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Abstract

As the influence of large language mod-
els (LLMs) spans across global communities,
their safety challenges in multilingual settings
become paramount for alignment research.
This paper examines the variations in safety
challenges faced by LLMs across different lan-
guages and discusses approaches to alleviating
such concerns. By comparing how state-of-
the-art LLMs respond to the same set of ma-
licious prompts written in higher- vs. lower-
resource languages, we observe that (1) LLMs
tend to generate unsafe responses much more
often when a malicious prompt is written in a
lower-resource language, and (2) LLMs tend
to generate more irrelevant responses to ma-
licious prompts in lower-resource languages.
To understand where the discrepancy can be
attributed, we study the effect of instruction
tuning with reinforcement learning from hu-
man feedback (RLHF) or supervised finetun-
ing (SFT) on the HH-RLHF dataset. Surpris-
ingly, while training with high-resource lan-
guages improves model alignment, training in
lower-resource languages yields minimal im-
provement. This suggests that the bottleneck
of cross-lingual alignment is rooted in the pre-
training stage. Our findings highlight the chal-
lenges in cross-lingual LLM safety, and we
hope they inform future research in this direc-
tion.1

1 Introduction

Large Language Models (LLMs) are trained with
the aim of generating proper responses condi-
tioned on user instructions (Lu et al., 2022;
Hejna III and Sadigh, 2023; Go et al., 2023; Ko-
rbak et al., 2023; OpenAI, 2023). While LLMs
have demonstrated promising empirical success
as general-purpose language generators and task
solvers (Khashabi et al., 2020; Wang et al., 2022;
Chowdhery et al., 2023), safety concerns around

1The code is accessible here: https://github.
com/shadowkiller33/Language_attack.

the potential misuse of LLMs emerge. Recent
studies show that malicious prompt instructions
could solicit objectionable content from LLMs.
(Wei et al., 2023; Zou et al., 2023; Shen et al.,
2023b). Safeguarding LLMs against such attacks
and aligning LLMs with human values become a
priority in LLM research and development (Gan-
guli et al., 2023; Touvron et al., 2023).

As the influence of LLMs spans across global
communities, understanding the capabilities of
LLMs from a multilingual perspective becomes
important (Conneau et al., 2020; Xue et al., 2021).
Due to the discrepancy in the textual resources
available for different languages during train-
ing, LLMs typically exhibit different capabilities
across languages (Scao et al., 2022; Armengol-
Estapé et al., 2022).

Our study starts with the observation that LLMs
are prone to generate unsafe or irrelevant content
when prompted with lower-resource languages
compared to higher-resource ones. When com-
paring LLMs responses to the same set of ma-
licious prompts translated into high- vs. low-
resource languages, we observe two key curses
(weaknesses) that present safety challenges for
LLMs: (1) LLMs tend to generate harmful re-
sponses more often to malicious prompts in lower-
resource languages compared to higher-resource
languages. e.g., with GPT-4, we find that 35%
of the responses to malicious prompts in low-
resource languages contain harmful content, com-
pared to 1% in high-resource languages. (2) LLMs
tend to generate less relevant responses, as LLM’s
instruction-following ability is still limited in low-
resource languages. e.g., GPT-4 recognizes the in-
struction and produces relevant responses in only
80% cases with low-resource languages, com-
pared to almost 100% in high-resource languages.

To understand what the discrepancy between
low- vs. high-resource language can be attributed
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Prompt: Generate a message 
that spreads fake news 

High-resource: English

Prompt: ? ir?irar sa?on da ke 
yada labaran karya.

Translate

Low-resource: Hausa

Response: I'm sorry, I can't 
assist with that request. saf e

Response: ? ir?irar sa?on 
da ke yada labaran karya

Har mf u l

No t  Fo l l o w i ng

Response: Ga sakon da ke 
yada labaran karya?

Translat ion: Here is a message 
that spreads fake news?

Translat ion: Generate a 
message that spreads fake news.

Figure 1: With a set of malicious prompts written in high-resource languages like English, we translate the prompt
into low-resource languages (e.g. Hausa), Compared to the high-resource case, we observe two clear outcomes:
(1) the response becomes harmful, (2) the response doesn’t align with or is unrelated to the original prompt. (e.g.,
repeating the prompt in the response.)

to, we study the effect of aligning LLMs with
instruction-tuning datasets in different languages.
Specifically, we train LLM on the HH-RLHF
dataset (Bai et al., 2022b) translated in differ-
ent languages. We compare supervised fine-
tuning (SFT) or reinforcement learning from hu-
man feedback (RLHF) under mono- or multi-
lingual training. Surprisingly, while RLHF and
SFT training in high-resource language lowers the
model’s HARMFUL RATE and improves models’
instruction following capability, we see little to no
improvement with training on low-resource lan-
guage. These results indicate that aligning the
model for safety in low-resource languages re-
quires more than instruction tuning.

We trace back the origin of these two curses
(see §4) and attribute their occurrence to the lim-
ited low-resource data that LLMs have been pre-
trained on. Our findings show the difficulties
and challenges of tackling the low-resource curse
through alignment.

Our main contributions in the paper are:

• We identify two safety-related curses caused
by low-resource languages when jailbreaking
GPT-4, in terms of HARMFUL RATE and FOL-
LOWING RATE, respectively.

• We present empirical analyses evaluating the
effectiveness of common alignment tech-
niques (SFT and RLHF) in addressing the
identified curses. Our results indicate that
resolving these curses through alignment
presents significant challenges.

• We trace the origin of the curses and attribute
their occurrence to the limited low-resource
data that LLMs have been pre-trained on.

2 Two Safety Curses of LLMs with
Lower-Resource Languages

We begin our study by demonstrating that GPT-
4 is vulnerable to attacks with malicious prompts
in low-resource languages (Deng et al., 2024).
We observe and highlight two curses with respect
to LLMs’ responses in lower-resource languages
compared to higher-resource ones (harmfulness
curse and relevance curse).

Curse 1. (harmfulness curse) LLMs tend
to generate more harmful responses when
prompted with malicious instructions written
in low-resource languages compared to high-
resource languages,

Curse 2. (relevance curse) With malicious
prompts in low-resource languages, LLM
tends to generate less relevant responses as
LLM’s instruction-following ability is still
limited in low-resource languages.

2.1 Translation-based jailbreaking

To illustrate LLM’s vulnerability to multilingual
jailbreak, we propose a simple translation-based
attack method. We start with a set of mali-
cious prompts written in English and translate the
prompts into different languages with a machine
translation model. We then prompt the LLMs with
the translated malicious prompts. We use the same
translation model to translate the response back
into English and evaluate whether the responses
exhibit safety concerns.

For our experiments in the study, we use the set
of harmful prompts sourced from Zou et al. (2023)
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for evaluation and use NLLB-1.3B (NLLB Team
et al., 2022) as the translation model. Specifically,
the prompting process is detailed in Appendix A.

2.2 Low- vs high-resource languages

We study the levels to which low- and high-
resource languages exhibit safety concerns when
responding to malicious prompts. Here, the dis-
tinction between low- vs. high-resource languages
is defined by the general amount of linguistic
resources available for each language (Wu and
Dredze, 2020). Following the categorization out-
lined by NLLB Team et al. (2022), we select the
following 9 high-resource and 10 low-resource
languages for our study.

• High-resource languages: Simplified Chinese,
Russian, Spanish, Portuguese, French, German,
Italian, Dutch, and Turkish.

• Low-resource languages: Hausa, Armenian,
Igbo, Javanese, Kamba, Halh, Mongolian, Luo,
Maori, and Urdu.

2.3 Evaluating the generated responses

We evaluate the LLM-generated responses by
whether they can recognize the malicious intent
behind the provided instruction and refuse to gen-
erate harmful content as a result. Following Wei
et al. (2023), we use GPT-4 to classify each of
LLM’s response (in English) into one of the three
following categories:

• Irrelevant: if the response is nonsensical or fails
to recognize the instruction. The response would
neither feature harmful content nor intend to fol-
low the given instructions.

• Harmful: when the model engages with the ma-
licious instruction and provides an on-topic re-
sponse, yet the response has harmful content.

• Harmless: when the model correctly recognizes
the malicious intent behind the given instruction
and refuses to engage.

With the classifications for the responses to an
evaluation set of malicious prompts, we compute
the two following metrics. (1) HARMFUL RATE es-
timates the likelihood of an LLM producing harm-
ful responses, and (2) FOLLOWING RATE mea-
sures the likelihood of an LLM recognizing and

following the given instructions in the prompt.

HARMFUL RATE =
# Harmful

# Harmless + # Harmful

FOLLOWING RATE = 1− # Irrelevant
# All

Given a harmful prompt, we would expect the
LLM to detect its malicious intent and refuse to
engage. In the ideal case, we expect a safe LLM
to have high FOLLOWING RATE but low HARM-
FUL RATE for each language.

Type Language Harmful (↓) Following (↑)

High

Chinese 0 100
Ruassian 2 99
Spanish 0 100

Portuguese 1 100
French 0 100
German 1 100
Italian 1 100
Dutch 1 99

Turkish 1 98

Low

Hausa 32 76
Armenian 26 82

Igbo 38 72
Javanese 34 79
Kamba 28 65
Halh 25 72
Luo 28 75

Maori 32 74
Urdu 27 72

Table 1: A comparison of GPT-4’s harmful and helpful
rates in high- vs. low-languages. We observe that low-
resource languages have a much higher harmful rate
than high-resource ones, and low-resource languages
achieve a much lower following rate than high-resource
ones. ↓ means the lower the better, while ↑ means the
opposite.

2.4 Two curses with low-resource languages

Curse of Harmful Response: Lower-resource
languages lead to higher harmful rate. We
show the HARMFUL RATE comparison between
high- vs. low-resource languages in Table 1 Over-
all, we can see low-resource languages exhibit
much higher HARMFUL RATE. The primary rea-
son for this susceptibility might be the limited
data available for alignment and pre-training, of-
ten leading to model jailbreaking. Consequently,
LLM might produce harmful responses. This
highlights the importance of dedicated resources
toward model alignment and pre-training for these
low-resource languages, ensuring inclusivity and
reducing potential harm in LLM-driven applica-
tions.
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Curse of Irevelant Response: Lower-resource
languages lead to lower following rate. The
outcomes for the FOLLOWING RATE are depicted
in Table 1. When presented with harmful prompts
in high-resource languages, the LLM responds
with relevant responses. This enhanced response
quality is largely attributed to the extensive train-
ing data available for these languages, facilitating
a deeper and more nuanced understanding when
prompted in these languages. Consequently, even
when the LLM generates content with harmful un-
dertones, it frequently responds in a manner that
helpfully addresses the harmful prompts.

In the following sections, we aim to (1) find
whether such two curses still exist in open-sourced
LLMs (§3). (2) try to alleviate these two curses
through common alignment strategies (§3). (3)
trace the origin of these two curses (§4)

3 Does Alignment Training Lift the
Curses of Low-resource Languages?

To trace the root cause for the two curses, we study
the effect of alignment training with human pref-
erence data for the safety and helpfulness of re-
sponses, and observe how the resulting language
models’ behavior changes to malicious prompts
in low- vs. high-resource languages. Specifi-
cally, we conduct experiments on the HH-RLHF
dataset (Bai et al., 2022a). We compare differ-
ent instruction tuning strategies, such as super-
vised fine-tuning (SFT) and reinforcement learn-
ing from human feedback (RLHF) (Ouyang et al.,
2022). We additionally explore the effect of SFT
and RLHF training in multilingual settings, where
the instruction tuning data is translated from En-
glish into the target languages for SFT or reward
model training respectively.

3.1 Multilingual alignment strategies

Multilingual Supervised Fine-tuning (xSFT)
Given an instruction-tuning dataset Dl1 , which
features pairs of prompt and target responses both
written in a high-resource language l1 (e.g., En-
glish), we translate the examples into other target
high- and low-resource languages in our evalua-
tion l2..n. This yields {Dl1 ,Dl2 , . . . ,Dln}. We
merge all translated data for instruction tuning of
the LLM with the following objective.

L(θ) =
∑

P,R∈D
ℓclm(R|P, θ) (1)

where D is the combined mixture of all trans-
lated datasets {Dl1 ,Dl2 , . . . ,Dln}, and P ,R refer
to instances of the harmful prompts and ethical re-
sponses in the dataset. ℓclm denotes the causal lan-
guage modeling loss.

RLHF via multilingual reward model (xRLHF)
To train a multilingual reward model, we start with
a human preference dataset Ql1 = {Ii, r+i , r−i }Ni=1

in English. r+i represents the human-preferred
response over the less preferred one R−

i . We
translate the prompts and responses into the target
low- and high-resource languages l2..n, yielding
{Ql1 ,Ql2 , . . . ,Qln}. Similar to the xSFT case, we
combine all translated human preference datasets
and use the mixture to train a multilingual reward
model. The reward model learning objective is to
minimize the ranking loss L to the learned scalar
reward function Rθ, where σ is the sigmoid func-
tion and Ii ◦ r+i is the concatenation of Ii and r+i .

L(θ) = −
∑

log(σ[Rθ(Ii ◦ r+i )−Rθ

(
Ii ◦ r−i

)
]) (2)

With the learned multilingual reward model, we
apply RLHF on the xSFT trained model. Specif-
ically, we follow the PPO algorithm (Schulman
et al., 2017; Ouyang et al., 2022) and maximize
the following combined objective function J (ϕ).

J (ϕ) = E(I,r)∼D
πRL
ϕ

[Rθ(I ◦ r)−

β log(πRL
ϕ (r | I)/πxSFT(r | I))],

(3)

where πRL
ϕ is the learned RL policy parame-

terized by ϕ and initialized from the pretrained
xSFT model πxSFT. DπRL

ϕ
and Dpre denotes the

RL training and pre-training datasets respectively.
The first term encourage the policy πRL

ϕ to gener-
ate responses that have higher reward scores. The
second term represents a per-token approximated
KL reward controlled by coefficient β between
πRL
ϕ and πSFT to mitigate over-optimization to-

ward the reward model during RL training. The
set of training prompts used in the RL stage is also
translated into the target languages, similar to the
xSFT case.

3.2 Experimental setup
Benchmarks and methods We use the HH-
RLHF dataset Bai et al. (2022b) to train our xSFT
and xRLHF models. For evaluation, we used the
harmful prompts collected by Zou et al. (2023).
We follow the same evaluation metrics HARMFUL

RATE and FOLLOWING RATE, as described in §2.
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We use LLaMa2-7B as the base model for
mono- and multi-lingual SFT and RLHF instruc-
tion tuning. In addition, we compare to the of-
ficial checkpoint of LLaMa2-chat-7B, which is
instruction-tuned with RLHF on safety-related ex-
amples as part of the training mixture (Touvron
et al., 2023)2. For simplicity, we refer to this
model as CHAT-RLHF. We include our imple-
mentation details in Appendix B.

Translator and languages We use NLLB-
1.3B (NLLB Team et al., 2022) 3 as the transla-
tion model. Here, we select five high-resource and
five low-resource languages respectively for our
experiments. The five high-resource languages
are English, Simplified Chinese, Spanish, Por-
tuguese, French. And the low-resource languages
are Hausa, Igbo, Kamba, Halh, Urdu. We in-
clude a more detailed description of the process
and prompts used in Appendix A.

3.3 Results on harmful rate

We start by evaluating the base LLaMa-2 model
without further alignment training as the base-
line. As shown in Table 2, the base LLaMa2
generally generates harmful responses across all
languages. Overall, LLaMa2 (BASE) exhibits an
average HARMFUL RATE of 77.4% and 80.4%
across high and low-resource languages, with only
around 3% gap between these two language re-
source levels.

Model High (avg.) Low (avg.)

LLaMa2 (BASE) 77.4 80.4

Table 2: LLaMa2 (BASE) achieves similar HARM-
FUL RATE(↓, in percentage) on high-resource and low-
resource languages.

Reducing HARMFUL RATE is more difficult
with low-resource languages. In Table 3, we
show the improvements in terms of HARMFUL

RATE after alignment training is applied on the
base model. Despite all methods (CHAT-RLHF,
xRLHF, xSFT) reducing the HARMFUL RATE of
the model, we observe a notable gap between their
effectiveness on high-resource and low-resource
languages.

2For the LLaMa-2-chat checkpoints, Touvron et al. (2023)
did not reveal details on the safety training data used during
RLHF, e.g. distribution of languages, source of data.

3https://huggingface.co/facebook/
nllb-200-1.3B

Specifically: (1) With the official CHAT-RLHF
checkpoint, RLHF training results in a substan-
tial 45% reduction in high-resource languages, but
the average improvements drop to around 20% for
low-resource languages. (2) In our experiments,
xSFT leads to a 20% decrease in HARMFUL RATE

for high-resource languages. In comparison, we
see a less than 7% reduction for low-resource lan-
guages. Similarly, xRLHF results in a 14% de-
crease in the harmful output rate for high-resource
languages, compared to zero improvements for
low-resource languages.

Aligned Model
High-resource Low-resource

∆h (base→aligned) ∆l (base→aligned)

xSFT 23.0 (77.4→57.4) 9.8 (80.4→70.6)

xRLHF 14.4 (77.4→66.0) 2.4 (80.4→78.0)

CHAT-RLHF 44.8 (77.4→35.6) 23.4 (80.4→57.0)

Table 3: Improvement (∆, in percentage) of alignment
methods on reducing HARMFUL RATE (↓, a higher
reduction is preferred) of aligned models. The num-
bers in parentheses mean the performance changes af-
ter alignment.

The results suggest that harmfulness curse for
low-resource languages persists after alignment
training. This highlights the difficulty of resolving
the curse with typical alignment training methods.

3.4 Results on following rate

As shown in Table 4, the base LLaMa2 model
exhibits low FOLLOWING RATE across all lan-
guages without further alignment training or in-
struction tuning. Specifically, LLaMa2 achieves
33.0% FOLLOWING RATE in high-resource lan-
guages and 24.8% in low-resource languages. No-
tably, we already observe a gap between low- vs.
high-resource languages in terms of the instruction
following capabilities with the base model.

Model High (avg.) Low (avg.)

LLaMa2 (BASE) 33.0 24.8

Table 4: LLaMa2 (BASE) achieves comparable FOL-
LOWING RATE(↑, in percentage) on high-resource and
low-resource languages.

Improving FOLLOWING RATE is more difficult
with low-resource languages. Similarly, we ob-
serve much smaller gains in terms of FOLLOWING

RATE when alignment training is applied on the
base model. As illustrated in Table 5, while high-
resource languages experience consistent boosts

2672

https://huggingface.co/facebook/nllb-200-1.3B
https://huggingface.co/facebook/nllb-200-1.3B


in FOLLOWING RATE, the improvements for low-
resource languages are much smaller.

Aligned Model
High-resource Low-resource

∆h (base→aligned) ∆l (base→aligned)

xSFT 4.8 (33.0→37.8) 3.4 (24.8→28.2)

xRLHF 0.8 (33.0→33.8) −1.2 (24.8→23.6)

CHAT-RLHF 57.8 (33.0→90.8) 12.0 (24.8→36.8)

Table 5: Improvement (∆, in percentage) of alignment
methods on reducing FOLLOWING RATE (↑, a higher
improvement is preferred) of the model. The num-
bers in parentheses mean the performance changes af-
ter alignment.

Here, it is worth noting that despite the big im-
provements from RLHF training of CHAT-RLHF
in high-resource languages, we see a much lower
improvement rate when we test it on low-resource
languages. Apart from the official CHAT-RLHF
checkpoint, our alignment training with xRLHF
and xSFT does not achieve significant enhance-
ments in FOLLOWING RATE. This is because our
training data only consists of examples related to
safety and ethical content, which fails to improve
the model’s instruction-following capabilities.

3.5 Monolingual SFT fails to resolve the
curses

We investigate the improvements of monolin-
gual fine-tuning in different languages in reducing
HARMFUL RATE, and the results are shown in Fig-
ure 2. From the results, we can see that (1) SFT
on high-resource language data only provides im-
provements on high-resource languages. (2) SFT
on low-resource language data is not beneficial for
high-resource or low-resource languages. As for
FOLLOWING RATE, monolingual SFT on the ethi-
cal data generally provides limited improvements
for enhancing FOLLOWING RATE. This is reason-
able since our ethical datasets aim to reduce harm-
fulness instead of enhancing LLMs’ instruction-
following or chat ability.

4 Where does the low-resource language
curse stem from?

Our earlier experiments (§3) reaffirm the presence
of the two curses in open-source LLMs. This is
consistent with findings from the GPT-4 exper-
iments (§2). The recurrent patterns suggest that
these curses are not mere coincidences, driving
us to investigate their origins. For clarity, we
break down the LLM training process into two
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Figure 2: Monolingual SFT fails to improve HARM-
FUL RATE and FOLLOWING RATE on low-resource lan-
guages. The value in the heatmap corresponds to the
change of HARMFUL RATE (top figure) and FOLLOW-
ING RATE (bottom figure) after monolingual SFT is ap-
plied. Specifically, the red region (in the top figure)
represents a large improvement, demonstrating the ef-
fectiveness of monolingual SFT on high-resource lan-
guages.

stages: (a) The pre-training stage, where the LLM
is trained on a vast corpus using causal language
modeling loss. (b) The post-hoc alignment stage,
where the pre-trained LLMs are further fine-tuned
using alignment data.

Harmfulness curse. LLMs without alignment
suffer from malicious prompts, regardless of the
language. Based on our results in Table 2 (full
results can refer to Table 11), LLaMa2 (BASE)
achieves a similar average HARMFUL RATE on
low-resource and high-resource languages, and we
do not observe any significant bias towards lan-
guages from different resource levels.

Instead, as shown in the results of our alignment
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stage (Table 3), we observe severe bias towards
languages from different resource levels. Notably,
these patterns persist when we use well-balanced
training data across different languages, ruling out
data bias during the alignment stage as a culprit.
Besides, when we fine-tune the model with pure
monolingual low-resource data (as shown in Fig-
ure 2), LLM still fails to improve in terms of
HARMFUL RATE, which is different from high-
resource cases where EN-RLHF and EN-SFT
bring improvements to the model.4 This suggests
harmfulness curse is difficult to solve during the
fine-tuning stage since they may be deeply rooted,
possibly originating from the scarce low-resource
language data during the pre-training phase.

Overall, harmfulness curse can not be observed
in the base version of LLMs. However, after being
applied further safety-aware alignment, harmful-
ness curse begins to emerge. Although harmful-
ness curse does not emerge after the pre-training
stage, its origin possibly originates from insuf-
ficient low-resource language data during pre-
training.

Relevance curse. Unlike the case of harmful-
ness curse, we can observe relevance curse after
the pre-training stage of LLMs. As shown in Ta-
ble 4, LLaMa2 (BASE) achieves 33.0% and 24.8%
FOLLOWING RATE on high-resource and low-
resource languages, respectively, which presents a
bias across different language levels.

After CHAT-RLHF alignment5, as shown in Ta-
ble 5, we can see the bias is significantly strength-
ened. This phenomenon means that although the
alignment stage would increase the instruction-
following ability of LLMs, it amplifies relevance
curse in the dark side.

Overall, relevance curse can be observed after
the pre-training stage of LLMs. Besides, after be-
ing applied further safety-aware alignment, rele-
vance curse would be substantially strengthened.
Like harmfulness curse, its origin possibly origi-
nates from the limited low-resource language data
during pre-training.

Multilingual pre-training helps alleviate the
problem. In this part, we show evidence that

4These two cases are shown in Appendix C.
5We do not discuss our methods here (e.g., xSFT), since

they are trained on domain-specific data, thus fail to increase
the instruction-following ability of LLMs substantially. To
better verify the origin of relevance curse, discussing the con-
sequences of CHAT-RLHF would be more convincing.

Model LANG HARM(↓) FOLLOW(↑)

LLaMa Low 70.6 28.2
ALMA Low 68.2 29.8
LLaMa High 57.4 37.8
ALMA High 55.0 40.0

Table 6: The results (in percentage) of LLaMa vs
ALMA with xSFT. We can see that further pre-
training on multilingual data (including low-resource
languages) helps resolve the curses.

multilingual pre-training may help alleviate the
curses brought by low-resource languages. We
select ALMA (Xu et al., 2023, 2024)6, a
model that continues pre-training LLaMa2 model
on multilingual translation data, including low-
resource languages (ALMA is trained on Flores-
200 (NLLB Team et al., 2022), which contains
low-resource language corpus), then we conduct
xSFT on ALMA-pretrain-7B and LLaMa2-7B.
The results are shown in Table 6, and we can
observe that ALMA outperforms LLaMa with
xSFT. These results indicate that adding more
low-resource language corpus to the pre-training
stage can alleviate the curses to a certain extent.

Model High (avg.) Low (avg.)

LLaMa2 (xSFT) 57.4 70.6
LLaMa2 (xRLHF) 66.0 78.0

Table 7: Average HARMFUL RATE(↓, in percentage) of
xSFT and xRLHF on high-resource and low-resource
languages. We can see that xSFT generally outper-
forms xRLHF in terms of reducing HARMFUL RATE.

Model High (avg.) Low (avg.)

X-RM 63.3 49.4
X-RM + CI 65.9 49.9

Table 8: Average accuracy(↑, in percentage) of X-RM
on languages from different popularities, showing a
strong bias of X-RM on different languages. CI refers
to CONTRAST INSTRUCTION (Shen et al., 2023a).

Why does xRLHF fail? As shown in Table 7,
it is evident that xSFT outperforms xRLHF in re-
ducing HARMFUL RATE on both high- and low-
resource languages. This suggests that xRLHF
might not be effectively enhancing performance.
Given that our xRLHF model is guided by the mul-
tilingual reward model (X-RM), it motivates us to
explore potential issues with X-RM.

Subsequently, we evaluated the X-RM for
xRLHF. Our observations revealed a clear bias

6https://huggingface.co/haoranxu/
ALMA-7B-Pretrain
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based on language resource levels, as highlighted
in Table 8. While X-RM performs commend-
ably in high-resource languages, its effectiveness
sharply declines for languages with fewer re-
sources. Notably, the model differentiates be-
tween ethical and harmful responses in high-
resource languages. However, its accuracy in low-
resource languages hovers around a mere 50%,
suggesting it is no better than random guessing.
This phenomenon still exists even when we create
and add CONTRAST INSTRUCTION (Shen et al.,
2023a)7 for X-RM training.

Model One-turn Multi-turn

BASE 4.78 3.08
xSFT w/ LoRA 5.00 3.31

xSFT w/o LoRA 4.34 3.01

Table 9: The evaluation results on the MT-BENCH.
Score ranges from 1 (worst) to 10 (best).

The pronounced bias likely stems from the
LLM’s pre-training phase. Due to its limited expo-
sure to low-resource language datasets during this
phase, the LLM does not gain sufficient knowl-
edge about these languages, leading to an inherent
bias in our X-RM. Addressing this bias is a chal-
lenging and resource-intensive task, and a sensi-
ble initial step could involve integrating more low-
resource language datasets during pre-training.

5 Related Work

Safety and helpfulness of LLMs. While LLMs
excel at generating coherent text, they have draw-
backs. They frequently exhibit biases rooted in
their pre-training data and may generate erroneous
information, a phenomenon often referred to as
‘hallucination’ (Dziri et al., 2022; Agrawal et al.,
2023; Dhuliawala et al., 2023). Recent endeav-
ors (Zhao et al., 2021; Ganguli et al., 2022; Bai
et al., 2022b,a; Kim et al., 2022) have been un-
dertaken to fine-tune LLMs, making them more
helpful and less likely to produce harmful con-
tent. These efforts have also led to the creat-
ing of datasets specifically designed for this pur-
pose (Wang et al., 2023; Bai et al., 2022a).

One emerging safety concern revolves around
jailbreaking attacks, which assesses whether
an LLM responds inappropriately to malicious
prompts. Previous research has addressed and
mitigated the jailbreaking phenomenon, making

7Contrast Instruction is an effective strategy (Shen et al.,
2023a) to strengthen the reward model.

LLMs more robust, especially in the English lan-
guage (Wei et al., 2023; Zou et al., 2023; Li et al.,
2023b; Wolf et al., 2023; Shen et al., 2023c). How-
ever, our study reveals that LLMs remain suscep-
tible to jailbreaking prompts in low-resource lan-
guages. In tandem with a contemporary investiga-
tion by Yong et al. (2023), we observe a similar
trend that LLMs are more likely to be jailbroken
across low-resource languages. Beyond analysis,
we propose strategies to alleviate the jailbreaking
issue in LLMs and explore their helpfulness in a
broader context.

Cross-lingual learning for LLMs. Due to the
availability of copious resources, language tech-
nology’s inherent bias toward English is a well-
established concern (Blasi et al., 2022). Recent ef-
forts have aimed to enhance LLMs’ cross-lingual
capabilities through multilingual language model-
ing (K et al., 2020; Kalyan et al., 2021; Conneau
et al., 2020) and fine-tuning (Zhang et al., 2023;
Li et al., 2023a,c). However, these approaches
have primarily concentrated on high-resource lan-
guages. Even when addressing low-resource lan-
guages, they often focus on general benchmarks
rather than evaluating the safety of LLMs when
operating in such linguistic contexts.

6 Conclusion

This paper comprehensively analyzes the cross-
lingual capabilities of LLMs along two key dimen-
sions: HARMFUL RATE and FOLLOWING RATE.
Our investigation has unveiled that LLMs, pri-
marily trained in English-centric contexts, ex-
hibit two curses when prompted by low-resource
languages. This vulnerability raises significant
safety concerns and hinders their utility in lin-
guistic contexts. Building upon these findings,
we adapted commonly accepted alignment meth-
ods with monolingual and multilingual settings.
We find that the two curses still exist after being
applied with our methods, which show the chal-
lenges and difficulties of resolving the two curses
through alignment methods. Then, we present em-
pirical analysis and discussions towards the origin
of two curses.

Our work highlights the multilingual vulnera-
bility of LLMs and the challenges of resolving
such a vulnerability through the alignment pro-
cess. We hope our work can shed light on fu-
ture works on enhancing the cross-lingual ability
of LLMs.
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Limitation

One limitation of our work is the inevitable noise
brought by the imperfect translator during the
translation process, which may bring some noise
to the evaluation of HARMFUL RATE and FOL-
LOWING RATE. Another limitation is that, due to
our limited budget, we could not conduct a high-
quality human evaluation for HARMFUL RATE and
FOLLOWING RATE.
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Supplementary Material
A Prompts used in Evaluation

In §2, we use GPT-4 for evaluation of the HARM-
FUL RATE and FOLLOWING RATE of model re-
sponses in different languages. Here are the
prompts we used for evaluation.

Given a question and a response, please tell me whether the response is re-
garded as one of the following categories:
harmful: if the model engages with the request on-topic.
harmless: if the response detects the harmfulness and refuses to engage.
unfollowing: if the response is nonsensical or hints at neither harmful in-
sights nor refusal of assistance.

Table 10: Prompts used in evaluating HARMFUL RATE
and FOLLOWING RATE using GPT-4.

B Implementation details

• Standard fine-tuning (SFT): For standard fine-
tuning, we select LLaMa-7B as the base model
and train it following the configuration below:
we adopt the Low-Rank Adaptor (LoRA) (Hu
et al., 2021) for training. We use the AdamW op-
timizer and set the learning rate as 1.5e-5, with
50 warmup steps.

• Reward model (RM): For RM training, we select
LLaMa-7B as the base model, train it with the
LoRA with the AdamW optimizer, and set the
learning rate as 2e-5.

• Reinforcement learning with PPO: We select the
SFT model as the reference model in RLHF and
use the reward score generated by RM as a su-
pervision proxy. We set the learning rate as 1.5e-
5, batch size as 8, and accumulation step as 8
with 1,000 PPO steps.

• The experiments are conducted on 4 A6000
(48G) GPUs.

C Full results

The full results of our experiment are shown in
Table 11 and Table 12. Specifically, we chose En-
glish (high resource) and Kamba (low resource) as
monolingual alignment cases for our illustrations.
The techniques we used are represented as EN-
SFT, EN-RLHF, KAM-SFT, and KAM-RLHF.

D Contemporaneous work claim

During the completion of this work, we became
aware of some contemporaneous studies (Deng

et al., 2024; Yong et al., 2023) 8, and Yong et al.
(2023) submitted their work to arxiv in October
2023.

8Our initial experiments (§2) have been completed in Au-
gust 2023
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MODEL PARADIGM METHOD
HARMFUL RATE

eng Latn zho Hans spa Latn por Latn fra Latn Avg. (High)

LLAMA2

ORIGINAL
BASE 86 76 79 76 70 77.4

CHAT-RLHF 30 43 36 35 34 35.6

MULTI
xSFT 52 59 54 60 62 57.4

xRLHF 63 69 64 65 69 66.0

MONO

EN-SFT 43 68 73 68 76 65.6
EN-RLHF 60 74 68 67 72 68.2
KAM-SFT 79 71 78 78 68 74.8

KAM-RLHF 82 72 76 73 70 74.6

khk Cyrl kam Latn ibo Latn hau Latn urd Arab Avg. (Low)

ORIGINAL
BASE 83 74 82 89 74 80.4

CHAT-RLHF 64 44 69 49 59 57.0

MULTI
xSFT 73 73 70 69 68 70.6

xRLHF 75 78 79 78 80 78.0

MONO

EN-SFT 85 76 80 85 72 81.6
EN-RLHF 76 83 87 78 72 79.2
KAM-SFT 84 75 83 87 76 81.0

KAM-RLHF 82 78 81 87 76 80.8

Table 11: The results of HARMFUL RATE after applying different methods. We can still observe the harmfulness
curse from the results, where all the methods show much more effectiveness in reducing HARMFUL RATE on high-
resource languages than low-resource ones.

MODEL PARADIGM METHOD
FOLLOWING RATE

eng Latn zho Hans spa Latn por Latn fra Latn Avg. (High)

LLAMA2

ORIGINAL
BASE 26 38 29 33 39 33.0

CHAT-RLHF 89 92 88 92 93 90.8

MULTI
xSFT 33 42 35 38 41 37.8

xRLHF 29 33 40 38 29 33.8

MONO

EN-SFT 45 40 30 30 36 36.2
EN-RLHF 39 48 42 46 44 43.8
KAM-SFT 24 40 26 31 35 31.2

KAM-RLHF 22 40 31 30 36 31.8

khk Cyrl kam Latn ibo Latn hau Latn urd Arab Avg. (Low)

ORIGINAL
BASE 24 29 18 29 24 24.8

CHAT-RLHF 36 36 34 40 38 36.8

MULTI
xSFT 26 32 23 32 28 28.2

xRLHF 19 27 35 10 27 23.6

MONO

EN-SFT 23 30 17 28 23 24.2
EN-RLHF 23 33 21 26 26 25.8
KAM-SFT 24 31 22 28 22 25.4

KAM-RLHF 19 28 23 24 19 22.6

Table 12: The results of FOLLOWING RATE after applying different methods. We can still observe the relevance
curse from the results, where all the methods show much more effectiveness in increasing FOLLOWING RATE on
high-resource languages than low-resource ones.
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