@inproceedings{servantez-etal-2024-chain,
title = "Chain of Logic: Rule-Based Reasoning with Large Language Models",
author = "Servantez, Sergio and
Barrow, Joe and
Hammond, Kristian and
Jain, Rajiv",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.159",
doi = "10.18653/v1/2024.findings-acl.159",
pages = "2721--2733",
abstract = "Rule-based reasoning, a fundamental type of legal reasoning, enables us to draw conclusions by accurately applying a rule to a set of facts. We explore causal language models as rule-based reasoners, specifically with respect to compositional rules - rules consisting of multiple elements which form a complex logical expression. Reasoning about compositional rules is challenging because it requires multiple reasoning steps, and attending to the logical relationships between elements. We introduce a new prompting method, Chain of Logic, which elicits rule-based reasoning through decomposition (solving elements as independent threads of logic), and recomposition (recombining these sub-answers to resolve the underlying logical expression). This method was inspired by the IRAC (Issue, Rule, Application, Conclusion) framework, a sequential reasoning approach used by lawyers. We evaluate chain of logic across eight rule-based reasoning tasks involving three distinct compositional rules from the LegalBench benchmark and demonstrate it consistently outperforms other prompting methods, including chain of thought and self-ask, using open-source and commercial language models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="servantez-etal-2024-chain">
<titleInfo>
<title>Chain of Logic: Rule-Based Reasoning with Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sergio</namePart>
<namePart type="family">Servantez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joe</namePart>
<namePart type="family">Barrow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristian</namePart>
<namePart type="family">Hammond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajiv</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Rule-based reasoning, a fundamental type of legal reasoning, enables us to draw conclusions by accurately applying a rule to a set of facts. We explore causal language models as rule-based reasoners, specifically with respect to compositional rules - rules consisting of multiple elements which form a complex logical expression. Reasoning about compositional rules is challenging because it requires multiple reasoning steps, and attending to the logical relationships between elements. We introduce a new prompting method, Chain of Logic, which elicits rule-based reasoning through decomposition (solving elements as independent threads of logic), and recomposition (recombining these sub-answers to resolve the underlying logical expression). This method was inspired by the IRAC (Issue, Rule, Application, Conclusion) framework, a sequential reasoning approach used by lawyers. We evaluate chain of logic across eight rule-based reasoning tasks involving three distinct compositional rules from the LegalBench benchmark and demonstrate it consistently outperforms other prompting methods, including chain of thought and self-ask, using open-source and commercial language models.</abstract>
<identifier type="citekey">servantez-etal-2024-chain</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.159</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.159</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>2721</start>
<end>2733</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chain of Logic: Rule-Based Reasoning with Large Language Models
%A Servantez, Sergio
%A Barrow, Joe
%A Hammond, Kristian
%A Jain, Rajiv
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F servantez-etal-2024-chain
%X Rule-based reasoning, a fundamental type of legal reasoning, enables us to draw conclusions by accurately applying a rule to a set of facts. We explore causal language models as rule-based reasoners, specifically with respect to compositional rules - rules consisting of multiple elements which form a complex logical expression. Reasoning about compositional rules is challenging because it requires multiple reasoning steps, and attending to the logical relationships between elements. We introduce a new prompting method, Chain of Logic, which elicits rule-based reasoning through decomposition (solving elements as independent threads of logic), and recomposition (recombining these sub-answers to resolve the underlying logical expression). This method was inspired by the IRAC (Issue, Rule, Application, Conclusion) framework, a sequential reasoning approach used by lawyers. We evaluate chain of logic across eight rule-based reasoning tasks involving three distinct compositional rules from the LegalBench benchmark and demonstrate it consistently outperforms other prompting methods, including chain of thought and self-ask, using open-source and commercial language models.
%R 10.18653/v1/2024.findings-acl.159
%U https://aclanthology.org/2024.findings-acl.159
%U https://doi.org/10.18653/v1/2024.findings-acl.159
%P 2721-2733
Markdown (Informal)
[Chain of Logic: Rule-Based Reasoning with Large Language Models](https://aclanthology.org/2024.findings-acl.159) (Servantez et al., Findings 2024)
ACL