamW (Loshchilov and Hutter, 2017) is
used as the optimizer. We initiate the learning rate
at zero, incrementing it linearly to 1e-4 over the
first 5000 steps, after which it remains constant at
1e-4. The numbers of epochs for the grounded-only
training are as follows: 200 epochs for 100K-token,
40 epochs for 500K-token, 60 epochs for 1M-token,
20 epochs for 5M-token, and 10 epochs for 15M-
token and 50M-token. These numbers follow the
selection by Zhuang et al. (2023). The number
of epochs for the mixed training varies indepen-
dently for different training setups and different
algorithms. These epoch numbers are determined
by the perplexity on the validation set of the un-
grounded dataset. In the mixed-learning scenario,
the final loss is Lm = Lg + λuLu, where Lu is
the loss on the ungrounded batch. The ungrounded
input has a fixed sequence length of 128, a choice
inspired by Huebner et al. (2021). For each training
setup and each algorithm, we run multiple values
for λu and select the best value based on the per-
plexity on the validation set. See Fig. 5 to 13.

Our evaluation benchmarks mostly follow the
approach of Zhuang et al. (2023). Their details are
described below.

Word Relatedness Benchmark. We primarily
rely on human assessments of word relatedness
gathered by Bruni et al. (2012), where annotators
evaluated if one pair of words was more closely
related than another. The study focused on words
frequently found in both the British Web corpus
(ukWaC) and as image tags, resulting in a dataset
predominantly consisting of concrete nouns. For
the evaluation, each word pair was randomly com-
pared against 50 other pairs, with their relatedness
determined by how often they were judged to be
more closely related in these comparisons (exam-
ples illustrated in Fig. 1B). Out of the 3000 word
pairs, 2057 pairs were selected for this benchmark
to concentrate on words typically learned by chil-
dren under 10, based on Age of Acquisition metrics
from Kuperman et al. (2012). In our models, we
measure the relatedness between two words using
the cosine similarity of their hidden representations
from the same model layer. For words that span
multiple tokens, we consider only the representa-
tion of the final token. We then calculate Spearman
correlations to compare model-derived similarity
scores with human relatedness judgments, present-
ing the highest correlation found across all model
layers as the benchmark result for each model.

Semantic-Feature Prediction Benchmark. We

utilize the psycholinguistic feature norms dataset
compiled by Buchanan et al. (2019), where anno-
tators were asked to list any features of a word
that came to mind. These responses were pro-
cessed to isolate single-word features (illustrated
in Fig. 1B), with the frequency of each feature’s oc-
currence serving as a metric for its significance to
the word. The dataset encompasses 3,981 features
across 4,436 words. A further selection criterion
was applied based on the Age of Acquisition (AoA),
restricting the words to those typically learned be-
fore the age of 10, which narrowed the list down
to 3,554 words. For this benchmark’s assessment,
we employ a linear regressor trained to estimate
a word’s feature strength from its hidden model
representations. The dataset is divided into training
(80%), validation (10%), and testing (10%) seg-
ments, with two separate splits created for training
and validation to minimize variability. In line with
Chronis et al. (2023), we use a partial least squares
(PLS) regressor with 100 components. The evalu-
ation metric is the mean average precision (MAP)
across a word’s nonzero features, calculated by
comparing the top-k predicted features against the
actual nonzero features, where k equals the count
of ground truth nonzero features. This compari-
son yields a normalized score based on the overlap.
The model layer chosen for hidden representation
extraction is determined by its performance on the
validation set, with the test set accuracy of this layer
then presented as the model’s benchmark result.

Lexical-Relation Prediction Benchmark. The
CogALex-V dataset (Santus et al., 2016) features
3,054 word pairs in its training division and 4,260
pairs in the testing division. Word pairs with an
Age of Acquisition (AoA) exceeding 10 are ex-
cluded, resulting in 2,704 pairs for training and
3,900 pairs for testing. A significant portion of
these pairs falls under the “random” category, ac-
counting for 1,944 of the training and 2,770 of
the testing pairs. For model evaluation, we de-
rive the hidden representations of word pairs by
calculating the difference between the two words’
representations. Consistent with the methodology
of Ushio et al. (2021), a Multi-Layer Perceptron
(MLP) network is trained to classify lexical rela-
tions. We adhere to the standard configurations
of the MLPClassifier from sklearn, observing
that adjustments to these settings have a minimal
impact on performance. The benchmark’s outcome
for each model is conveyed through the macro av-
erage of F1 scores obtained on the test set by the
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optimally performing layer.
Context Understanding Benchmark. This

benchmark is constructed by Zhuang et al. (2023).
They selected words known to be learned by young
children (Frank et al., 2017), covering 140 nouns,
80 verbs, and 60 adjectives. For each word, they
collected example sentences from online websites.
For each example sentence, they then construct
minimally different sentences from the example
sentence to make the context less appropriate for
the original word but more appropriate for distrac-
tor words. This process yields 280K sentence pairs
for nouns, 128K for verbs, and 72K for adjectives.

Flamingo Training Details. The Flamingo
model operates with extra cross-attention layers
that modulate the outputs from text transformer
layers, spaced evenly across the text transformer
architecture. It processes visual inputs through a
Perceiver Resampler equipped with two layers and
64 latents. Unlike the visual features in GIT and
CLIP models, those in Flamingo include represen-
tations from all visual tokens. The model, includ-
ing the Perceiver Resampler, cross-attention, and
text transformer layers, was trained from scratch,
employing a next-word prediction loss on pairs of
images and captions or just sentences.

Vokenization Training Details. For each train-
ing setup in the mixed-learning scenario, we train
the contextual token-image matching model on
the corresponding image-caption dataset in this
setup. This matching model utilizes the same
DINO-pretrained ViT used in other algorithms and
the text transformer that is pretrained in this setup,
meaning the Language-Only model trained on the
corresponding captions and ungrounded dataset.
After training this matching model, we apply it to
both the image captions and the ungrounded dataset
to map each of the contextual token representations
into its most relevant image in a randomly selected
subset from VisualGenome, which contains 50K
images. This mapping process yields an index of
the chosen image in the range of 0 to 50K, which is
the “voken” representation corresponding to the to-
ken input. For the Vokenization models, we add an
additional readout layer on top of the transformer
to predict this voken representation in addition to
the standard next-token prediction objective. For
the LexiVoken Grounding models, the voken pre-
diction is from the output of the first layer in the
transformer, which is the same readout location as
the LexiContrastive Grounding for visual ground-
ing.

A.2 Analysis of Learned Representations
We follow Zhuang et al. (2023) to perform the anal-
ysis on the results of the word-relatedness bench-
mark. In this benchmark, which calculates the
Spearman correlation between model outputs and
human evaluations, we assign two ranking values
to each word pair: one based on the model’s assess-
ments and the other on human evaluations. The
absolute discrepancy between these two rankings
serves to estimate the model’s accuracy in reflect-
ing human-like associations between words. To
standardize this measure of human likeness, we
arrange all word pairs on a scale from least to most
human-like—based on the magnitude of their rank-
ing differences. Each pair is then assigned a “rank
in human-likeness,” where a higher score indicates
a closer alignment with human judgment. The
concreteness measure of two words is the average
concreteness score of each word (Brysbaert et al.,
2014). A higher concreteness score means that the
meaning of the word is more experience-based.

In the analysis for the prediction performance
results in Fig. 2C, we group the words using their
concreteness scores into equal-sized five groups.
The negative loglikelihood of a word containing
multiple tokens is computed by adding the measure
of all tokens together. We only analyze the words
that appear more than five times in the test set.

A.3 Computational Resources
We train our models on A100 gpus. Each model
has around 70M trainable parameters. Our imple-
mentation majorly uses pytorch and huggingface
packages. The training of all models takes around
2400 GPU hours.

B Figures
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Figure 4: LexiContrastive Grounding models yield stronger language learning performance than other models
when they are co-trained on image-caption and language-only datasets. A. Performance on the language
modeling and the word learning benchmarks for LexiContrastive Grounding (●), LexiContrastive Grounding using
Vokens (✚), Language-Only (■), Vokenization (♦), GIT (▼), and Flamingo (✖). The models are trained on a mix of
image captions and a language-only dataset containing 5M tokens sampled from CHILDES. The language modeling
benchmark evaluates the perplexity of the models on the held-out set of the corresponding language-only datasets.
Different dots of the same color represent models with different random initialization seeds. B. The language-only
dataset is a subset of Smashwords containing 15M tokens.
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Figure 5: Perplexity on the Smashwords validation set for models trained with different λu in the training
setup with 5M tokens from Smashwords and 2.5M tokens in coupled image-caption pairs. For each algorithm
and each λu, two models are trained from different initialization seeds. LCG represents the LexiContrastive
Grounding , and LVG represents LexiVoken Grounding .
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Figure 6: Perplexity on the Smashwords validation set for models trained with different λu in the training
setup with 5M tokens from Smashwords and 5M tokens in coupled image-caption pairs.
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Figure 7: Perplexity on the Smashwords validation set for models trained with different λu in the training
setup with 5M tokens from Smashwords and 10M tokens in coupled image-caption pairs.
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Figure 8: Perplexity on the Smashwords validation set for models trained with different λu in the training
setup with 15M tokens from Smashwords and 7.5M tokens in coupled image-caption pairs.
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Figure 9: Perplexity on the Smashwords validation set for models trained with different λu in the training
setup with 15M tokens from Smashwords and 15M tokens in coupled image-caption pairs.
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Figure 10: Perplexity on the Smashwords validation set for models trained with different λu in the training
setup with 15M tokens from Smashwords and 30M tokens in coupled image-caption pairs.
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Figure 11: Perplexity on the CHILDES validation set for models trained with different λu in the training
setup with 5M tokens from CHILDES and 2.5M tokens in coupled image-caption pairs.
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Figure 12: Perplexity on the CHILDES validation set for models trained with different λu in the training
setup with 5M tokens from CHILDES and 5M tokens in coupled image-caption pairs.
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Figure 13: Perplexity on the CHILDES validation set for models trained with different λu in the training
setup with 5M tokens from CHILDES and 10M tokens in coupled image-caption pairs.
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