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Abstract

Taxonomy Expansion, which models complex
concepts and their relations, can be formulated
as a set representation learning task. The gen-
eralization of set, fuzzy set, incorporates uncer-
tainty and measures the information within a
semantic concept, making it suitable for con-
cept modeling. Existing works usually model
sets as vectors or geometric objects such as
boxes, which are not closed under set opera-
tions. In this work, we propose a sound and
efficient formulation of set representation learn-
ing based on its volume approximation as a
fuzzy set. The resulting embedding framework,
Fuzzy Set Embedding (FUSE), satisfies all set
operations and compactly approximates the un-
derlying fuzzy set, hence preserving informa-
tion while being efficient to learn, relying on
minimum neural architecture. We empirically
demonstrate the power of FUSE on the task of
taxonomy expansion, where FUSE achieves re-
markable improvements up to 23% compared
with existing baselines. Our work marks the
first attempt to understand and efficiently com-
pute the embeddings of fuzzy sets.

1 Introduction

Taxonomy is a crucial data structure for model-
ing semantic concepts, hence of great importance
for NLP (Lu et al., 2023; Xu et al., 2023; Yu
et al., 2023). Concepts in a taxonomy can often
be viewed as sets, the most fundamental object
in mathematics, whose operations directly link to
First Order Logic (FOL). For example, in a science
taxonomy, “Biology” and “Computer Science” are
semantic concepts, whose intersection results in
a new concept “Bio-informatics”, and “Diffusion
Model” and “GAN” belong to a coarser-grained
concept, “Generative Model”. Usually, sets are
seen as a fixed collection of objects. For example,
the set N consists numbers {0, 1, · · · } by definition.
However, in the context of semantic concepts, their

meanings can change overtime and incorporate am-
biguity. For example, “beauty" is a concept that
has become broader overtime, and “deep learning
models" can expand to have more elements with
more discoveries made by the community. This
underlying uncertainty and ambiguity are instead
captured by a fuzzy set (Zadeh, 1999, 1978), an
extension of classical sets.

A wide range of works have been developed for
set representation learning. Early efforts are made
to construct simple vector embeddings (Mikolov
et al., 2013; Pennington et al., 2014; Devlin et al.,
2019; Vaswani et al., 2023; Radford et al., 2018)
based on similarity measures. To better model
complex relationships such as asymmetrical rela-
tionships between concepts, geometric embeddings
(Jiang et al., 2023; Hamilton et al., 2019; Ren et al.,
2020; Ren and Leskovec, 2020) have been devel-
oped, which leverages the inherent geometric prop-
erties to model hierarchical relationships. However,
these methods cannot address all the set operations
including intersection, union, and complement. For
example, box embedding (Jiang et al., 2023; Ren
et al., 2020; Huang et al., 2023) doesn’t define
union and complement of boxes. Worse yet, ex-
isting geometric objects are not closed under set
operations: the union of two boxes is no necessar-
ily a box, which can compromise the consistency
of reasoning in the embedding space.

In this paper, we directly tackle the challenge of
fuzzy set representation learning for concept mod-
eling. Our objective is to use their volume to quan-
tify their information and their associated uncer-
tainty. However, learning powerful representations
for fuzzy sets is challenging. First, although ex-
tensive efforts have been made to incorporate deep
learning techniques into fuzzy set modeling (Chen
et al., 2022; Dasgupta et al., 2022b; Zhu et al.,
2022), their training procedure could be expensive
when the universe of discourse is large. Second,
compared with geometric embeddings, which have
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clear definitions of volume, it is unclear how to
model the volumes of fuzzy sets due to the intro-
duction of uncertainty and their abstract nature.

To tackle the previous challenges, we propose
a principled and learnable model named Fuzzy Set
Embedding (FUSE) for fuzzy set representation
learning. The core of FUSE is to introduce a com-
pact approximation of fuzzy sets and then prove
that FUSE can arbitrarily approximate the original
fuzzy sets under reasonable regularity conditions.
FUSE avoids the computational burden of account-
ing for all the elements in the space of discourse at
once, while enjoying the properties of fuzzy logic,
hence satisfying all set operations. We further in-
troduce a rank-based loss and asymmetric relations
to enhance set representation learning. To validate
the effectiveness of our proposed FUSE, we eval-
uate on taxonomy expansion task and show that
FUSE can achieve the performance improvement
up to 23% compared with state-of-the-art baselines,
and we explore the effectiveness of our theoretical
formulation through various ablation studies.

Our main contributions can be summarized as
follows: (a) We propose an embedding framework
to model fuzzy sets and show that the embeddings
satisfy all set operations and are closed under set
operations. (b) We systematically construct this
embedding as a proper approximation of fuzzy
sets. (c) We demonstrate the effectiveness of this
embedding framework on taxonomy expansion by
comparing it against previous vector and geometry-
based embedding methods.

2 Related Work

2.1 Taxonomy Expansion

Taxonomy organizes concepts as a hierarchical
graph, where nodes are concepts and edges denote
“is-a” relationships between parent and child nodes.
As new knowledge is emerging, taxonomy expan-
sion seeks to expand existing taxonomy with new
nodes, which is a fundamental task for many real-
world applications such as information filtering and
recommendation. Existing works have focused on
using a lexical vector representation in the spirit of
language modeling and word embedding (Chang
et al., 2018; Snow et al., 2004; Mikolov et al., 2013;
Pennington et al., 2014). More recently, geomet-
ric embeddings such as box embedding has been
used to better model the asymmetric relationship
between parent and child nodes (Jiang et al., 2023).
Compared to vector-based representations, they im-

proved both the predictive performance and inter-
pretability of the learned embeddings.

2.2 Set Representation Learning

Set representation learning seeks to learn low-
dimensional representations of data with a notion
of volume and coverage. It is desirable when the
representations can capture the rich semantic infor-
mation and the complex relationships of data (Rossi
et al., 2020; Wang et al., 2021; Zhang et al., 2022;
Zhong et al., 2023). For example, language mod-
eling (Devlin et al., 2019; Vaswani et al., 2023;
Radford et al., 2018) has aimed to learn vectors
to represent combinatorically intractable combi-
nations of human languages. In this context, se-
mantic concepts can be viewed as sets. Recently,
geometry-based approaches (Ren et al., 2020; Das-
gupta et al., 2022b; Ren and Leskovec, 2020; Chen
et al., 2021) have further improved the efficiency
of the representations by enabling set operation
such as intersection, but they fail to cover all op-
erations and are not closed under them. Fuzzy set
theory has explicitly formulated a way to represent
the ambiguity of sets such as concepts in taxon-
omy construction, while automatically satisfying
all desired properties of sets (Chen et al., 2022; Zhu
et al., 2022). It is an extension to classical set the-
ory with extensive applications (van Krieken et al.,
2022; Wagner and d’Avila Garcez, 2022; Liang
et al., 2023; Yu et al., 2022; Xu et al., 2022). For
example, Michael Boratko and McCallum (2022)
and Dasgupta et al. (2022b) have explored the con-
nection between fuzzy sets and box embeddings to
model words. However, existing fuzzy set repre-
sentations lack a principled approach on what the
low-dimensional representation stands for, and can
be inefficient when the number of sets to model
increases. We propose a novel solution by identi-
fying the central characterization of a fuzzy set as
its volume and approximate it using a compact rep-
resentation, while yielding superior performance
on the set representation learning task of taxonomy
expansion.

3 Preliminary

3.1 Fuzzy Sets

In contrast to classical set theory, which assigns a
Boolean value to whether an element belongs to
a set, a fuzzy set (Zadeh, 1978) assigns a value
between 0 and 1 to denote a degree of member-
ship. For a universe of discourse U , a fuzzy set is
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mathematically defined as a tuple A = (U,mA),
where A ⊆ U and mA : U → [0, 1] is its mem-
bership function. For any element x ∈ U , mA(x)
represents the degree of membership of element x
in A. Fuzzy set models the uncertainty of mem-
bership by encoding imprecision and ambiguity
in concepts. As an example, it can be used to
describe the compatibility between two concepts,
such as “is-a" relationship. For example, for a con-
cept “Kobe Bryant" and a set of entities {Basket-
ball Player, Team Owner, Entrepreneur}, a fuzzy
membership function can be represented as the set
{1.0, 0.1, 0.9}, each signifying “Kobe Bryant"’s
compatibility with each of the concepts in the set.

Similar to standard sets, intersection, union, and
complement between fuzzy sets are defined. Fuzzy
set is related to fuzzy logic, which defines logical
operations over soft truth values and follows Gödel,
product, or Łukasiewicz systems. For a detailed
discussion of fuzzy logic systems, see Chen et al.
(2022). For language modeling, fuzzy sets can
be used to model the ambiguity of the semantic
meanings of words (Dasgupta et al., 2022a). In tax-
onomy, fuzzy sets can be used to model concepts.

3.2 Possibility Theory
The membership function mA associated with a
fuzzy set A is constructed based on the theory of
possibility in Zadeh (1999, 1978). In the formu-
lation of Zadeh (1978), to reason about linguistic
concepts such as “likely”, a fuzzy set can be en-
dowed with a probability-possibility distribution:
Definition 1 (Possibility-Probability Distribu-
tion). Let U be the universe of discourse, and
(U,F , P ) be a probability space, where F is the
sigma-algebra and P is the probability measure.
Let X be a fuzzy variable that can take any val-
ues x ∈ U , and let F be a fuzzy subset of U with
membership function mF , then the possibility of
probability of X with respect to F is:

πP,X =

∫

U
πXdP =

∫

U
mFdP.

where πX is the possibility distribution associated
with X and

∫
U mFdP is the Lebesgue integral of

the membership function w.r.t to the probability
measure P .

Here the Lebesgue integral
∫
U mFdP , in the

sense of fuzzy set theory, represents the amount
of information contained by the fuzzy set F . This
construct can be seen as the measurement of in-
formation and uncertainty in the fuzzy variable X ,

making it a desirable quantity to approximate when
learning a low-dimensional embedding of a fuzzy
set. In our Fuzzy Set Embedding, we generalize
definition 1 in definition 4.

4 Proposed Framework: FUSE

We now present Fuzzy Set Embedding (FUSE)
for learning set representations in a principled way.

4.1 Fuzzy Set Embedding
To construct a proper embedding for fuzzy sets, we
assume that the universe of discourse U admits a
finite partition, {Ui}di=1, such that U =

⋃d
i=1 Ui,

and Ui, Uj are disjoint if i ̸= j. For a formal
description of this assumption, see Appendix B. In
particular, this indicates that fuzzy set membership
function mA has an associated simple function:

Definition 2 (Simple Fuzzy Set). Let (U,F , ξ) be
a measure space and Let U =

⋃d
i=1 Ui be a finite

partition of the universe U , and let A ∈ F and mA

its membership function, then the Simple Fuzzy Set
associated with A is the tuple (U, µA), where:

µA(x) :=
d∑

i=1

1{x∈Ui}µ
(i)
A (x), ∀x ∈ U (1)

is the Simple Membership Function of A, where
1 is the indicator function and ∀x ∈ U,∀i ∈
{1, · · · , d}:

µ
(i)
A (x) := sup

x∈Ui

mA(x). (2)

µA can be summarized in d values
µ
(1)
A , · · · , µ(d)A , each determined by the supremum

of mA in the corresponding partition. To facilitate
the standard application in deep learning, we for-
mulate an alternative representation in vector form
to distinguish it from the functional representation
denoted in Eqn. 1.

Definition 3 (Fuzzy Set Embedding). Let A =
(U, µA) be a simple fuzzy set defined on the mea-
sure space (U,F , ξ), where U =

⋃d
i=1 Ui, then its

corresponding Fuzzy Set Embedding (FUSE) is
the d-dimensional vector:

UA := [µ
(1)
A , · · · , µ(d)A ], (3)

Since we are reducing the reasoning space from
[0, 1]|U | to [0, 1]d, we need to examine the loss in-
curred by this reduction. To reason about it in
detail, we provide the following definition inspired
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Figure 1: Illustration of set operations under fuzzy set membership function for two sets A,B ∈ U . mA is the fuzzy
set membership function and µA the corresponding simple membership function (Definition 2). By using the fuzzy
set representation, all the set operations (intersection, union, complement) are well-defined (Gödel definition is
used for easier illustration), and after set operations, results are still fuzzy set. For illustration, here we partition the
universe U into 5 partitions {U1, · · · , U5}.

by Zadeh (1978); Nahmias (1978) to quantify the
amount of information covered by the fuzzy sets
across the entire universe U .

Definition 4 (Simple Fuzzy Measure). Let U
be a compact universe of discourse and let A =
(U,mA) be a fuzzy subset of U . Let (U,F , ξ) be a
measure space defined on U , then the fuzzy mea-
sure of the fuzzy set (U,mA) is:

P(A) :=
∫

U
mAdξ.

Then a Simple Fuzzy Measure of a simple fuzzy
set A = (U, µA) is defined as:

Pµ(A) :=

∫

U
µAdξ.

Given a finite partition, furthermore:

Pµ(A) =

d∑

i=1

∫

Ui

µ
(i)
A dξ =

d∑

i=1

µ
(i)
A ξ(Ui), (4)

where ξ(Ui) corresponds to the measure of parti-
tion set Ui. If ξ is a probability measure, then Def-
inition 4 corresponds to Definition 1. In practice,
we examine choices of different measures empir-
ically in Section 5. In short, a simple fuzzy set
A = (U, µA) approximates the fuzzy measure of
the underlying fuzzy set (U,mA). We state this
observation formally in theorem 1 and illustrates it
in Figure 2(a).

Theorem 1. Let U be a compact universe of dis-
course and (U,F , ξ) a measure space. Let A
be a fuzzy subset of U and mA its membership
function that’s measurable. Moreover, let µA be
its simple membership function, then ∀ϵ > 0,
∃δ > 0, d > 0 such that if dδ = ξ(U) and
||Ui|| := mini ξ(Ui) < δ, we have:

0 < Pµ(A)− P(A) < ϵ.

The fuzzy measure of a simple fuzzy set is an
upperbound for the fuzzy measure of its underly-
ing fuzzy set and converges to the possibility of
its underlying fuzzy set when the partition is suffi-
ciently fine-grained. With suitable assumption on
the function mA, we can further establish the rate
of convergence:

Corollary 1. Following the condition in definition
4, if in addition mA is Lipschitz-continuous or of
bounded variation, then the convergence rate in 1
is O(1/n), where n is the number of partitions.

4.2 Embedding-based Fuzzy Set Operators
FUSE combines set theory and measure theory and
provides a theoretically sound embedding. For an
entity x ∈ U , we treat it as a concept and asso-
ciate with it a fuzzy subset (U,mA), representing
its compatibility with other concepts. We can treat
every entity as a fuzzy set embedding, define set
operations in the language of set theory, and com-
pute them using vector operations. Suppose we
have two entities x, y ∈ U , and UA,UB ∈ [0, 1]d
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Figure 2: On the left plot (a), we illustrate when the
universe is a compact subset of R. Fuzzy measure P
is the Riemann Integral of mA on embedding space U
(the orange region), while the Simple Fuzzy Measure
Pµ is its upper Darboux sum (the yellow region). On
right plot (b), we demonstrate that for a fixed number
of partitions, different choices of partition size result in
different approximation of P: the bottom-right partition
has better approximation than the top-right partition,
since it results in less over-estimation.

are the two fuzzy set embeddings associated with
them, we can define following operations:

• Fuzzy Mapping: Every entity/element is a sin-
gleton set, and M maps an entity x ∈ U to its
associated fuzzy set embedding U{x} ∈ [0, 1]d.
In the case of taxonomy expansion, the input is
the word vector x ∈ Re obtained from a pre-
trained language model like BERT (Devlin et al.,
2019). To construct a map between the word vec-
tor and its associated fuzzy set embedding, we
use a neural networks f : Re → [0, 1]d:

UA = M(A; θ) = σ(f(x; θ)) ∈ [0, 1]d, (5)

where σ is a normalization constraint to make the
embedding space compact, such as sigmoid, 0-1
clamping, or Layernorm (Ba et al., 2016).

We can futher define set operations by product
logic. Other fuzzy systems, such as Gödel logic, is
illustrated in Fig. 1.

• Intersection: The intersection between the two
fuzzy sets A ∩ B can be computed by element-
wise product t-norm (Klement et al., 2013):

UA∩B = UA ⊙ UB. (6)

where ⊙ is element-wise multiplication.

• Union: The union of two fuzzy sets A ∪B can
be computed by element-wise product t-conorm:

UA∪B = UA + UB − UA ⊙ UB. (7)

• Complement: The complement of a fuzzy set A
denoted as Ac can be computed as:

UAc = 1− UA. (8)

4.3 Taxonomy Expansion with FUSE
In this part, we use taxonomy expansion task to
showcase the advantages of representing concepts
with fuzzy set embeddings.

Membership Prediction with FUSE. After rep-
resenting a concept with fuzzy sets, the core task of
taxonomy expansion is to determine whether an el-
ement y belongs to a setA, and this is often used as
a score function in pair-based relationship in taxon-
omy expansion task (Jiang et al., 2023; Shen et al.,
2020; Yu et al., 2020). Using our framework, for
some element y ∈ U , we can apply the entity map-
ping function M to find its fuzzy set embedding
U{y}. Then we can simply measure the degree of
membership of element y in some other fuzzy set
A by considering the fuzzy measure of the fuzzy
set embedding UA∩{y} = UA ⊙ U{y}, which we
denote as Pµ(A ∩ {y}) and compute it as:

Pµ(A ∩ {y}) =
d∑

i=1

(
U (i)
A U (i)

{y}

)
ξ(Ui). (9)

In training, we model the volume using global train-
able weights w = {w1, · · · , wd} with a normaliza-
tion transform to restrict the type of measure ξ.
Therefore, we approximate PA∩{y} and define the
standard score function:

ψ(y,A) =
d∑

i=1

µ
(i)
A∩{y}wi = (UA ⊙ U{y})

Tw.

(10)

and the corresponding ranking-based loss:

L(y,A) =− log σ (ψ(y,A)− γp)

− 1

k

k∑

i=1

log σ
(
γn − ψ(y′, A)

) (11)

where (y,A) are positive pairs and (y′, A) negative
pairs, and γp, γn are margins for positive and neg-
ative predictions. We use different margins since
by Theorem 1, fuzzy measure of the fuzzy set em-
bedding is an upperbound for the underlying fuzzy
set, so the result we obtain is overestimating the
actual fuzzy measure. We provide an ablation study
regarding choice of margin in section 5.

2711



B
E
R
T

B
E
R
T

B
E
R
T

Fuzzy 
map

Fuzzy 
map

Fuzzy 
map

parent

𝑒𝑝

child

𝑒𝑐

negative 
parent

𝑒𝑝′

(a) Training

(b) Inference

query

𝑒𝑞

anchor

      𝑒𝑎

𝒰𝐸𝑞

𝒰𝐸𝑎

𝑝 𝑒𝑎 𝑒𝑞 =
ℙ𝜇(𝐸𝑎 ∩ 𝐸𝑞)

ℙ𝜇(𝐸𝑞)
=?

𝐸𝑝 𝐸𝑐

𝐸𝑝 ∩ 𝐸𝑐 1

0 𝑈1 𝑈2 𝑈3 𝑈4 𝑈5

𝐸𝑝′ 𝐸𝑐

𝐸𝑝′ ∩ 𝐸𝑐 1

0 𝑈1 𝑈2 𝑈3 𝑈4 𝑈5

Volume: ℙ𝜇 𝐸𝑝 ∩ 𝐸𝑐

Volume: ℙ𝜇 𝐸𝑝′ ∩ 𝐸𝑐

𝐿𝑝𝑜𝑠 = − log 𝜎 ℙ𝜇 𝐸𝑝 ∩ 𝐸𝑐 − 𝛾𝑝

𝐿𝑛𝑒𝑔 = − log 𝜎 𝛾𝑛 − ℙ𝜇 𝐸𝑝′ ∩ 𝐸𝑐

Intersection-based Loss

𝑝 𝑒𝑝 𝑒𝑐 =
ℙ𝜇(𝐸𝑝 ∩ 𝐸𝑐)

ℙ𝜇(𝐸𝑐)
 

𝐿𝑝
+ = 𝑝 𝑒𝑝 𝑒𝑐 − 1

2

𝑝 𝑒𝑝′ 𝑒𝑐 =
ℙ𝜇(𝐸𝑝′ ∩ 𝐸𝑐)

ℙ𝜇(𝐸𝑐)
 

𝐿𝑝
− = 𝑝 𝑒𝑝 𝑒𝑐 − 0

2

Asymmetry Loss

𝐸𝑐

𝐸𝑐

Fuzzy 
map

Fuzzy 
map

B
E
R
T

B
E
R
T

𝒰𝐸𝑝

𝒰𝐸𝐶

𝒰𝐸𝑝′

Figure 3: The overview of FUSE used to model concepts in taxonomy. First the entities are converted into vectors
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Incorporating Asymmetric Relation. As sig-
nified in Jiang et al. (2023), membership predic-
tion in a taxonomy expansion task usually involves
asymmetric relations. For example, parent nodes
in a taxonomy usually strictly incorporate the con-
cept in the child nodes. Since the score function,
which uses the intersection between two sets, is
symmetric, here we propose another score function
to signify this asymmetry. Suppose we have two
entities ep, ec ⊆ U , such that ec is a child of ep.
Let Ep, Ec be their associated fuzzy sets, then we
can model this relationship by:

P (ep|ec) =
Pµ(Ep ∩ Ec)

Pµ(Ec)
=

(UEp ⊙ UEc)
Tw

UEc

,

(12)

where we use the simple fuzzy measure for each set
as its volume and use the ratio between the volume
of Ep ∩Ec and the volume of Ec as the result. For
a positive child-parent pair (ec, ep), the loss is:

L+
p = (P (ep|ec)− 1)2, (13)

whereas for a negative child-parent pair (ec, e′p):

L−
p = (P (e′p|ec)− 0)2. (14)

The main difference between Eqn. 10 and the case
of box embedding in Jiang et al. (2023) is that the
volume of a fuzzy set embedding spans the entire
universe U . We combine the pair-based ranking

loss and the asymmetric child-parent pair loss:

Ltaxo = L(ec, ep) + λ(L+
p + L−

p ), (15)

where λ is a hyper-parameter to control the strength
of each loss.

Dataset Environment Science
Metric ACC MRR Wu&P ACC MRR Wu&P

TAXI 16.7 N/A 44.7 13.0 N/A 32.9
HypeNet 16.7 23.7 55.8 15.4 22.6 50.7

BERT+MLP 11.1 21.5 47.9 11.5 15.7 43.6
TaxoExpan 11.1 32.3 54.8 27.8 44.8 57.6

STEAM 36.1 46.9 69.6 36.5 48.3 68.2
BoxTaxo 38.1 47.1 75.4 31.8 45.3 64.7

FUSE 42.3 58.3 77.6 39.9 52.9 73.4
FUSE (λ = 1.0) 43.1 53.3 74.3 43.5 56.6 77.5

Table 1: Results on taxonomy expansion compared to
existing methods. Here bold font refers to the best per-
formance results (compared to baseline) while underline
refers to the second-best performance result. The results
are reported as average over 5 runs. “N/A" is present
since MRR is not applicable to TAXI. FUSE is our
base model while FUSE (λ = 1.0) is the model with
balanced weights for intersection and asymmetric loss.

5 Experiments

Dataset: We use two public datasets (Environment,
Science) from SemEval-16 taxonomy construction
tasks. Following the training setup in Jiang et al.
(2023), we sample 20% of the leaf nodes as test set
and use the rest as training data. The performance
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of taxonomy expansion task can be found in table
1, where the results are averaged over 5 runs to
reduce variance.

Metrics: We use three metrics, Accuracy (ACC),
Mean Reciprocal Rank (MRR), and Wu & Palmer
similarity (Wu&P) to measure the performance for
the baseline models and FUSE.

Baselines: The baseline comparison models
are vector-based models like TAXI (Panchenko
et al., 2016), HypeNet (Shwartz et al., 2016),
BERT+MLP (Yu et al., 2020), TaxoExpan(Shen
et al., 2020), STEAM (Yu et al., 2020), and
geometry-based model like BoxTaxo (Jiang et al.,
2023).
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Figure 4: Trend of model performance with varying
number of partitions on the science dataset.

5.1 Does FUSE Benefit from More Partitions?
Here we examine the impact of choice of number
of partitions, since according to theorem 1, as d
increases, we should expect better approximation
to the underlying fuzzy set. In this experiment, we
vary the number of partitions from 100 to 550, with
increment of 50, and measure the performance of
taxonomy expansion on both Science and Environ-
ment datasets, averaged over 5 runs. The resulting
trend on both datasets can be seen in Figure 4.

In both cases, we can see a general upward trend
on model’s average performance when the number
of partitions goes up. This provides empirical sup-
port for the theoretical result in theorem 1. The vari-
ance of model performance tends to increase when
the number of partitions goes up, which suggests
that smaller learning rates and other normalization
for optimization may be considered.

Dataset Environment Science
Metric ACC MRR Wu&P ACC MRR Wu&P

FUSE-sigmoid 45.0 57.2 75.6 40.0 52.7 74.7
FUSE-softmax 7.3 17.3 51.9 21.3 32.0 65.2

FUSE-01 41.3 55.8 75.4 37.3 52.3 72.3
FUSE 42.3 58.3 77.6 39.9 52.9 73.4

Table 2: Results on taxonomy expansion compared
under different choices of normalization on volume
weights. This corresponds to different choices of mea-
sure space.

5.2 Does the Choice of Measure Affect Model
Performance?

As for the proposed new score function based on
the volume of the fuzzy set in Eqn. 10, we study
the impact of different choices of measure ξ. This
corresponds to different choices of normalization
applied to the volume of each partition. If we fol-
low definition 1, then partition volumes follows a
probability distribution, indicating a softmax nor-
malization on the global weights. Otherwise, we
can choose to use sigmoid or 0-1 clamping. Results
over 5 runs for different choices of measures can
be found in table 2. We observe that the softmax
normalization, which enforces the volume weights
to follow a probability distribution, doesn’t work
well overall. This suggest that the construction we
proposed in definition 4 is more suitable than the
classical definition in 1. We also observe that using
a sigmoid normalization on the volume weights can
improve results.

5.3 Does Asymmetry Loss Help Taxonomy
Expansion Task?

In this ablation study, we examine the impact of
applying asymmetry losses, since set intersection
is a symmetric operation, whereas the membership
relation is asymmetric. The value of λ in Eqn. 12
controls how much should the asymmetry-based
loss affect the training (the greater the value of λ,
the greater the impact). The results, averaged over
5 runs is in figure 5. We can see a trend of per-
formance improvement on Science dataset and an
increase in performance for λ > 0 for the Environ-
ment dataset. This result validates the importance
of modeling asymmetric relations.

5.4 Does Wider Margin Affect Model
Performance?

In this ablation study, we examine the impact of
different margins on the learning performance, as
presented in Eqn. 11, since theoretically, our con-
struction of FUSE over-estimates the volume un-
der the fuzzy set. In figure 6, which presents the
average result over 5 runs. From the result, we
can see that having wider margin (in this case
γp = 0.6, γn = 0.4) does benefit the model per-
formance, supporting our hypothesis that FUSE
over-estimates the volume of a fuzzy set.
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Figure 5: Model performance with different strength of
asymmetry, lambda.
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Figure 6: Model performance with different choice of
margins.

5.5 Additional Experiment: Is there Synergy
Between Different Modeling Choices?

In this part, we examine the synergy between
configurations across all the ablation studies per-
formed. In this case we study the case where
all the best configurations (λ = 0.5,∆γ = 0.2,
sigmoid-normalization) are used. We call the re-
sulting model FUSE-comb(ine) and report the per-
formance averaged over 5 runs compared to other
models in table 3. The result doesn’t immediate
suggest that combining multiple best case scenarios
would result in optimal performance. The strongest
performance so far comes from setting λ = 0.5.

Table 3: Results on FUSE-comb compared with each
individual best configurations

Dataset Environment Science
Metric ACC MRR Wu&P ACC MRR Wu&P

FUSE-sigmoid 45.0 57.2 75.6 40.0 52.7 74.7
FUSE (λ = 0.5) 46.2 58.4 77.7 42.8 55.1 76.3

FUSE (∆γ = 0.2) 38.5 53.2 74.9 41.4 54.6 75.5
FUSE-comb 41.1 53.0 76.4 42.4 54.3 76.7

5.6 Infer about Union and Complement Using
Trained Embeddings

In our taxonomy expansion experiment, the model
is trained using only the volume-based intersection
and asymmetry losses, without observing pairs of
sets that are related by union or complements. In
this case study we examine whether our embedding
can generalize to these two operations.

Infer about Set Union: For a parent entity ep in
the taxonomy and its m child entities ec1 , · · · , ecm ,

we examine the similarity of union of fuzzy set em-
beddings of child entities with the fuzzy set embed-
ding of the parent entity. That is, between U⋃m

i=1 Eci

and UEp . To this end, we use the trained fuzzy set
embedding from the FUSE (λ = 1) model and ap-
ply union operation in Eqn. 7 among all the child
fuzzy set embeddings, then we rank the Euclidean
distance between the obtained fuzzy set embedding
(union of all child embeddings) against all the exist-
ing parent embeddings in the dataset. From 4, we
observe that fuzzy set embedding captures union
patterns. As an example from the Science dataset,
for child entities [“calculus of variations", “analy-
sis", “integral calculus"], with parent entity “calcu-
lus", the top-3 closest simple fuzzy set embedding
corresponds to entity “calculus", “analysis", “geo-
physics", and the model’s prediction is closest to
the correct parent.

Infer about Set Complement: In this case we
examine complement by the set operation A \B =
A ∩Bc. In particular, the fuzzy set for parent (de-
note it A) minus a child fuzzy set (denote it B)
should be similar to the union of the remaining
children fuzzy set. We follow the union, comple-
ment, and intersection operation to compute the
fuzzy set embedding in this case, and again we use
the embedding from FUSE (λ = 1) model. We
compute the Euclidean distance between A ∩ Bc

and all the existing child embeddings in the dataset.
Here we present MRR and accuracy result in table
4. In contrast to union, it seems that complement
doesn’t achieve a reasonable performance. This
may be due to the fact that the complement of a
fuzzy set is taken over the entire universe of dis-
course, rather than simply in the scope of all the
children entities.

Dataset Environment Science
Metric ACC MRR ACC MRR

Union Inference 81.3 85.3 85.4 89.5
Complement Inference 2.9 14.8 11.9 26.6

Table 4: Results on Union and Complement Inference
using FUSE trained only with intersection based loss

6 Conclusion

For taxonomy expansion, We propose a novel and
theoretically sound Fuzzy Set Embedding (FUSE)
to model concepts and relationship between con-
cepts that incorporate set operations (intersection,
union, complement). We show theoretically that
FUSE preserves the information of the fuzzy set
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with sufficiently fine-grained partitions and demon-
strate empirically that it can outperform existing
vector-based and geometry-based embedding meth-
ods on taxonomy expansion. For future works, we
believe that expanding the taxonomy dataset with
more complicated combination of set operations,
such as First Order Logic (FOL), can further im-
prove the model performance.

7 Limitations

This work is the first attempt to use fuzzy set to
model concepts in taxonomy expansion. To ex-
amine only the effectiveness of fuzzy set repre-
sentation, we only use simple neural architectures
and use only the child-parent pairs. The full ca-
pacity of FUSE should be further examined using
datasets that contain First Order Logic (FOL) state-
ments, since by construction, fuzzy sets should sat-
isfy all the fuzzy logic axioms (Chen et al., 2022).
This suggests future directions to expand taxonomy
datasets with more complicated queries, and to han-
dle more graph-structured data in social analysis
and text mining (Ren and Leskovec, 2020; Ren
et al., 2020; Chen et al., 2022; Zhu et al., 2022;
Ju et al., 2023). Moreover, we can explore more
explicit form of fuzzy membership function, such
as a mixture of Gumbel boxes, to make the learning
more concrete.
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A List of Symbols and Notations

In table 5, we list all the symbols and notations
used in the paper, then we provide the theoretical
proofs for the main results in the paper.

B Formal Statement of the Compactness
Assumption

Here we state the assumption regarding the uni-
verse of discourse formally:

Assumption 1. The universe of discourse U is
topologically compact and has an open cover.

Assumption 2. The universe of discourseU is mea-
surable and is associated with a measure space
(U,F , ξ), where F is the σ-algebra and ξ its asso-
ciated σ-finite measure. Moreover, ∀A ∈ F , the
fuzzy membership function mA : U → [0, 1] is
ξ-measurable.

C Proof of Main Results

In this part we provide the proof sketches of the
main results:

Lemma 1: Let U be the universe of discourse
and A a fuzzy subset of U with continuous member-
ship function mA, and let

(
µ
(t)
A

)
be a sequence of

simple membership functions of mA in Definition
2, such that {Ui}nt

i=1 is a refinement of {Ui}nt−1

i=1

(nt > nt−1), when t goes to infinity, then µ(t)A con-
verges to mA in the point-wise sense.

Proof. The proof takes 2 steps:

Claim 1: By construction, the sequence
(
µ
(t)
A

)

is a sequence of monotonic non-increasing function
and it is bounded below by the fuzzy membership
function mA.

Proof. The case where U is finite or countably infi-
nite is straightforward. For the case where car-
dinality of U is uncountable but U is compact,
we have the following: By definition 2, we have
that for i ∈ {1, · · · , d} and n ∈ N, ∀u ∈ Ui,
µ
(t)
A (u) = supu∈Ui

mA(u) ≥ mA(u). Hence on

the entire domain, µ(t)A (u) ≥ mA(u). So ∀t ∈ N+,
m

(t)
A is an upperbound for mA. Since nt > nt−1

indicates {Ui}nt
i=1 is a finer-grained partition than

{Ui}nt−1

i=1 , and the fact that supremum of a function

Symbol Description

A,B,C, · · · mathematical sets.
ec, ep, · · · entities in a taxonomy
Ec, Ep, · · · fuzzy sets associated with entities
U The universe of discourse,

the set of all concepts.
N+ The set of all positive integers.
(U,F , ξ) A measure space with universe U ,

sigma-algebra F and a measure ξ.
Ac The complement of a set.
A ∩B Intersection of two sets.
A ∪B Union of two sets.
(A,mA) a fuzzy set, where A ⊂ U,

mA : U → [0, 1].
mA The fuzzy membership function

associated with a fuzzy set.
(A,µA) a simple fuzzy set, where A ⊂ U,

µA : U → [0, 1].
µA The simple membership function

associated with a simple
fuzzy set (A,µA).

(µA,n) a sequence of simple membership
functions with monotonically
finer-grained partitions.

UA The fuzzy set embedding of (A,mA).
P(A) The fuzzy measure (volume)

of a fuzzy set under
some measure space (U,F , ξ).

Pµ(A) The simple fuzzy measure (volume)
of a fuzzy set embedding
under some measure space (U,F , ξ).

M Fuzzy mapping, which maps an input
element into its associated
Fuzzy Set Embedding.

P A probability measure
defined on the space of concepts.

Table 5: Table for all the symbols used in this paper
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over finer grained partition is not greater than supre-
mum over coarse-grained partition (e.g., supre-
mum is monotonic w.r.t partitions), we have a non-
increasing sequence of functions.

Claim 2: The sequence of functions
(
µ
(t)
A

)
con-

verges to mA.

Proof. Since the space U is compact, we can de-
fine the space of function to be a compact Ba-
nach space of functions f : U → [0, 1] and so
mA is in the space. By the monotone conver-
gence theorem (Folland, 1999) and by the fact
that supremum over a singleton set {x} is simply
supu∈{x}mA(u) = mA(x), we can conclude that
convergence holds in the point-wise sense.

Theorem 1: Let U be a compact universe of
discourse and (U,F , ξ) a measure space. Let A
be a fuzzy subset of U and mA its membership
function that’s measurable. Moreover, let µA be
its fuzzy set embedding membership function, then
∀ϵ > 0, ∃δ > 0, d > 0 such that if dδ = ξ(U) and
||Ui|| := mini ξ(Ui) < δ, we have:

0 < Pµ(A)− P(A) < ϵ.

Proof. By Lemma 1 and assumption that mA and
hence all {µ(t)A } are ξ-measurable, we have a mono-
tonic non-decreasing sequence of non-negative
simple functions that converge point-wise to mA.
Then by the Monotone Convergence Theorem of
simple functions (Folland, 1999), we have that∫
U mAdξ = limt→∞

∫
µ
(t)
A dξ. Moreover, since

µ
(t)
A ≥ mA,∀n ∈ N+, we have that ∀ϵ > 0, ∃N ∈

N, such that ∀t > N , Pµ(A) > P(A) < ϵ. This is
equivalent to say (by virtue of construction of sim-
ple functions in definition 2) that ∃δ > 0, d > 0,
such that dδ = ξ(U) and ||Ui|| := mini ξ(Ui) < δ
(or equivalently, the partition is sufficiently fine-
grained), the conclusion holds.

Here we also provide a proof sketch for the Eu-
clidean case, where the universe U is mapped into
a compact subspace U ⊂ Rd, and the fuzzy mea-
sure is defined as a Riemann integral in Rd (the
Euclidean volume), which is often the case for the
embedding space. In this case, the following for-
mulation of the theorem holds:

Theorem 1 (Euclidean Case) Let Ω ⊂ Rd be
compact and let (A,mA) be a fuzzy set with mem-
bership function mA : U → [0, 1], and let Ω =

⋃d
i=1 Ui be a partition and (A,µA) its associated

partition-level fuzzy set. Then if mA is Riemann-
integrable on Ω, then ∀ϵ > 0, ∃δ > 0, d > 0 such
that if dδ = Vol(Ω) and ||Ui|| := mini Vol(Ui) <
δ, we have that:

0 < Pµ(A)− P(A) < ϵ

that is, the possibility of a partition-level fuzzy set
is an upperbound for its underlying fuzzy set and it
converges to the possibility of its underlying fuzzy
set when the partition is sufficiently fine-grained.

Proof. The proof takes 3 main steps: Since Ω and
[0, 1] are both compact, we need to show that (a)
under a rectangular partitions in Rd, as partition
granularity increases, the possibility Pµ(A) mono-
tonically decreases and (b) the possibility Pµ(A)
is an upper bound of the possibility P(A). After
these two are shown, we can simply invoke the stan-
dard Monotone Convergence Theorem for compact
spaces and show that Pµ(A) converges to P(A)
(Folland, 1999; Wilkins, 2016).

Step 1: Show that Pµ(A) monotonically de-
creases under granular partition. This is equiv-
alent to show that the upper Darboux sum of a
d−dimensional Riemann integral monotonically
decreases as the partition get finer-grained. This
result is Lemma 6.4 in (Wilkins, 2016).

Step 2: Show that Pµ(A) ≥ P(A). This is equiv-
alent to say that d−dimensional upper Darboux
sum is an upperbound for its Darboux-Riemann in-
tegral. This result is Lemma 6.6 in (Wilkins, 2016).

Step 3: Show that Pµ(A) converges to P(A).
By step 1 and step 2, we can construct a sequence
of monotonically decreasing upper Darboux sums.
By the Riemann-integrability of the function mA

and the compactness of the set Ω, [0, 1], we can
conclude that by Monotone Convergence Theorem
(Folland, 1999), this conclusion holds.

Corollary 1 Following the condition in definition
4, if in addition mA is Lipschitz-continuous, then
the convergence rate in 1 is O(1/n). If mA instead
has bounded variation, then the convergence rate is
also O(1/n), where n is the number of partitions.

Proof. In our case we defined the simple fuzzy set
membership function as:

fn(x) =
n∑

i=1

sup f(x)1(x ∈ Ui)
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where (fn)n∈N , f are measurable functions on the
space (U,F , µ) and 1 is the indicator function, and
we have U =

⋃n
i=1 Ui a partition of the universe.

To derive a bound for convergence rate, we need
to evaluate

∫
|fn − f |dµ =

∫
(fn − f)dµ, since

fn ≥ f . and we have the following result:

∫
(fn − f)dµ =

n∑

i=1

sup f(x)1(x ∈ Ui)−
n∑

i=1

∫

Ui

fdµ

=

n∑

i=1

∫

Ui

(
sup
x∈Ui

f(x)− f(x)
)
dµ

Now suppose that f is Lipschitz continuous with
constant L (a much stronger assumption), then we
have that

∀x ∈ Ui, | sup
x∈Ui

f(x)− f(x)| ≤ Lµ(Ui)

Then we have
∫
(fn − f)dµ =

n∑

i=1

∫

Ui

(
sup
x∈Ui

f(x)− f(x)
)
dµ

≤
n∑

i=1

∫

Ui

Lµ(Ui)dµ =
n∑

i=1

Lµ(Ui)
2

without loss of generality, let {Ui} be an even
partition and let µ(U) = 1, then we have that
µ(Ui) ∝ O( 1n) and so µ(Ui)

2 ∝ O(1/n2). Hence
Equation 6 decays with O(1/n) rate.

Suppose that f has bounded total variation
V (f) <∞, then we have that:

∫
(fn − fd)µ =

n∑

i=1

∫

Ui

(
sup
x∈Ui

f(x)− f(x)
)
dµ

≤
n∑

i=1

V (f)

n
µ(Ui)

Again, we have the conclusion that the error decays
with O(1/n).

D Details on Experiments

D.1 Baselines
For our taxonomy expansion task, we compare
with existing methods that use vector embeddings
or geometric embeddings. For vector embedding
methods, we include also models that use advanced
structures of taxonomy data. To summarize, the
baselines we compare with are:

• TAXI(Panchenko et al., 2016): This is a vector-
based embedding model that relies heavily on
hypernym and hyponym relations between enti-
ties.

• HypeNet(Shwartz et al., 2016): This is a vector-
based embedding model that leverages depen-
dency paths between entity pairs.

• Bert+MLP(Yu et al., 2020): This is a vector-
based embedding method that uses Bert (Devlin
et al., 2019) to generate entity embeddings. Bert
used in this model and in our own model is fine-
tuned with a smaller learning.

• TaxoExpan(Shen et al., 2020): This is a vector-
based embedding method leverages local ego-
graphs to model pair dependencies. It uses graph
neural networks (GNN).

• STEAM(Yu et al., 2020): This is a vector-based
embedding method that samples dependency
paths from taxonomy for better structured entity
embedding.

• BoxTaxo(Jiang et al., 2023): This is a geomet-
ric embedding method that uses box embedding
for entities in taxonomy. It is able to capture
asymmetric relationships between entities.

D.2 Evaluation Metrics
For evaluating the taxonomy expansion task, we
follow (Jiang et al., 2023). For the i-th query, de-
note ai the true anchor and âi the top-1 predicted
anchor and let N be the total number of test sam-
ples, then the three metrics we use are the follow-
ing:

• Accuracy (ACC): evaluates the prediction’s over-
all correctness

ACC =
1

N

N∑

i=1

I(âi = ai)

• Mean Reciprocal Rank (MRR): evaluate the
rank of the correct prediction in all predictions

MRR =
1

N

N∑

i=1

1

rank(ai)

• Wu & Palmer similarity (Wu& P) (Wu and
Palmer, 1994): measures the semantic similarity
between concepts in a taxonomy

Wu&P =
1

N

N∑

i=1

2× depth(LCA(âi, ai))
depth(âi) + depth(ai)
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where LCA is the least common ancestor of two
inputs and depth is the depth in the taxonomy
tree.

D.3 Implementation Detail for Base Model
In figure 5 and 6, the base model Fuzzy Set Em-
bedding (FUSE) is the configuration of model with
un-normalized global weights corresponding to vol-
umes of each partition. In later ablation studies,
we examine the impact of normalization on the
volumes, corresponding to a choice of different
measure. The number of partition of FUSE on the
science dataset is 500, while the number of parti-
tion used on the environment dataset is 350. For
training stability, we also normalize the fuzzy set
embedding by their Euclidean norm before multi-
plication with volume weights. In addition, to make
a fair comparison against baselines, we use the
same optimization setup as in (Jiang et al., 2023)
and provide a version of FUSE (FUSE (λ = 1.0))
with equal weights on intersection and asymmetry
loss.

E Scope and Limitation

This work is the first attempt to use fuzzy set to
model concepts in taxonomy expansion. To ex-
amine only the effectiveness of fuzzy set repre-
sentation, we only use simple neural architectures
and use only the child-parent pairs. The full ca-
pacity of FUSE should be further examined using
datasets that contain First Order Logic (FOL) state-
ments, since by construction, fuzzy sets should sat-
isfy all the fuzzy logic axioms (Chen et al., 2022).
This suggests future directions to expand taxonomy
datasets with more complicated queries, and to han-
dle more graph-structured data in social analysis
and text mining (Ren and Leskovec, 2020; Ren
et al., 2020; Chen et al., 2022; Zhu et al., 2022;
Ju et al., 2023). Moreover, we can explore more
explicit form of fuzzy membership function, such
as a mixture of Gumbel boxes, to make the learning
more concrete.
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