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Abstract

Supervised fine-tuning (SFT) on instruction-
following corpus is a crucial approach to-
ward the alignment of large language models
(LLMs). However, the performance of LLMs
on standard knowledge and reasoning bench-
marks tends to suffer from deterioration at
the latter stage of the SFT process, echoing
the phenomenon of alignment tax. Through
our pilot study, we put a hypothesis that the
data biases are probably one cause behind the
phenomenon. To address the issue, we intro-
duce a simple disperse-then-merge framework.
To be concrete, we disperse the instruction-
following data into portions and train multi-
ple sub-models using different data portions.
Then we merge multiple models into a single
one via model merging techniques. Despite its
simplicity, our framework outperforms various
sophisticated methods such as data curation and
training regularization on a series of standard
knowledge and reasoning benchmarks.1

1 Introduction

Trained on trillions of tokens from webpages (Ope-
nAI, 2023; Bai et al., 2023; Google, 2023), large
language models (LLMs) have demonstrated im-
pressive capacity on obtaining general-purpose rep-
resentations for various downstream NLP tasks.
However, pre-trained language models may not
follow human instructions (Ouyang et al., 2022)
and produce toxic, hallucinated, or biased con-
tent (Sun et al., 2024; Huang et al., 2023; Zhang
et al., 2023c). To address the issue, supervised
fine-tuning (Ouyang et al., 2022) on instruction-
following data has emerged as one of the de facto
paradigms (Taori et al., 2023; Chiang et al., 2023)
for aligning LLMs with human preferences.

†This work was done during internship at Tencent AI Lab.
*Corresponding authors: Deng Cai (thisisj-

cykcd@gmail.com) and Rui Yan (ruiyan@ruc.edu.cn)
1The code is released at https://github.com/

TingchenFu/ACL24-ExpertFusion.
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(a) The performance on
MMLU (5-shot, accuracy)
vs. data size.
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(b) The performance on
BBH (3-shot, exact match)
vs. data size.

Figure 1: The performance on MMLU and BBH when
tuning Llama-2-7b and Llama-2-13b with different sizes
of instruction-following data from TÜLU-V2-mix.

However, with the size of instruction-following
data rising, it has been observed that the perfor-
mance of LLM on standard knowledge and rea-
soning benchmarks does not always improve but
exhibits degradation (Dou et al., 2023), i.e., the
alignment tax (Bai et al., 2022), as is shown in
Figure 1. In other words, simply scaling up the
instruction-following data leads to a quick bump
into the upper bound where the marginal return of
increasing data size approaches zero or even mi-
nus. It is therefore non-trivial to unleash the full
potential of large-scale instruction-following data.

Prior studies tend to attribute the alignment tax
phenomenon to the low-quality samples within the
instruction-following corpus (Chen et al., 2023;
Cao et al., 2023), or the knowledge forgetting dur-
ing the SFT process (Dou et al., 2023; Ren et al.,
2024). However, our pilot study in Section 3 re-
veals that the quality issue and the catastrophic
forgetting of pre-training knowledge are probably
not the main cause of the alignment tax since the
decline can be observed across corpora with varied
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sizes and quality.

By analyzing the trend of loss descent during the
SFT process, we alternatively posit that the data
biases fitted on the instruction data are probably
one of the major causes behind it. Specifically, dur-
ing the tuning process, LLMs fit on dataset biases
while acquiring instruction-following ability. In the
beginning, the acquisition of generalizable ability
predominates so the performance on knowledge
and reasoning benchmarks improves. However,
during the tuning process, the learning of gener-
alization quickly stagnates and the model tends
to acquire more data biases instead, which harms
the parametric knowledge of LLM and leads to a
decline in related benchmarks.

We propose a frustratingly simple DTM (Disperse-
Then-Merge) framework composed of three steps:
(1) we initially distribute the instruction-following
data into several clusters and then (2) perform in-
struction tuning on each cluster of data to obtain
a series of sub-models assimilating different data
biases; (3) finally we merge the sub-models trained
on each cluster into a single one in the weight space,
such that the data bias of each sub-model is miti-
gated at fusion. Importantly, DTM ensures the reduc-
tion of alignment tax when instruction tuning with
almost no extra cost at both training and inference.

To empirically verify the efficacy of the DTM
framework, we conduct extensive experiments and
evaluations across 9 benchmarks involving math
reasoning, world knowledge, and code generation.
The experiment results exhibit that DTM outper-
forms both (1) data selection methods that filter
out low-quality samples (Dou et al., 2023); and
(2) regularization and continue training methods
that prevent the forgetting of knowledge learned
from pre-training (Kirkpatrick et al., 2016; Rolnick
et al., 2018). In particular, different from previous
methods, DTM does not require any additional train-
ing and it incurs almost no extra cost at inference.

The contribution of this paper can be summa-
rized as follows:

• We empirically verify and analyze the effect of
alignment tax during the instruction tuning, thereby
putting a hypothesis that the dataset biases are the
reason behind the alignment tax.
• We propose a frustratingly simple DTM framework
in which the biases from instruction-following data
are distributed and forgotten.

2 Related Work

Supervised Instruction Tuning. Supervised
fine-tuning of LLMs on open-domain instruction-
following data (Ouyang et al., 2022) is a promising
approach for calibrating LLMs with human values,
which is a critical prerequisite prior to their de-
ployment in real-world scenarios (Xu et al., 2023c).
Bypassing the complex and unstable proximal pol-
icy optimization algorithm Schulman et al. (2017)
in the reinforcement learning from human feed-
back (RLHF) procedure (Ouyang et al., 2022), SFT
only requires a high-quality instruction-following
corpus collected from GPT-4 (OpenAI, 2023) or
human annotator (Zhou et al., 2023; Conover et al.,
2023) to tune on. In spite of its simpleness, a
surge of recent models (Ding et al., 2023; Xu
et al., 2023a; Geng et al., 2023; Xu et al., 2023b)
prove the effectiveness of SFT with their impres-
sive performance on both conventional knowledge
and reasoning benchmarks (Hendrycks et al., 2021)
and newly appeared instruction-following bench-
marks (Li et al., 2023d; Zheng et al., 2023). How-
ever, Bai et al. (2022) point out that in particular
cases, alignment of LLM is a double-edged sword,
enhancing instruction-following ability at the sacri-
fice of capacity on the conventional knowledge and
reasoning benchmark, or the alignment tax. Some
follow-ups (Dou et al., 2023; Chen et al., 2023) con-
jecture that low-quality samples and interference of
parametric knowledge are the reasons behind this.
Different from previous works, in this study we
propose a new perspective to understand the root
cause of alignment tax.

Model Merging. Model merging is an effective
technique to aggregate the capacity of multiple
models. Distinct from model ensemble, merging
techniques involve pruning (Yadav et al., 2023), re-
scaling (Yu et al., 2023), re-weighting (Matena and
Raffel, 2022) or rotating (Singh and Jaggi, 2020)
the parameters of multiple models before merging
them into a single one in the weight space, therefore
incurring no extra latency at inference. Different
from previous works that apply model merging for
multi-task learning (Yang et al., 2023b; Jin et al.,
2023), machine unlearning (Hu et al., 2023; Da-
heim et al., 2023), domain transfer (Ilharco et al.,
2023; Zhang et al., 2023a), multi-objective rein-
forcement learning (Rame et al., 2023; Jang et al.,
2023), we utilize model merging for the align-
ment of LLM. Actually, model merging is closely
related to the learned biases of neural networks.
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Figure 2: The performance on MMLU (5-shot, accu-
racy) and BBH (3-shot, exact match) when tuning
Llama-2-7b with different sizes of instruction-following
data from the high-quality subset of TÜLU-V2-mix.

Although small models with different prediction
mechanisms can hardly be merged together with-
out performance loss (Lubana et al., 2022; Juneja
et al., 2023), it is different for large-scale fine-tuned
models from pre-trained checkpoints, which could
generally maintain their capacity when merged to-
gether (Qin et al., 2022; Gueta et al., 2023). Re-
cently, Zaman et al. (2023) and Wan et al. (2024)
have shown the possibility of fusing complemen-
tary knowledge or removing unintentional memory
with the assistance of model merging.

3 Pilot Study

The existence of alignment tax indicates an up-
per bound of performance when directly increas-
ing the data size at supervised fine-tuning. It is
thus necessary to analyze the underlying cause for
the alignment tax to unleash the full potential of
instruction-following data. Specifically, we first
examine the intuitions that data quality and knowl-
edge forgetting are responsible for the decline in
conventional knowledge and reasoning benchmarks
(Section 3.1), and then posit our hypothesis that the
biases during fitting the instruction-following data
is probably one of the major causes (Section 3.2).

3.1 Are Data Quality and Knowledge
Forgetting the Main Causes of the
Alignment Tax?

The experiments are mainly conducted on Llama-2-
7b (Touvron et al., 2023) with TÜLU-V2-mix. To
examine the previously accepted data quality hy-
pothesis (Chen et al., 2023), we employ the quality
evaluator in Liu et al. (2024) to filter TÜLU-V2-mix
samples, keeping only the samples with an above
2.5 quality score for tuning and the experiment re-
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Figure 3: The performance on MMLU (5-shot, accu-
racy) and BBH (3-shot, exact match) when tuning
Llama-2-7b with different sizes of instruction-following
data from TÜLU-V2-mix with Replay.

sults are shown in Figure 2. Besides, to verify the
effect of pre-training knowledge forgetting, we mix
the instruction-following corpus with an equivalent
amount of pre-training data from Redpajama (Com-
puter, 2023) for multi-tasking, and the experiment
results are shown in Figrue 3.

From the experiment results, it is not challenging
to discern the following points:
• Data quality is probably NOT the main rea-
son. Even if we filter out the low-quality samples
within the instruction-following corpus with a qual-
ity evaluator (Liu et al., 2024), the alignment tax
still exists as shown in Figure 2, suggesting that
data quality is probably not the main cause behind
the performance decline.
• Knowledge forgetting is probably NOT the
main reason. Although a significant amount of
pre-training data is mixed into the pre-training cor-
pus to alleviate the forgetting and intervention of
parametric knowledge, from Figure 3 we can see
the drop in performance of traditional knowledge
and reasoning benchmarks can hardly be removed.
Therefore, it is probably unreasonable to attribute
alignment tax to knowledge forgetting.

3.2 Seek for Main Causes of the Alignment
Tax

To understand the reason behind the alignment tax
and in particular what is learned when alignment
tax occurs, we propose to track the change of loss
during the SFT process. In detail, we randomly
split the dataset into 10 portions with equal sizes,
training on 9 of them sequentially and leaving one
for evaluation. Every after a portion is finished,
we measure the loss reduction on the training set
∆Ltrain and the loss reduction on the validation
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Figure 4: The loss variation ratio between the training
set and the validation set, or ∆Ltrain/∆Lval when tun-
ing Llama-2-7b-hf on TÜLU-V2-mix data.

set ∆Lval. Intuitively, while ∆Lval reflects the
enhancement in generalizable model capacity on
instruction following, ∆Ltrain encompasses not
only the generalizable instruction-following ability,
but also the ungeneralizable data specific biases. To
measure the composing proportion of the two com-
ponents, we plot the ratio ∆Ltrain/∆Lval during
the training process in Figure 4.

As is shown, the ratio is approximately 1.0
at the beginning, suggesting that generalizable
instruction-following ability dominates at the ini-
tial of training. But as the SFT goes on, the ratio
quickly inflates from 1.0 to nearly 20, indicating
that the acquisition of data biases gradually out-
weighs other factors and becomes the major reason
for loss reduction. Furthermore, to have a more
intuitive understanding of data-specific biases, we
exhibit the token-level biases by measuring the cor-
relation between the per-token loss reduction on
the training set and the validation set. Spearman’s
ρ between the loss reduction on two sets is shown
in Figure 5. From the figure, it becomes apparent
that as the instruction tuning goes on, the fitting on
training tokens gradually deviates from the gener-
alizable ability. Meanwhile, some representative
tokens with prominent loss reduction at the begin-
ning and the end of training are shown in Figure 6.
In a comparison between Figure 6a and Figure 6b,
we can observe that the training loss reduction at
the end can be mainly attributed to rare words and
symbols, suggesting the existence of ungeneraliz-
able data biases.

Therefore, we hypothesize that the dataset-
specific biases and shortcuts (Wang et al., 2022;
Du et al., 2021) are probably one of the primary
contributors to the fitting of the training corpus.
Once the assimilation of ungeneralizable dataset bi-
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Figure 5: The correlation between training loss reduc-
tion and validation loss reduction at token level.

‘decl’, ‘ma’, ‘egy’, ’X’, 
‘yes’, ‘AP’, ’I’, ‘gre’,  
‘office’, ’prem’, ’qu
ant’, ‘let’, ‘plus’, ’Fr’ 
‘does’,  ‘simp’, ‘ok’,  
‘syntax’, ‘subject’, 
‘arg’, ‘can’, ‘here’, 
‘negative’, ’russ’, 
‘men’, ’ Saint’ 

(a) Representative loss-
reduced tokens after tuned
on 10% of instruction-
following data.

‘лта’, ‘мия’, 
‘provincie’, ‘филь’, 
‘ie’, ‘ishop’, ‘↳’, 
‘край’, ‘yкра’, ’fri’, 
‘рода’, ’hoog’, ‘roc’, 
‘->{’, ‘bilder’, ‘terug’, 
‘früher’, ‘$_’, ‘cер’,
‘straße’, ‘łą’, ‘osz’, 
‘äsident’

(b) Representative loss-
reduced tokens after tuned
on 90% of instruction-
following data.

Figure 6: Representative tokens with prominent loss
reduction at different periods of instruction tuning.

ases outweighs the growth of instruction-following
capacity, the world knowledge and commonsense
reasoning ability of LLM is damaged, thus caus-
ing the degradation in related benchmarks, or the
alignment tax (Bai et al., 2022).

4 Methodology

As analyzed above, vanilla SFT on the full volume
of instruction-following data suffers from the as-
similation of dataset biases, leading to inefficiency
in exploiting large-scale instruction-following cor-
pus. Previously, Zaman et al. (2023) discovered
that when two BERT-based classification mod-
els are merged together, the unshared knowledge
within each model is mostly forgotten while the
common knowledge is enhanced. Getting inspi-
ration from this, to unleash the full potential of
large-scale instruction-following data, we propose
a DTM framework, as shown in Figure 7. In a nut-
shell, we disperse the instruction-following data
into multiple portions to obtain a series of sub-
models with different data biases. Then through the
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Step1:
Distributing

Step2: 
Training sub-models 

Step3: 
Model Merging

Figure 7: The workflow of DTM framework, which is composed of three steps: instruction-following data distributing,
sub-model training and the merging of sub-models to obtain the final instruction-tuned model.

fusion of multiple sub-models, we can aggregate
their instruction-following capacities and eliminate
their dataset biases at the same time.

4.1 Instruction-following Data Distributing

As standard SFT, DTM assumes access to a base
LLM M0 and an instruction-following corpus
D = {(xi, yi)}Ni=1 with N samples where xi is
the instruction prompt and yi is the response. The
first step involves distributing the samples into non-
overlapped K clusters {D1,D2, . . . ,DK}. Numer-
ous approaches can be employed to achieve the
clustering of the training data. For instance, we can
first obtain the embedding of an instruction sam-
ple exploiting an off-the-shelf sentence embedding
model, or feed the sample into an LLM and use
the pooling of the last hidden states as the sentence
embedding alternatively. Once the embedding of
instruction is obtained, K-means clustering based
on cosine distance in embedding space is a good
choice to divide the instruction-following corpus
into K portions while other clustering schemes like
random splitting are also acceptable.

4.2 Sub-model Training

After data distributing, the base LLM M0 is tuned
on K portions of instruction-following data re-
spectively with the standard next-token prediction
objective, resulting in K instruction-tuned sub-
models M1,M2, . . . ,MK . It is worth mention-
ing that the sub-models are not impervious to bi-
ases; however, the biases they acquire vary from
one another. In addition, according to the ob-
served trend in Section 3, fitting on bias diminishes
when the scale of instruction-following data nar-
rows down, suggesting that the bias learned by
M1,M2, . . . ,MK is less than the vanilla SFT
counterpart.

4.3 Model Merging

The K tuned model M1,M2, . . . ,MK share com-
mon knowledge and capacity on instruction follow-
ing but their data biases are distinct from each other.
Consequently, the acquired capacity on instruction
following is maintained, while their unique data
biases are forgotten if we fuse the K sub-models
together, according to Zaman et al. (2023). Vari-
ous methods can be utilized to accomplish model
fusion and simply taking the weighted average of
K sub-models is the most straightforward strategy:

Mi
f =

K∑

j=1

αjMi
j , (1)

where Mf is the fused model and the superscript
denotes a single parameter in the model. αj is the
merging weight of the j-th sub-model Mj and we
have

∑K
j=1 αj = 1, αj ≥ 0 (j = 1, 2, . . . ,K).

If not specified otherwise, we use the weighted
average of sub-models for its simplicity and ease
of use.

5 Experiment

5.1 Experiment Setup

Data and Backbone In our experiment, we em-
ploy the TÜLU-V2-mix (Ivison et al., 2023) for
SFT, a meticulously curated combination on the
basis of TÜLU-V1-mix (Wang et al., 2023). It
contains 326, 154 samples collected from 11 open-
sourced instruction-following corpora, which are
either manually written by human annotators, con-
verted from existing NLP benchmarks, or curated
by GPT-4. As for the backbone, we employ the
Llama-2-7b (Touvron et al., 2023) as our base LLM.
The code is released to facilitate future relevant re-
search.
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GSM8K MMLU BBH ARC-c OBQA RACE HumanEval MBPP TruthfulQA

Llama-2-base 13.57 45.96 39.41 43.34 31.40 39.52 12.20 20.60 24.85

Vanilla 18.50 49.74 42.78 46.93 32.80 40.57 17.68 21.40 25.83
L2-norm 18.27 49.98 43.61 46.33 32.4 39.62 16.46 22.60 27.66
EWC 15.77 49.02 41.80 46.93 32.40 39.43 15.85 22.40 28.52
Replay 18.27 49.46 43.05 46.76 32.20 40.19 15.24 22.40 26.32
Uniform Soup 19.03 50.24 42.92 46.16 33.20 40.67 14.02 21.20 25.95
MoE 14.48 47.36 40.39 44.62 32.00 40.10 13.41 21.80 26.07
Deita 18.12 48.50 42.90 44.79 32.00 41.43 15.24 20.80 28.37

DTM (Ours) 20.62 50.43 44.46 48.72 33.80 41.34 18.29 23.60 29.13

Table 1: Evaluation performance of our training method and its peers. The numbers in bold are the best results and
the numbers underlined are the second-best ones.

Baseline Method We compare the proposed DTM
framework with the following baselines:
• Vanilla, or traditional SFT on the instruction-
following data with language modeling objective.
• L2-norm, where L2 regularization is incorpo-
rated in the training objective to circumvent the
overfit on instruction-following data and interfer-
ence with the parametric knowledge.
• EWC (Elastic Weight Consolidation) (Kirk-
patrick et al., 2016) is a typical regularization in
the subfield of continue learning to alleviate the
forgetting of previously learned knowledge. There,
we apply EWC in SFT to mitigate the catastrophic
forgetting of pre-training knowledge.
• Replay (Rolnick et al., 2018) is another typi-
cal method for mitigating catastrophic forgetting
in continue learning. In our implementation, we
mix the pre-training data reconstructed by Red-
pajama (Computer, 2023) into the instruction-
following corpus in a 1:1 ratio and perform multi-
task learning on plain language modeling and
instruction-following to retain the pre-training
knowledge.
• Uniform Soup (Wortsman et al., 2022) is a simi-
lar recipe to ours in the sense that it fuses multiple
trained models into a single one employing model
merging techniques. However, in this case, mul-
tiple models are trained on the entire corpus with
different hyper-parameter configurations.
• MoE (Dou et al., 2023) is a recently proposed
method to deal with the performance drop of LLM
in knowledge-intensive benchmarks. Combining
MoE with parameter-efficient fine-tuning, Dou et al.
(2023) enables expert coordination for task utiliza-
tion and full leverage of parametric knowledge.
• Deita (Liu et al., 2023) is an automatic data selec-
tion strategy for alignment comprehensively con-
sidering the complexity, quality, and diversity of

instruction-following data. In our implementation,
we keep the samples with complexity scores ex-
ceeding 2.5 for training.

Evaluation To have a comprehensive under-
standing on the efficacy of different training
recipes, the evaluation encompasses the capac-
ity of LLM in multiple aspects: math reasoning
(GSM8K Cobbe et al., 2021), factual knowledge
(MMLU Hendrycks et al., 2021), commonsense
reasoning (BBH Suzgun et al., 2023, ARC-c Clark
et al., 2018 and OpenBookQA Mihaylov et al.,
2018), reading comprehension (RACE Lai et al.,
2017), code generation (HumanEval Chen et al.,
2021a and MBPP Austin et al., 2021) and truthful-
ness (TruthfulQA Lin et al., 2022), strictly follow-
ing the evaluation protocol of Open LLM Leader-
board2. In addition, we assess their instruction fol-
lowing ability with MT-bench (Zheng et al., 2023)
and Vicuna-bench (Chiang et al., 2023), two widely
used instruction-following benchmarks.

5.2 Experiment Results

The main experiment results are shown in Table 1,
in which we randomly distribute the instruction-
following data into K = 4 clusters and utilize
average weight merging (αj = 0.25, j = 1, 2, 3, 4)
for fusion. From the table we can observe that
our proposed approach outperforms its peers on
most evaluation benchmarks, proving the effec-
tiveness of our DTM framework. Meanwhile, the
performance of Uniform Soup is notable, achiev-
ing the second-best results on three benchmarks.
The difference between Uniform Soup and ours
lies in that their sub-models for merging are trained
on the full volume of data with different hyper-

2
https://huggingface.co/spaces/HuggingFaceH4/

open_llm_leaderboard
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GSM8K MMLU BBH ARC-c OBQA RACE HumanEval MBPP TruthfulQA

Ours 20.62 50.43 44.46 48.72 33.80 41.34 18.29 23.60 29.13

MiniLM (I+R) 16.76 50.04 42.98 47.78 32.00 41.63 15.24 23.20 30.72
MiniLM (I) 19.71 49.95 42.67 47.01 33.40 41.53 15.24 21.20 30.97
MiniLM (R) 18.57 49.75 43.17 47.95 34.20 42.39 15.85 24.60 29.50

MPNet (I+R) 16.83 49.73 42.94 47.87 32.80 41.34 15.24 23.80 30.97
MPNet (I) 14.86 49.88 42.40 48.38 33.40 41.53 14.63 20.80 29.87
MPNet (R) 16.76 49.44 43.05 48.63 32.80 42.01 15.85 21.80 29.62

Table 2: Evaluation performance with different clustering methods. Numbers in bold are the best results.

MT-bench Vicuna-bench

Vanilla 4.86 6.26
L2-norm 4.61 6.39
EWC 4.44 6.46
Replay 4.78 5.75
Uniform Soup 5.04 7.48
MoE 3.67 6.43
Deita 4.71 6.20

DTM (Ours) 5.19 6.60

Table 3: The evaluation results of instruction following
ability on MT-bench and Vicuna-bench. the numbers in
bold are best results. The numbers underlined are the
second-best ones.

parameters. Consequently, the data biases of its
sub-models are more likely to be overlapped and
cannot be removed at merging. In addition, the
performance of L2-norm and EWC also attains im-
pressive performance on two benchmarks respec-
tively, possibly due to the retention of pre-training
knowledge through regularization techniques.

The effect of different clustering methods. To
investigate the impact of different data clustering
methods, we experiment with different sentence
embedding models and different encoding schemes.
In detail, we use MiniLM (Wang et al., 2020) and
MPNet (Song et al., 2020) from the SentenceTrans-
formers library (Reimers and Gurevych, 2019)3

to encode the instruction (I) or the response (R)
or both of them (I+R) to obtain their dense repre-
sentation for K-means clustering. The experiment
results based on different clustering methods are
shown in Table 2. From the table, it can be inferred
that although the dense representation obtained via
encoding response (R) is slightly better than other
encoding schemes for clustering, none of those
sophisticated clustering methods have an obvious
advantage over simple random clustering.

3
https://www.sbert.net/

Figure 8: The Venn diagram for the error set of K = 4
sub-models on MMLU. The numbers denote the per-
centage of error cases in that particular set relative to all
error cases.

The effect of different merging methods. As
for the model fusion, we experiment with
several widely used merging techniques: (1)
Fisher (Matena and Raffel, 2022) employs the ap-
proximated Fisher information matrix to approach
the fused model with the highest joint probability.
(2) Task Vector (Ilharco et al., 2023) subtracts the
base LLM weight from the instruction-tuned model
in the weight space to obtain the task vector and
accomplish merging with vector arithmetic; (3) Tie
Merge (Yadav et al., 2023) trims and prunes the
models before merge and resolves the interference
between multiple models. (4) DARE (Yu et al.,
2023) refines task vector by dropout and re-scale
before conducting vector arithmetic. The exper-
iment results on different clustering methods are
shown in Table 4. Similarly, it seems that no single
merging method is apparently superior to others,
and simple average weight merging is sufficient.

Performance on instruction following. The ex-
periment results on instruction-following ability
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GSM8K MMLU BBH ARC-c OBQA RACE HumanEval MBPP TruthfulQA

Ours 20.62 50.43 44.46 48.72 33.8 41.34 18.29 23.60 29.13

Fisher 19.64 50.41 44.28 48.04 34.40 41.53 17.68 22.40 28.52
Task Vector 19.71 49.85 43.58 49.66 33.40 41.82 17.68 22.40 28.27
Tie Merge 18.42 49.32 42.90 47.10 33.00 40.57 16.46 23.60 27.66
DARE 18.95 49.89 43.37 49.15 33.40 42.30 16.46 22.00 28.64

Table 4: Evaluation Performance with different merging methods. Numbers in bold are the best results among
different merging methods.
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Figure 9: The accuracy of the fused model v.s. the
count of appearance in the error sets of sub-models. The
dotted line denotes the overall accuracy on MMLU.

are shown in Table 3. We can observe that our
approach surpasses the vanilla SFT (5.19 v.s. 4.86
in MT-bench and 6.60 v.s. 6.26 in Vicuna-bench)
and attains the best or the second-best performance,
suggesting that our approach not only maintains the
basic knowledge and reasoning ability of language
model, but also improve the instruction-following
ability. Notably, Uniform Soup exhibits strong
instruction-following ability since their sub-models
are trained on a full volume of data and therefore
acquire stronger instruction-following capacity, al-
though at the cost of more damage to world knowl-
edge and commonsense reasoning ability.

6 Analysis

The SFT experiments on TÜLU-V2-mix have
proven the efficacy of the proposed approach. To
gain more in-depth insights, further exploration and
analysis are detailed below.

Question1: How does DTM help?
Answer1: Measuring the data biases or shortcuts
on instruction following is challenging since we
are agnostic to the specific form of the bias. There-
fore, we choose to quantify the data biases of LLM
through their error sets on MMLU (Hendrycks
et al., 2021). We plot the Venn diagram for the
error set of K = 4 sub-models in Figure 8. It can

MMLU BBH ARC-e ARC-c

Alpaca-GPT4
Vanilla 47.14 39.38 77.65 45.14
DTM 47.60 39.99 78.28 47.27

Code-Alpaca
Vanilla 47.04 39.04 77.82 45.31
DTM 47.37 40.17 77.90 45.65

Baize
Vanilla 44.96 39.68 74.58 43.69
DTM 46.24 40.18 75.38 45.73

Camel
Vanilla 44.72 40.44 75.25 42.58
DTM 45.81 41.32 75.51 44.11

Evol-Instruct
Vanilla 47.19 42.40 77.82 45.90
DTM 47.24 41.69 78.28 47.70

LIMA
Vanilla 46.70 39.46 76.30 43.52
DTM 46.25 40.06 76.85 44.28

Table 5: Experiment results after tuning the base LLM
on five widely used instruction-following corpora.

be observed that their error sets share a large por-
tion (48.7%) but every sub-model has its own error
cases (accounting for 4.2%, 4.6%, 4.8% and 3.3%
of the entire error cases respectively), attributing to
their unique shortcut.

Next, we bucket the test case of MMLU into
different bins according to their count of appear-
ance n in the error sets. For example, n = 4 for
the cases within the common intersection of four
error sets while n = 1 for unique error cases of
sub-models. Specifically, n = 0 denotes that the
case does not belong to any error set or equivalently
all sub-models can figure out the answer correctly.
Then we plot the accuracy of the fused model on
each bin in Figure 9. From the figure, the accuracy
on the first bin (n = 0) is nearly approaching 100%,
suggesting that the common knowledge is retained.
On the other hand, the high accuracy on the sec-
ond bin means that the unique error cases of four
sub-models are likely to be correctly solved by the
fused model, which is evidence for the forgetting
of unique data biases in four sub-models.

Question2: Does DTM yield effective results
across instruction-following data of varying
sizes and domains?
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GSM8K MMLU BBH ARC-c OBQA RACE HumanEval MBPP TruthfulQA

Mistral-7b 39.95 62.56 56.08 50.34 32.60 40.86 28.65 39.60 28.27
Vanilla SFT 38.51 62.01 59.64 54.10 31.80 42.49 30.49 39.80 28.15
Ours 43.52 62.63 60.87 55.80 32.20 42.87 31.10 41.40 30.11

Baichuan-2-7b 21.15 54.33 34.75 42.15 30.60 38.28 18.29 24.20 23.01
Vanilla SFT 25.63 52.18 40.53 41.72 28.80 39.52 18.90 23.40 25.70
Ours 26.46 53.92 42.40 43.52 31.00 40.57 23.78 25.60 26.56

Table 6: Evaluation Performance with different backbones. Numbers in bold are the best results in the block.

Answer: To examine the robustness and gener-
ality of our approach, aside from TÜLU-V2-mix,
we conduct experiments on other five widely used
instruction-following corpora within or not within
the TÜLU-V2-mix, namely GPT4-Alpaca (generic,
52,002 samples, Peng et al., 2023), Code-Alpaca
(code, 20,022 samples, Chaudhary, 2023), Baize
(Quora & StackOverflow & medicine, 158,183
samples, Xu et al., 2023b), Camel (STEM, 109,740
samples, Li et al., 2023a), Evol-Instruct (generic,
70,000 samples, Xu et al., 2023a) and LIMA (Stack
Exchange and Reddit, 1,000 samples). The perfor-
mance of our approach in comparison with vanilla
SFT is shown in Table 5, from which we can con-
clude that DTM is not constrained by the domain of
the instruction-following data, but its superiority is
influenced by the data size.

Question3: How is model fusion in compari-
son to model ensemble?
Answer: Different from model fusion which ag-
gregates the parameter of multiple models in the
weight space, model ensemble aggregates multi-
ple models by manipulating their logits. To draw
a comparison of their effects, we substitute the
model merging procedure in Uniform Soup (Worts-
man et al., 2022) and our approach with model
ensemble, and the evaluation results on MMLU
are shown in Table 7. From the table, model en-
semble is almost on par with model fusion except
that model fusion is marginally better than ensem-
ble overall. However, the computation required by
model ensemble is K (the number of sub-models)
times larger than the model fusion, and thus its
throughput is inferior to the model merge.

Question4: Does the proposed approach work
on other base LLM?
Answer: To answer the question, we conduct ex-
periments with Mistral-7b (Jiang et al., 2023) and
Baichuan-2-7b (Yang et al., 2023a), two renowned
backbones with remarkable performance on Open
LLM Leaderboard with similar parameter scale.

Humanities
Social

Science
STEM Others Overall

Uniform Soup
Merge 47.21 57.36 40.29 57.13 50.24
Ensemble 47.31 57.17 39.63 56.76 50.00

Ours
Merge 47.52 58.27 39.23 57.62 50.43
Ensemble 47.89 57.20 39.30 57.90 50.39

Table 7: The evaluation results of model merge and
model ensemble on MMLU. Numbers in bold are the
best performance in the block.

The experiment results are shown in Table 6, sug-
gesting that DTM is agnostic to the base LLM and
able to generalize to more capable LLMs.

7 Conclusion

In this study, we target the alignment tax during
the SFT. Through a series of pilot studies, we hy-
pothesize that data biases are the root cause for the
decline in standard benchmarks after an LLM goes
through the SFT process. To deal with the problem,
we propose a simple three-step framework to dis-
perse the biases apart and employ model merging
techniques to mitigate the effect of data biases. Ex-
tensive experiments are conducted to empirically
verify the efficacy of our approach and we hope
our research will inspire more future work explor-
ing the essence and mechanism of LLM alignment
together with its effects on the capacity of LLM.
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Limitations

The limitations of this study can be summarized as
below:
• In this work, we mainly focus on the align-
ment tax during the supervised fine-tuning process.
Aside from SFT, there are multiple alternative ap-
proaches towards the alignment of LLM such as
RRHF (Yuan et al., 2023), DPO (Rafailov et al.,
2023), and their variants. However, we did not ver-
ify or discuss the alignment tax in other alignment
methods and we would like to leave this for future
work.
• We generally utilize LoRA (Hu et al., 2022) as a
parameter-efficient fine-tuning (PEFT) technique
for SFT and do not perform experiments with other
PEFT techniques such as adapter (Houlsby et al.,
2019) or IA3 (Liu et al., 2022) or full-parameter
fine-tuning.

Ethical Consideration

This paper has few ethical risks and will not pose a
problem with ethics. First, the alignment of large
language models is not a new task in natural lan-
guage processing, and several papers about this
task have been published at NLP conferences. Sec-
ond, all the datasets and benchmarks used in this
paper have been published in previous papers. Our
work aims at better understanding and eliminating
alignment tax towards the tax-free alignment and
our approach should not be used for any malicious
purpose.
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A More Details on Experiment Setup

A.1 More details on Instruction data
In our experiment, we majorly employ the metic-
ulously curated TÜLU-V2-mix4 (Li et al., 2023a)
corpus for SFT. Composed of 11 subsets, TÜLU-
V2-mix includes 326, 154 samples, compared to
490, 445 in the V1 mixture. To reduce the compu-
tation cost required for fine-tuning, we only keep
the first turn of dialogue in case there are multiple
instructions and responses in a datum, and the data
statistics for each subset consisting of the corpus
are shown in Table 8. Besides, in Section 6, we
perform SFT on other 5 corpora to investigate the
generality of our approach. Among the five cor-
pora, Alpaca-GPT4 (Peng et al., 2023) and Code-
Alpaca (Chaudhary, 2023) are constituting com-
ponents of TÜLU-V2-mix, while Baize (Xu et al.,
2023b), Camel (Li et al., 2023a) and Evol-Instruct-
70k (Xu et al., 2023a) are external instruction cor-
pora and their statistics are shown in Table 9.

A.2 More details on Evaluation Benchmarks
In our experiment, to draw a comparison with our
proposed DTM framework with other baseline meth-
ods, we evaluate on the following benchmarks:

• GSM8K (Cobbe et al., 2021) is a collection
of 1,319 middle-school level math word prob-
lems with each question consisting of basic
arithmetic operations (Azerbayev et al., 2023).
Following (OpenAI, 2023), we experiment
with 8-shot prompting and greedy decoding
at inference.

• MMLU (Hendrycks et al., 2021) is a popular
aggregated benchmark covering 57 tasks in-
cluding elementary mathematics, US history,
computer science, law, and more, which are
categorized into 4 subsets: STEM, Human-
ities, Social Science and Others. Extensive
world knowledge and problem-solving abil-
ity are required to attain a high score on this
benchmark. We use 5-shot prompting at eval-
uation and report the overall accuracy.

• BBH (BIG-Bench Hard) (Suzgun et al.,
2023) is a challenging subset of BIG-
Bench (Srivastava et al., 2022) on which prior
language models fall behind average human-
raters. Composed of 23 particularly chal-
lenging tasks (27 sub-tasks), the benchmark

4
https://huggingface.co/datasets/allenai/

tulu-v2-sft-mixture

mainly focuses on LLM abilities in four as-
pects, namely multi-step arithmetic reasoning,
natural language understanding, use of world
knowledge, and multilingual knowledge and
reasoning. Following Suzgun et al. (2023), we
evaluate all models via greedy decoding and
report the exact match between the generated
output (after extracting the content behind the
“the answer is” keyword) and the ground-truth
label. 3-shot prompting and chain-of-thought
prompting are employed as a common prac-
tice to improve performance.

• ARC (Clark et al., 2018) is a collection of gen-
uine grad-school level science multiple-choice
problems with two subsets, namely Easy Set
(ARC-e) and Challenge Set (ARC-c). Our
experiments are mainly conducted on ARC-c,
which is composed of 1,172 problems that can-
not be trivially solved by word co-occurrence
algorithm or retrieval algorithm. We adopt
zero-shot prompting and report the accuracy.

• OBQA (OpenBookQA) (Mihaylov et al.,
2018) is a set of elementary level science
multiple-choice problems. Modeled after the
open book exams testing the understanding
of a student on a specific subject, each ques-
tion in the dataset is accompanied by a ba-
sic scientific fact and requires the possession
of commonsense knowledge to combine the
facts. Similarly, we adopt zero-shot prompt-
ing at inference and report the accuracy.

• RACE (Lai et al., 2017) is a large-scale
reading comprehension benchmark, in which
the problems are collected from the English
exams for middle and high school Chinese
students and cover a wide range of topics.
Compared with other reading comprehension
datasets, it requires more reasoning to work
out the answer. Similar to the above two
benchmarks, we adopt zero-shot prompting
at inference and report the accuracy.

• HumanEval (Chen et al., 2021b) is a suit of
164 hand-written Python programming prob-
lems released by OpenAI, with each problem
consisting of function signature, docstring,
body, and several unit tests to validate the code
produced by a language model. Following (Li
et al., 2023c; Rozière et al., 2023), we use
pass@k as our metric, which is the total frac-
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Datasets Source # Samples L̄inst L̄output

FLAN v2 (Longpre et al., 2023) NLP datasets + Human-written Instructions 49,123 327.85 15.25
CoT (Wei et al., 2022) NLP datasets + Human-written CoTs 49,747 151.67 32.77
Open Aissatnt 1 (Kopf et al., 2023) Human-written from scratch 7,331 20.26 149.39
ShareGPT (Chiang et al., 2023) User prompts + outputs from various models 111,912 81.09 197.71
GPT4-Alpaca (Peng et al., 2023) Generated w/ Davinci-003 + GPT4 19,906 16.41 107.50
Code-Alpaca (Chaudhary, 2023) Generated w/ Davinci-003 20,016 20.81 44.94
LIMA⋆ (Zhou et al., 2023) Human-written from scratch 1,018 39.40 430.17
Evol-Instruct V2⋆ (Xu et al., 2023a) Generated w/ Davinci-003 + GPT3.5-turbo 29,810 98.42 276.50
Open-Orca⋆ (Lian et al., 2023) NLP datasets + GPT-4 generated CoTs 29,683 154.57 110.64
Science literature⋆ (Dasigi et al., 2021) NLP datasets + Human-written CoTs 7,468 1118.43 45.03
Hardcoded⋆ Human-written from scratch 140 5.29 69.71

Table 8: The statistics and composition of TÜLU-V2-mix. We report the average length of instruction (L̄inst) and
the average length of response (L̄output). The datasets marked with asterisk are newly added ones that do not exist
in TÜLU-V1-mix.

Datasets Source # Samples L̄inst L̄output

Evol-Instruct-70k (Xu et al., 2023a) Generated w/ Davinci-003 + GPT3.5-turbo 70,000 77.82 206.55
Baize.medical (Xu et al., 2023b) Generated w/ ChatGPT 46,863 12.41 36.13
Baize.quora (Xu et al., 2023b) Generated w/ ChatGPT 54,282 15.43 31.91
Baize.stackoverflow (Xu et al., 2023b) Generated w/ ChatGPT 57,038 19.18 26.79
Camel.math (Li et al., 2023a) Generated w/ GPT3.5-turbo 49,765 45.59 223.70
Camel.physics (Li et al., 2023a) Generated w/ GPT3.5-turbo 20,000 36.47 357.60
Camel.chemistry (Li et al., 2023a) Generated w/ GPT3.5-turbo 19,983 30.94 309.20
Camel.biology (Li et al., 2023a) Generated w/ GPT3.5-turbo 19,992 23.89 407.51

Table 9: The statistics of other corpus used for tuning at Question 3. We report the average length of instruction
(L̄inst) and the average length of response (L̄output).

tion of benchmark problems solved, where a
problem is considered solved if any one of
k code samples passes every test case. We
adopt the simplest version of pass@k, namely
pass@1, which is the likelihood that a prob-
lem is solved in a single attempt by the model.
Greedy decoding is used for inference.

• MBPP (Austin et al., 2021) is another widely
used test set for evaluating the code generation
ability of language models, composed of 974
Python short functions and program textual
descriptions. Similar to HumanEval, the per-
formance of MBPP is evaluated by pass@1
and greedy decoding is adopted for inference.

• TruthfulQA (Lin et al., 2022) is a popular
problem set for evaluating the truthfulness of
LLM. Composed of 817 spanning 38 cate-
gories, it is widely used for benchmarking the
hallucination of LLM (Zhang et al., 2023b;
Chuang et al., 2024; Li et al., 2023b). We
use the multiple-choice configuration of the
benchmark and report the MC1 score, which
is the fraction of benchmark problems where

models assign the highest scores to the best
answer.

• Vicuna-bench (Chiang et al., 2023) is a recent
benchmark with GPT-4 as a judge. Contain-
ing 80 questions spanning various categories
such as roleplay, commonsense, and Fermi
problems, it evaluates the instruction follow-
ing proficiency of LLM.

• MT-bench (Zheng et al., 2023) is another
rigorous benchmark for measuring both the
conversation ability and instruction-following
ability of language models. It contains 80
multi-turn questions across eight subjects:
writing, roleplay, extraction, reasoning, math-
ematics, coding, knowledge I (STEM), and
knowledge II (humanities/social science). We
report the first-turn score since our instruc-
tion tuning only involves a single instruction-
response pair.

A.3 More Implementation details
Our experiments are conducted on a cloud Linux
server with Ubuntu 16.04 operating system. The
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Llama-2-7b (Touvron et al., 2023) Mistral-7b (Jiang et al., 2023) Baichuan-2-7b (Yang et al., 2023a)

Precision float16 float16 float16
Batch Size 16 16 16
Optimizer AdamW AdamW AdamW
Adam (β1, β2) (0.9,0.95) (0.9,0.95) (0.9, 0.95)
Learning Rate 3e-4 5e-5 3e-4
Sequence Length 1024 1024 1024
Warmup Step 100 100 100
Decay style cosine cosine cosine
Min. Learning Rate 0 0 0
Weight Decay 0 0 0
LoRA rank 16 16 16
LoRA α 16 16 16
LoRA dropout 0.05 0.05 0.05

LoRA modules
gate_proj
up_proj

down_proj

gate_proj
up_proj
down_proj

gate_proj
up_proj

down_proj

Table 10: The hyper-parameter configuration for different base LLMs.

codes are written in Python 3.10 using the code
from huggingface library5. The GPU type is the
Nvidia Tesla V100 with 32GB GPU memory. The
detailed hyper-parameter settings for training dif-
ferent base LLMs are shown in Table 10, which
mostly follows Lee et al. (2023). We train each sub-
model for 3 epochs and use the following template
for fine-tuning, which is borrowed from Taori et al.
(2023):

Below is an instruction that describes a task.
Write a response that appropriately completes the
request.

### Instruction: {instruction}
### Response: {output}
Note that the language modeling loss is only

considered for the output part.
We use the code from Abel6 (Chern et al., 2023),

Open Instruct7, Language Model Evaluation Har-
ness8 (Gao et al., 2023), Bigcode Evaluation Har-
ness9 (Ben Allal et al., 2022) and Open Com-
pass (Contributors, 2023) for evaluation.

B More Experiment Results and Analysis

B.1 More Observations on Alignment Tax
Our pilot study reveals the decline in MMLU and
BBH when tuning Llama-2-7b and Llama-2-13b
on the TÜLU-V2-mix. To have a more comprehen-
sive understanding, we supplement the experiment
on tinyllama-1.1b (Zhang et al., 2024), and the
experimental results are shown in Table 10.

5
https://huggingface.co/

6
https://github.com/GAIR-NLP/abel

7
https://github.com/allenai/open-instruct

8
https://github.com/EleutherAI/

lm-evaluation-harness
9
https://github.com/bigcode-project/

bigcode-evaluation-harness
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Figure 10: The performance on MMLU (5-shot, ac-
curacy) and BBH (3-shot, exact match) when tun-
ing tinyllama-1.1b with different sizes of instruction-
following data from TÜLU-V2-mix.

B.2 The effect of the number of sub-models
To investigate how different choices of K (the num-
ber of clusters and the number of sub-models) af-
fect the effectiveness of the DTM framework, we
vary the hyper-parameter K from 2 to 6 and the
experiment results with different numbers of sub-
models are shown in Figure 11. From the figure
we find that K = 4 attains the best performance
among different choices of K. We gauge that there
exists a trade-off between the acquisition of com-
mon knowledge and the forgetting of biases. If
K is too small, the data-specific biases are not
adequately dispersed. Thus the biases learned by
each sub-model are too similar to be forgotten via
merging. On the other hand, if K is too large,
the average number of samples in each cluster nar-
rows down and probably can not provide sufficient
knowledge of instruction-following.

This is an appendix.
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Figure 11: The performance on MMLU (5-shot, accu-
racy) and BBH (3-shot, exact match) v.s. the number of
sub-models
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