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Abstract

Structured pruning is a widely used technique
for reducing the size of pre-trained language
models (PLMs), but current methods often over-
look the potential of compressing the hidden
dimension (d) in PLMs, a dimension critical
to model size and efficiency. This paper in-
troduces a novel structured pruning approach,
Structured Pruning with PCA Projection (SP3),
targeting the effective reduction of d by project-
ing features into a space defined by principal
components before masking. Extensive exper-
iments on benchmarks (GLUE and SQuAD)
show that SP3 can reduce d by 70%, compress
94% of the BERTbase model, and maintain
over 96% accuracy and outperform other meth-
ods that compress d by 6% in accuracy at the
same compression ratio. SP3 has also proven
effective with other models, including OPT and
Llama. Our data and code are available at ours
repo.

1 Introduction

Pre-trained language models (PLMs) like BERT
(Devlin et al., 2018), GPT-2 (Radford et al.), Chat-
GPT (Ouyang et al., 2022), and Llama (Touvron
et al., 2023), leveraging transformer architectures,
have gained prominence in Natural Language Pro-
cessing due to their exceptional performance. How-
ever, their substantial storage requirements and
long inference times present practical challenges,
prompting the need for efforts to optimize their size
and computational speed.

Among various model compression techniques,
distillation (Sanh et al., 2019) and, prun-
ing (Louizos et al., 2018), particularly structural
pruning (Xia et al., 2022), are prominent. Dis-
tillation is adaptable, allowing for the design of
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compact student models while transferring knowl-
edge from larger teacher models. Nevertheless, it
might not fully leverage the teacher model’s param-
eters, often requiring the student model to undergo
extensive training on large datasets. In contrast,
structured pruning directly trims the original model,
thereby utilizing its parameters more efficiently and
lessening the dependency on large datasets.

The transformer architecture in PLMs is defined
by weight matrices controlled by hidden dimension
d, attention head size dh in multi-head attention
layers, and filter dimension df in feed-forward net-
work layers. Focused efforts in structured pruning
have aimed at downsizing dh and df (Michel et al.,
2019; Kwon et al., 2022; Voita et al., 2019; Wang
et al., 2020). Yet, strategies for pruning d are under-
explored, with limited compression success. For
instance, CoFi (Xia et al., 2022) achieves a notable
95% sparsity and maintains over 90% accuracy but
only marginally reduces d from 768 to 760. We
posit that the hidden dimension d holds significant
potential for compression. Recent research demon-
strates that high-dimensional features produced by
models can be projected into a subspace, leverag-
ing their inherent low-rank properties (Chen et al.,
2021). Our observations further reveal that the
sizes of these subspaces can differ among various
layers. This variability underscores the necessity
of compressing d within each individual layer, as
the distribution of principal components’ weights
changes across layers, a phenomenon depicted in
Fig. 1 (a). Unfortunately, presently, distillation
remains the most effective means for compressing
d. This paper aims to explore a potent structured
pruning method for efficiently reducing d in PLMs.

We analyze and conjecture that existing pruning
methods rarely compress d effectively for two main
reasons. First, conventional mask-based pruning
methods directly reduce dimensions in the original
feature space, which doesn’t effectively eliminate
unimportant dimensions. We interpret the prun-
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Figure 1: (a) Depiction of principal component weights
within Σ. The length of each rectangle responds to
the percentage of that principal component’s weight
among all principal components; (b) Illustration of the
principal component matrix. Each row of the matrix
represents a principal component. Brighter colors indi-
cate a higher correlation between the feature dimension
and the principal component under investigation. (c)
Projection of features onto principal components for
easier dimension pruning; (d) Positioning the projection
matrix outside the residual. In the figure, d, d1, d2 de-
note the dimensions of the features and N denotes the
number of tokens.

ing of d from the perspective of features’ principal
components. Drawing inspiration from PCA theory
(Maćkiewicz and Ratajczak, 1993), effective com-
pression should preserve the principal components
of the features. Considering that most dimensions
in the original feature space are linked to these
principal components, as indicated by the evenly
distributed values across each row that represents a
principal component in Fig. 1(b), traditional mask-
based pruning in this space struggles to preserve
the principal components’ integrity. Secondly, the
residual structure in each block, including both the
multi-head attention (MHA) and the feed-forward
network (FFN), requires the input and output di-
mensions of each block to be identical, hindering
the pruning of different d across various layers.

To overcome these limitations, we propose an

enhanced Structured Pruning approach using PCA
Projection (SP3) to reduce the hidden dimension.
This method involves projecting the original fea-
tures into a new space, where principal components
act as the basis vectors. In this way, mask-based
structured pruning becomes more effective in elim-
inating less important dimensions while retaining
the principal components. For the projection, we
select several tokens from the dataset designated
for pruning and process them through the trans-
former model to acquire their feature matrix. Sub-
sequently, we apply SVD to this matrix to obtain
the projection matrix, which is then integrated be-
fore the mask matrix in the conventional pruning
methodology. This process enables the projection
of the feature matrix into a space defined by the
principal components (as depicted in Fig.1 (c)). Ad-
ditionally, to enable different d in different layers,
we introduce additional linear transformations in
the residuals, resulting in layer-adapted structured
pruning (as shown in Fig.1 (d)).

The primary contributions of this work are:

• We take a fresh perspective on structured pruning
by reducing the hidden dimension of the trans-
former model, which has been rarely explored
before.

• Our SP3 method enhances compression efficacy
by projecting features into space formed by prin-
cipal components before masking, which helps
preserve the principal components of features.
Furthermore, it integrates linear transformations
in residual connections, enabling variable hid-
den dimensions across different layers for a more
customized structured pruning approach.

• Extensive testing on the GLUE and SQuAD
benchmarks reveals that SP3 can effectively re-
duce the hidden dimension by 70%, compressing
94% of the BERTbase model while still maintain-
ing an accuracy of over 96%. When compared
to other methods that also compress the hidden
dimension (d), SP3 demonstrates a 6% improve-
ment in accuracy at the same compression ratio.

2 Background

2.1 Transformer Architecture
A typical transformer comprises a stack of trans-
former layers, each containing an MHA block and
an FFN block. We take BERT (Devlin et al., 2018)
as an example to describe this architecture.
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Figure 2: Illustration of the workflow of SP3 .

Figure 3: Illustration of the SP3 architecture, in which
the gray rectangles represent the weight matrices, the
yellow rectangles signify the projection matrices, and
the red rectangles indicate the masks.

Multi Head Attention (MHA). The MHA block
takes x ∈ Rd×N as input and consists of H at-
tention heads that facilitate interactions between
tokens, with a LayerNorm (Ba et al., 2016) step.

xM = LN(x+MHA(x)),

MHA(x) =
H∑

i=1

Att(i)(x),

Att(i)(x) = W
(i)⊤
O W

(i)
V x · Softmax(

(W
(i)
K x)⊤(W (i)

Q x)
√
dh

),

(1)

where W
(i)
Q ,W

(i)
K ∈ RdQK×d, W

(i)
V ,W

(i)
O ∈ RdVO×d

denote the query, key, value, and output matri-
ces, respectively, d denotes the hidden dimension,
dh = d/H denotes the head size, N denotes the
sequence length, and dQK and dVO denote the in-
termediate dimensions.

Feed Forward Network (FFN). The FFN block
takes xM as input and generates xF as output:

xF = LN(xM + FFN(xM)),

FFN(xM) = W⊤
D gelu(WUxM),

(2)

where gelu is the activation function, and
WU ,WD ∈ Rdf×d are parameters of an FFN block,
df indicates the intermediate dimension.

2.2 Mask-based Structured Pruning

Mask-based structured pruning approaches elim-
inate parameters by integrating additional mask
variables z into the original model’s parameters, as
follows:

xM = diag(zout)LN(diag(zin)(x+ zMHAMHA(x))),

MHA(x) =
H∑

i=1

z
(i)
headAtt

(i)(x),

xF = diag(zout)LN(diag(zin)(xM + zFFNFFN(xM))),

FFN(xM) = W⊤
D diag(zf)gelu(WUxM),

(3)

where zMHA, zFFN ∈ {0, 1}, zhead ∈ {0, 1}H , zf ∈
{0, 1}df , zin, zout ∈ {0, 1}d are used to remove en-
tire MHA block, FFN block, attention head, in-
termediate dimensions of FFN block, and hidden
dimensions, respectively. Then, the pruning pro-
cess can be modeled as an optimization problem
with sparsity constraints as follows,

minL(θ)
s.t. sparsity(z) ≥ t,

(4)

where θ denotes the parameters of the model, and t
denotes the pre-defined target sparsity.

3 SP3

Workflow of SP3. The SP3 we propose unfolds in
three phases, as depicted in Fig. 2. Initially, PCA
projection is conducted by selecting a subset of the
training data, processing it through the transformer
model to yield the feature matrix X for each block
per layer, and then determining each X’s principal
components U via SVD decomposition. Following
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this, a projection matrix, initialized with these prin-
cipal components, is integrated into the model’s
computational framework, coupled with a mask for
structured pruning, detailed in Section 3.1. Subse-
quently, the model undergoes pruning based on the
masks tailored to a specific task and pruning ob-
jective, as outlined in Section 3.2. The final stage
involves merging these masks and projection ma-
trices with the original model parameters, thereby
creating the compressed model, which is further
elaborated in Section 3.3.

3.1 PCA Projection

Current structured pruning methods typically com-
press PLMs by directly applying a mask to their
hidden dimensions. However, this approach over-
looks the relationship between each feature dimen-
sion and its corresponding principal component.
Principal component analysis of these features re-
veals that a few principal components hold the ma-
jority of the weight in every layer (as indicated in
Fig. 1(a)). Additionally, these principal compo-
nents are connected to a large number of dimen-
sions, as evidenced by the uniformly distributed
values across each row representing a principal
component (see Fig. 1(b)). Consequently, directly
pruning dimensions can adversely affect several
principal components, thereby complicating the
compression of hidden dimensions.

To address this, we incorporate a projection ma-
trix prior to each masking matrix in the computa-
tional process of PLMs, referred to as PCA Pro-
jection. This matrix is designed to project features
into a space determined by their principal compo-
nents. Subsequently, these principal components
can be pruned directly using masks. It’s crucial
to ensure that these added projection matrices do
not alter the output of the PLM and can be seam-
lessly integrated with the model’s parameters. In
the following section, we detail the methodology
for injecting these projection matrices to meet both
of these conditions.

Hidden Dimension PCA Projection. To decrease
the hidden dimension (d) between layers, our ini-
tial step involves selecting calibration data from the
training dataset. We then derive the corresponding
feature matrix X ∈ Rd×T from either the MHA
block or the FFN block, along with their respective
residuals. Here, T represents the number of sam-
pled tokens. We choose T to be marginally greater
than d to guarantee that the number of tokens ex-

ceeds the number of feature dimension. This fea-
ture matrix X acts as the input for the LayerNorm

layer. Subsequently, we apply SVD to extract the
principal components of the feature. Each column
of the matrix U represents a principal component,
obtained from the SVD of the matrix X , as de-
scribed by U,Σ, V ⊤ = SVD(X − X), where X
represents the matrix obtained by broadcasting the
average values of each column.

Next, we introduce the matrix U both before and
after each LayerNorm layer as follows. Initially, we
recognize:

LN(X) = diag(γ)norm(X −X)

= diag(γ)norm(UUT (X −X)),
(5)

where LN signifies LayerNorm module (the bias
term is omitted for simplicity), norm represents
the normalization function defined as norm(x) =

x/∥x∥∗d , and UUT = I because columns of U are
orthogonal. Given the following formulas,

norm(Ux) = Ux/∥Ux∥ ∗ d
= Ux/

√
(x⊤U⊤Ux) ∗ d

= Ux/
√

(x⊤x) ∗ d
= Unorm(x),

(6)

X −X = (I − 1

d
11⊤)X

= RX,
(7)

where we define R = (I− 1
d
11⊤) using I to represent

the identity matrix and 1 to denote a vector filled
with ones. Then, we have,

LN(X) = diag(γ)Unorm(U⊤RX). (8)

Based on this, we assign projection matrices Pin =

U⊤R and Pout = diag(γ)U , respectively.
The computation process after introducing the

hidden dimension PCA Projection is as follows,

xM = PM
outdiag(z

M
out)LN(diag(zMin )P

M
in (x+ zMHAMHA(x))),

xF = PF
outdiag(z

F
out)LN(diag(zFin)P

F
in(xM + zFFNFFN(xM))),

(9)

where the superscripts M and F denote the projec-
tion and mask matrices within the MHA and FFN
blocks, respectively.

MHA Intermediate Dimension PCA Projection.
While our focus is primarily on compressing the
hidden dimension, our method is also applicable
to compressing the intermediate dimension of the
MHA block. We begin by collecting the feature
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matrix X ∈ Rd×N from the output preceding the
MHA block. We aim to project the features W

(i)
Q X ,

W
(i)
K X and W

(i)
V X using their principal components

U
(i)
Q , U

(i)
K , and U

(i)
V respectively. They should satisfy

the following equations:

W
(i)
V X = U

(i)⊤
V U

(i)
V W

(i)
V X,

X⊤W (i)⊤
Q W

(i)
K X = X⊤W (i)⊤

Q U
(i)⊤
Q U

(i)
K W

(i)
K X,

(10)

where U
(i)
V in the equation can be solved directly by

SVD, i.e., U
(i)
V = U , where U,Σ, V ⊤ = SVD(WV X).

The solution of U (i)
Q , U

(i)
K in Eq. 10 is a more com-

plex, and we follow the method in DRONE (Chen
et al., 2021) to compute U

(i)
Q , U

(i)
K :

U
(i)
Q = Σ

(i) 1
2

Z U
(i)⊤
Z Σ

(i)−1
1 U

(i)⊤
1 ,

U
(i)
K = Σ

(i) 1
2

Z V
(i)
Z Σ

(i)−1
2 U

(i)⊤
2 ,

(11)

where

U
(i)
1 ,Σ

(i)
1 , V

(i)⊤
1 = SVD(W

(i)
Q X),

U
(i)
2 ,Σ

(i)
2 , V

(i)⊤
2 = SVD(W

(i)
K X),

Z(i) = Σ
(i)⊤
1 U

(i)⊤
1 U

(i)
2 Σ

(i)
2 ,

U
(i)
Z ,Σ

(i)
Z , V

(i)⊤
Z = SVD(Z(i)).

(12)

We then assign P
(i)
Q = U

(i)
Q , P (i)

K = U
(i)
K , P (i)

V = U
(i)⊤
V ,

and P
(i)
O = U

(i)
V as our target projection matrices.

For the proof of Eq. 11, refer to Appendix A.
The computation process incorporating MHA

intermediate dimension PCA Projection is as fol-
lows,

Att(i)(x) = W
(i)⊤
O P

(i)⊤
O diag(z

(i)
O )⊤diag(z(i)V )P

(i)
V W

(i)
V x·

Softmax(
(W

(i)
K x)⊤P (i)⊤

K diag(z
(i)
K )⊤diag(z(i)Q )P

(i)
Q (W

(i)
Q x)

√
dh

).

(13)

Model Structure. We integrate the aforemen-
tioned PCA projections across various dimensions
and present the final structure of our model in Fig.
3. Unlike mask-based pruning methods such as
CoFi, which employ a shared mask in each block,
our approach utilizes distinct masks for different
blocks and incorporates specific projection matri-
ces for each block (as contrasted in Eq. 3 and
Eq. 9). This strategy enables us to independently
compress the hidden dimension of each block. Ad-
ditionally, we insert projection matrices in the
MHA block to compress its intermediate dimen-
sion (as detailed in Eq. 13). The transformer’s
residual structure necessitates the same hidden di-
mension across different blocks. By introducing

a linear transformation in the residuals, we effec-
tively circumvent this constraint (as illustrated in
Figure 1(d)). Readers interested in the algorith-
mic details can find the pseudo-code for the PCA
Projection in the Appendix B.

Complexity. The computational complexity of
PCA Projection primarily hinges on three factors:
the number of layers n, the hidden dimension d,
and the number of sampled tokens T , resulting in
an approximate complexity of O(n ∗ d2 ∗ T ). In
practice, for a model with 100M parameters, the
PCA Projection process takes around 5 minutes.
For a larger model with 7B parameters, we estimate
that the PCA Projection would require roughly 1
hour, significantly less than the time required for
model pruning.

3.2 Model Pruning

Objective Function. Pruning is governed by
the masks incorporated into the model, and the
model’s sparsity is determined based on these
masks. Throughout the training process, all mask
variables are treated as continuous real numbers.
Upon completion of the training, those mask vari-
ables falling below a certain threshold — set in
accordance with the desired sparsity level — are
converted to 0, thereby establishing the final pruned
structure. We use pruning loss (Wang et al., 2020)
that forces the expected sparsity of the model to be
close to the desired sparsity:

Lpruning = λ1 · (ŝ− t) + λ2 · (ŝ− t)2, (14)

where ŝ is the expected sparsity, t is the target
sparsity, and λ1, λ2 are two Lagrange multipliers.
Please refer to Appendix C for more detail of ŝ.
Additionally, we incorporate the same task-specific
loss, Ltask, as used in CoFi (Xia et al., 2022), ap-
plied to the task-oriented dataset during the pruning
process to maintain model performance on speci-
fied tasks.

Multi-stage Pruning. In SP3, we implement
masks at three hierarchical levels: dimension-level
(zin, zout, zf , zQ, zK, zV, zO), head-level (zhead),
and layer-level (zMHA, zFFN). Our findings reveal
that during training, the model prioritizes head-
level and layer-level masks for compression, while
dimension-level masks are sometimes less empha-
sized. Consequently, we have divided the training
process into two distinct stages. In the first stage,
we exclusively employ dimension-level masks, and
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then, in the subsequent stage, we add head-level
and layer-level masks. Empirically, the initial stage
spans 5 epochs, followed by the second stage,
which lasts for 15 epochs.

3.3 Model Fusing
After training, we first prune projection matrices, at-
tention heads, MHA blocks, and FFN blocks based
on different masks. After that, we merge the projec-
tion matrices with weight matrices. Suppose func-
tion Pr denotes pruning all zero rows and columns
of the matrix.

MHA Layer Fusing. For the MHA layer, we have

Ŵ
(i)
Q = Pr(diag(zQ)PQW

(i)
Q PM

outdiag(z
M
out)),

Ŵ
(i)
K = Pr(diag(zK)PKW

(i)
K PM

outdiag(z
M
out)),

Ŵ
(i)
V = Pr(diag(zV)PV W

(i)
V PM

outdiag(z
M
out)),

Ŵ
(i)⊤
O = Pr(diag(zFin)P

F
inW

(i)⊤
O POdiag(zO)),

(15)

where Ŵ
(i)
Q , Ŵ

(i)
K , Ŵ

(i)
V , and Ŵ

(i)
O denotes the com-

pressed weight matrices of the MHA block.

FFN Layer Fusing. For the FFN layer, we have

ŴU = Pr(diag(zf )WUP
M
outdiag(z

M
out)),

Ŵ⊤
D = Pr(diag(zFin)P

F
inW

⊤
D diag(zf )),

(16)

where ŴU and ŴD denotes the compressed weight
matrices of the FFN block.

Residual Modification. Since we adaptively learn
different hidden dimensions in different layers, we
need to add weight matrices to the residual. For
example, for i-th block of Transformer, we have

x(i) =LN(W
(i)
R x+Block(i)(x(i−1)))), (17)

where WR is a matrix added to the residual, which
is determined by multiplying the pruned projec-
tion matrices before and after the block (refer to
Figure 1 (d)), i.e.,

W
(i)
R = Pr(diag(z

(i)
in )P

(i)
in P

(i−1)
out diag(z

(i−1)
out )). (18)

4 Experiments

4.1 Setup

Datasets. We evaluate our approach on GLUE
(Wang et al., 2018) tasks and SQuAD (Rajpurkar
et al., 2016) v1.1. GLUE tasks include SST-2
(Socher et al., 2013), MNLI (Kim et al., 2019),
QQP (Wang et al., 2017), QNLI, MRPC (Dolan
and Brockett, 2005), STS-B, and RTE. Each com-
parison model is evaluated on the test set of these

datasets. For the GLUE benchmark, accuracy met-
rics are used for MNLI, QQP, QNLI, SST2, MRPC,
and RTE tasks, while Spearman’s correlation is
reported for STS-B. In the case of the SQuAD
benchmark, we present the F1 score. For compre-
hensive details about these datasets, please refer to
Appendix D.1.

Baselines. We evaluate the proposed SP3 against
established distillation methods like TinyBERT
(Jiao et al., 2020), WID (Wu et al., 2023b), and
the pruning approach CoFi (Xia et al., 2022).

Settings. Our primary experiments focus on com-
pressing the BERTbase model. SP3 and CoFi per-
form model pruning using the previously men-
tioned training datasets. In contrast, WID and Tiny-
BERT additionally use more general pre-training
data. For a fairer comparison, we have excluded
the data augmentation component from TinyBERT
in our experiments. To generate calibration data
for the SVD decomposition in SP3, we randomly
choose 512 samples from each dataset and concate-
nate them, and then from them, we randomly select
4,096 tokens as our calibration dataset. For detailed
information on our experimental methods, please
see the Appendix D.2.

4.2 Main Results

As shown in Table 1, we compress the BERTbase

model and compare the performance of SP3 with
other methods under similar sparsity. First, com-
pared to the original model, SP3 retains 96% of
the model performance while removing 94% of the
model parameters. Second, compared to other base-
lines, SP3 has extra degrees of freedom. Compared
to the pruning method CoFi, SP3 can additionally
compress the hidden dimensions and intermediate
dimensions of the MHA block. Unlike distilla-
tion methods, SP3 can use different hidden dimen-
sions at different layers with additional head-level
and layer-level pruning. Overall, SP3 obtains the
best performance on all datasets, indicating that
utilizing these extra degrees of freedom can benefit
the performance during compression. The compar-
isons with additional baselines on BERTbase and
experiments on TinyBERT with augmentation and
OPT-125m are presented in Appendix E.

We delve into the impact of specifically com-
pressing the hidden size d in our SP3 . This entails
retaining only the projection matrices P ·

in, P
·
out and

masks z·int, z
·
out in SP3 (refer to Eq. 9), while main-
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(a) Hidden dimensions (b) Intermediate dimensions (c) Attention head size

Figure 4: Structural information of the pruned model on the MRPC dataset, where sparsity denotes the ratio of the
remaining dimension or size to the original dimension or size. (a) Output dimensions of each MHA and FFN block.
(b) Intermediate dimensions of each MHA and FFN block. (c) The number of attention heads in each MHA block.

Params. SST-2 QNLI MNLI QQP RTE STS-B MRPC SQuAD Avg.

BERTbase 85M 93.1 91.5 84.8 91.2 70.4 89.1 85.6 88.4 86.76

TinyBERT4 4.7M 89.7 86.7 78.8 90.0 63.2 85.0 81.4 82.1 82.11
WID 5.0M 88.8 85.4 78.4 89.5 60.3 84.5 81.9 81.2 81.25
CoFi ~5.0M 90.6 86.1 80.6 90.1 64.7 83.1 82.6 82.6 82.55

SP3 ~5.0M 91.4 87.6 81.6 90.1 66.4 86.1 82.8 83.2 83.65
Speedup ×2.65 ×2.79 ×2.55 ×2.55 ×4.98 ×5.58 ×4.66 ×2.83

Table 1: Comparison between our SP3 and both the distillation methods and pruning methods. Note that, following
CoFi, we do not count the number of parameters in the embedding layer.

taining the masks zint, zout in the CoFi approach
(see Eq. 3). As indicated in Table 2, SP3 demon-
strates significant superiority over CoFi, which re-
lies solely on masks for compressing the hidden di-
mensions. These experimental findings underscore
the efficacy of PCA Projection in the compression
of hidden dimensions, affirming its effectiveness in
enhancing model performance.

We also apply our method to Large Language
Models (LLMs), with experimental settings and
results detailed in Appendix F. Table 8 illustrates
the effective compression achieved by our method
on TinyLlaMa. Additionally, thanks to the pre-
RMSNorm architecture of TinyLlaMa, we propose
Group PCA Projection. This approach unifies the
computation of main components of features across
several consecutive blocks, effectively reducing pa-
rameters introduced at the residuals and improv-
ing performance compared to distinct main compo-
nents in each block, as demonstrated in Table 9.

4.3 Ablation Study on PCA Projection
PCA Projection employs principal components as
the projection matrix. To assess the importance of
these principal components, we conduct an exper-
iment where we initialize the projection matrices

as identity matrices. To prevent other masks from
interfering with the role of PCA Projection, we use
only dimension-level masks in our experiments.
The results, as depicted in Table 3, indicate that ex-
cluding PCA Projection results in a significant per-
formance decline on the RTE and MRPC datasets,
with a slight decrease observed on the SST-2 and
STS-B datasets. This is because, for larger datasets,
the model can directly optimize suitable compactor
parameters from the data. The results underscore
the significant role of PCA Projection in enhancing
the performance of the compressed model.

Furthermore, PCA Projection relies on calibra-
tion data derived from the training dataset. We
examine how the number of tokens in this data af-
fects model performance. As shown in Table 4, the
accuracy of the model varies with different sam-
ple token sizes. Considering that a higher number
of samples adds complexity to the SVD compu-
tation, choosing 4,096 tokens strikes an optimal
balance between accuracy and computational effi-
ciency. We also conduct experiments using differ-
ent random seeds to sample calibration data and
show its robustness. Appendix G presents the de-
tails as well as the studies about different masks.
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Params. SST-2 QNLI MNLI QQP RTE STS-B MRPC SQuAD Avg.

SP3 25M 91.1 89.6 80.8 90.9 66.8 86.8 85.0 84.8 84.48
CoFi 25M 86.9 82.2 78.7 90.0 56.7 82.3 71.8 79.1 78.46

Table 2: Comparison of SP3 and CoFi in compressing the hidden dimension of BERTbase.

SST-2 RTE STS-B MRPC

SP3-10M 91.3 66.8 87.8 85.5
w/o PCA-Projection 91.2 52.7 85.0 80.6

Table 3: Effect of PCA Projection. SP3-10M refers
to BERTbase compressed to 10M by omitting masks
zhead, zMHA, and zFFN.

Number of tokens SST-2 RTE STS-B MRPC

2,048 90.0 58.8 85.9 82.8
4,096 91.4 64.2 86.1 82.8
8,192 90.8 63.5 86.4 83.1

Table 4: Effect of sampled tokens on PCA projection.

4.4 Structures of Pruned Model

We study the pruned structures produced by SP3.
Take the MRPC dataset as an example. Figure
4 shows the structural information of the pruned
model. More results are shown in Appendix H.

From Fig. 4 (b) and (c), as well as figures for
other datasets, it’s evident that the model structure
varies across different datasets. However, a con-
sistent observation across these structures is that
layers nearer the output are more compressed than
those closer to the inputs. Additionally, the inter-
mediate dimensions of the FFN block are notably
more compressed across all datasets compared to
the intermediate dimensions of the MHA block.
This distinction is highlighted when comparing the
green bars to the blue and red bars in Fig. 4 (b).
The compression patterns we observe are consistent
with those reported in prior pruning studies (Xia
et al., 2022). In addition, Fig. 4 (a) and similar
figures for other datasets indicate a trend where
the model’s hidden dimension reduces as the num-
ber of layers increases. This trend suggests that the
model incrementally compresses features into more
compact dimensions during its inference process.

5 Related Work

Distillation. Knowledge distillation (Hinton et al.,
2015; Hou et al., 2020; Jiao et al., 2020; Sanh et al.,
2019) is a model compression approach that trans-

fers knowledge from a larger teacher model to a
smaller student model. In contrast to the distilla-
tion methods, our approach uses less computational
cost while achieving the same performance.

Pruning. Existing pruning methods can be broadly
divided into two categories: unstructured and struc-
tured. Unstructured pruning (Gale et al., 2019;
Frankle and Carbin, 2018; Kurtic et al., 2022;
Louizos et al., 2018; Sanh et al., 2020) aims to
remove unimportant scalar values from the model’s
parameters. In contrast, structured pruning (Lin
et al., 2020; Lagunas et al., 2021; Wang et al.,
2020; Xia et al., 2022) are proposed to remove
weight blocks in PLMs, including the entire layer
(Fan et al., 2019; Sajjad et al., 2023, 2020), atten-
tion heads (Michel et al., 2019; Voita et al., 2019),
and filters (McCarley et al., 2019; Prasanna et al.,
2020). Unlike the previous structured pruning, we
focus on exploring how to compress the hidden
dimensions of the model efficiently.

Low-Rank Factorization (LRF). LRF methods
compress the PLMs by decomposing the weight
matrices (Hua et al., 2022; Xiao et al., 2023) based
on low-rank property. In contrast, we propose PCA
Projection based on the low-rank property of the
features. For more discussions refer to Appendix I.

Re-parameterization (Re-p). Re-p methods have
been proposed to improve existing model compres-
sion methods (Ding et al., 2021; Lin et al., 2021;
Wu et al., 2023b). Its core idea is to represent
the compressed model based on the original model.
Therefore, these methods can utilize the parameters
of the model more efficiently, which leads to better
performance. SP3 can also be regarded as a Re-p
method, and the major difference between SP3 and
the existing methods is that we better initialize the
parameters based on the PCA theory.

6 Conclusion

This study introduces SP3, an enhanced structured
pruning approach for compressing PLMs. SP3 em-
ploys PCA Projection, facilitating easier optimiza-
tion of the compression model, thereby boosting its
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performance. Concurrently, SP3 uses non-shared
masks in the hidden dimension. This allows the
model to selectively determine its hidden dimen-
sions size at different layers in line with the desired
sparsity. When applied to BERTbase and evalu-
ated on the GLUE and SQuAD benchmarks, SP3

notably achieves a 94% sparsity with only a minor
4% reduction in accuracy.

Limitations

Our proposed SP3 introduces extra weight matrices
in the residual parts when merging the inserted com-
pactor matrices with the weight matrices. When
the model is compressed to 5M, these extra pa-
rameters account for more than half of the model.
This predominance hinders further compression.
In future research, we aim to explore strategies to
eliminate these extraneous parameters. Meanwhile,
the efficient acceleration of the model mainly relies
on coarse-grained pruning (head-level, layer-level),
while our approach uses more fine-grained pruning,
and how to balance the fine-grained and coarse-
grained pruning to achieve higher acceleration also
needs further exploration.

When applying to large language models, inte-
grating compactors during training in our method-
ology may lead to increased memory consump-
tion, necessitating efforts to reduce memory over-
head. Additionally, experimental results indicate
that our tuning-based pruning technique may face
challenges with overfitting, particularly when tun-
ing using a limited SFT dataset. Therefore, in-
vestigating a tuning-free pruning technique is war-
ranted.

Ethical Considerations

Intellectual Property. The datasets we use in-
clude oasst_top1_2023-08-25, MNLI, QNLI, QQP,
SST-2, MRPC, STS-B, RTE, SQuAD, ARC-e,
ARC-c, BoolQ, HellaSwag, openbookQA, PIQA,
and WinoGrande. The models we use include
BERTbase, OPT125m, and TinyLlama. These are
publicly accessible and well-established resources
aimed at facilitating diverse AI and NLP research
endeavors.

Data annotation. We utilize the annotations pro-
vided by existing datasets, thereby eliminating the
need for manual annotation in our study.

Intended Use. SP3 is a model pruning technique

designed to compress the parameters of a trans-
former model while preserving performance, effec-
tively reducing the computational resources needed
for deploying the model.

Misuse risks. SP3 is a pruning method for trans-
former models and incorrect use of SP3 might de-
grade the performance of some applications.

Misuse Control. We intend to make our approach
available to the open-source community, enabling
users to gain a deeper understanding of our method-
ology and mitigate the risk of misuse.
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A MHA Intermediate Dimension PCA
Projection

We can verify the effectiveness of the Eq. 11 in the
following way,

∥X⊤W (i)⊤
Q W

(i)
K X −X⊤W (i)⊤

Q U
(i)⊤
Q,:kU

(i)
K,:kW

(i)
K X∥,

(19)

Eq. 19 measures the difference between the in-
ner product computed using the first k principal
components of U (i)

Q , U
(i)
K and the original result.

Next, we prove that U (i)
Q and U

(i)
K satisfy the

following equation,
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Mk = U
(i)⊤
Q,:kU

(i)
K,:k (20)

where,

Mk = argmin
M
∥X⊤W (i)⊤

Q W
(i)
K X −X⊤W (i)⊤

Q MW
(i)
K X∥,

s.t. rank(M) = k
(21)

Suppose

XQ = W
(i)
Q X,

XK = W
(i)
K X,

U1,Σ1, V
⊤
1 = SVD(XQ),

U2,Σ2, V
⊤
2 = SVD(XK).

(22)

Then, we have

Mk = argmin
M
∥X⊤

QXK −X⊤
QMXK∥

= argmin
M
∥V ⊤

1 X⊤
QXKV2 − V ⊤

1 X⊤
QMXKV2∥

= argmin
M
∥Σ⊤

1 U
⊤
1 U2Σ2 − Σ⊤

1 U
⊤
1 MU2Σ2∥

(23)

Define

Z = Σ⊤
1 U

⊤
1 U2Σ2,

UZ ,ΣZ , V
⊤
Z = SVD(Z),

(24)

then, based on the PCA theory, we know that Zk =

UZ,:kΣZ,:kV
⊤
Z,:k is the solution of

argmin
Z∗

∥Z − Z∗∥, s.t. rank(Z∗) = k. (25)

Therefore, we have

Σ⊤
QU

⊤
1 MkU2Σ2 = UZ,:kΣZ,:kV

⊤
Z,:k

⇒ Mk = U1Σ
−1⊤
1 UZ,:kΣZ,:kV

⊤
Z,:kΣ

−1
2 U⊤

2 .
(26)

Refer to Eq. 11,

U
(i)
Q = Σ

(i) 1
2

Z U
(i)⊤
Z Σ

(i)−1
1 U

(i)⊤
1 ,

U
(i)
K = Σ

(i) 1
2

Z V
(i)
Z Σ

(i)−1
2 U

(i)⊤
2 ,

(27)

we also have

U
(i)
Q,:k = Σ

(i) 1
2

Z,:kU
(i)⊤
Z,:k Σ

(i)−1
1 U

(i)⊤
1 ,

U
(i)
K,:k = Σ

(i) 1
2

Z,:kV
(i)
Z,:kΣ

(i)−1
2 U

(i)⊤
2 .

(28)

Therefore,

Mk = U
(i)⊤
Q,:kU

(i)
K,:k (29)

B Pseudo Code of PCA Projection

The pseudo-code of PCA Projection is shown in
Algorithm 1.

C Sparsity

The expected sparsity ŝ is computed as follows:

ŝ =
1

M
(

L∑

i

H∑

j

d∑

k

dh∑

l

z
(i)
MHA · z

(i,j)
head · z

(i,k)
out,FFN,i−1 · z

(i,l)
Q +

L∑

i

H∑

j

d∑

k

dh∑

l

z
(i)
MHA · z

(i,j)
head · z

(i,k)
out,FFN,i−1 · z

(i,l)
K +

L∑

i

H∑

j

d∑

k

dh∑

l

z
(i)
MHA · z

(i,j)
head · z

(i,k)
out,FFN,i−1 · z

(i,l)
V +

L∑

i

H∑

j

d∑

k

dh∑

l

z
(i)
MHA · z

(i,j)
head · z

(i,k)
in,MHA,i · z

(i,l)
O +

L∑

i

d∑

k

df∑

l

z
(i)
FFN · z

(i,k)
out,MHA,i · z

(i,l)
f +

L∑

i

d∑

k

df∑

l

z
(i)
FFN · z

(i,k)
in,FFN,i · z

(i,l)
f +

L∑

i

d∑

k

z
(i,k)
out,FFN,i−1 · z

(i,k)
in,MHA,i+

L∑

i

d∑

k

z
(i,k)
out,MHA,i · z

(i,k)
in,FFN,i),

(30)

where M denotes the total number of parameters
of the model.

D Experiment Setting Details

D.1 Datasets

GLUE (Wang et al., 2018) benchmark consists of
various tasks related to sentence similarity calcula-
tion, classification, textual entailment, and natural
language inference. It includes 10 tasks, namely
AX, COLA, QQP, MNLI, MRPC, QNLI, QQP,
RTE, SST-2, STS-B, and WNLI. The number of
training examples for each task is as follows: 1.1k,
10.7k, 432k, 5.8k, 105k, 364k, 3k, 70k, 67k, and
852, respectively. SQuAD 1.1 (Rajpurkar et al.,
2016) dataset involves question answering tasks,
containing 88K training examples.

D.2 Experiment Setup

Our SP3 is developed using PyTorch (Paszke et al.,
2019) and executed on a server equipped with four
NVIDIA 3090 GPU cards for all experiments. We
source the BERT model from the HuggingFace
(Wolf et al., 2019) Transformers library. To prepare
for compression, we first fine-tune BERT to create a
task-specific model. This fine-tuning occurs on the
training datasets from the GLUE benchmark and
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Figure 5: Illustration of the SP3 architecture for LLM, in
which the gray rectangles represent the weight matrices,
the yellow rectangles signify the projection matrices,
and the red rectangles indicate the masks.

SQuAD, spanning 3 epochs, with a batch size of
32 and learning rates of 1e-5 and 2e-5, respectively.
We maintain the default hyperparameters provided
by HuggingFace.

The pruning of BERT follows the same config-
uration as the model fine-tuning process. We first
fine-tune SP3 with the task-specific objective for 2
epochs, then dimension-level pruning begins at the
3rd epoch, followed by the head-level and layer-
level pruning at the 8th epoch.

E More Experimental Results

E.1 Comparing SP3 with More Baselines
The comparison results between SP3 and more
baselines are shown in Table 5.

E.2 Comparing SP3 with TinyBERT
We skip the data augmentation step in TinyBERT,
following the approach of CoFi (Xia et al., 2022),
as this data augmentation significantly enlarges the
training dataset, leading to a substantial increase in
training time. Here, we just present the results of
TinyBERT with data augmentation (DA) for refer-
ence. The comparison results are shown in Table
6. Even with data augmentation, our proposed SP3

demonstrates comparable performance.

E.3 Experiment Results on OPT125m

The results of the experiment on OPT125m are
shown in Table 7. For OPT125m, we use the same
experimental setup as for BERTbase.

F SP3 for Large Language Model

SP3 can also be used to prune large language model
(LLM), e.g., Llama (Touvron et al., 2023)). To miti-
gate computational overhead of LLM, our approach
restricts using SFT data exclusively for model prun-
ing. Concurrently, to reduce pruning complexities,

we only prune the hidden dimensions and the filters
within the FFN block, while ignoring the pruning of
attention heads and layers, because coarse-grained
pruning requires more training data to recover the
performance of the model. We also ignore the prun-
ing of the intermediate dimensions of the MHA
block, as it may conflict with the RoPE positional
encoding (Su et al., 2024) which is commonly used
for LLM. The structure used to prune the LLM is
shown in Fig. 5.

F.1 Group PCA Projection
As shown in section 3.3, to compress the hidden
dimensions of the model, we need to add additional
matrices to each residual. These additional added
matrices increase the total number of parameters
in the model by 15%. Fortunately, we find that if
we use the same principal components to initial-
ize the compactors of successive blocks, we can
avoid introducing additional matrices at the residu-
als. Taking Llama as an example, for the i-th block
of the Llama model, we have

x(i) = Block(i)(RMSNorm(x(i−1))) + x(i−1). (31)

After computing the principal component matrix
U , we have

x(i) = Block(i)(RMSNorm(UU⊤x(i−1))) + x(i−1),
(32)

= Block(i)(U · RMSNorm(U⊤x(i−1))) + x(i−1).
(33)

Suppose x̂(i−1) = U⊤x(i−1), x̂(i) = U
′⊤x(i).

Then, we have

x̂(i) = U
′⊤Block(i)(U · RMSNorm(x̂(i−1))) + U

′⊤Ux̂(i−1).
(34)

It can be seen that if we make U ′ equal to U , we
don’t need to add extra matrices at the residuals,
because at this point we have U

′⊤U = I . We refer
to this unified computation of the main components
of features in several consecutive blocks as Group
PCA Projection. For LLM, the matrix introduced
when the group size is 8 only increases the number
of model parameters by 1%.

It is also worth noting that Group PCA Projec-
tion requires models to use RMSNorm with a pre-
norm architecture, but fortunately, based on ex-
isting work (Jiang et al., 2023), all models that
use LayerNorm can be directly converted to use
RMSNorm. Moreover, nearly all LLMs use the
pre-norm architecture.
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F.2 Experiments

Setup. Following existing works on pruning LLM
(Xia et al., 2023; Ma et al., 2023). we consider the
commonsense reasoning and question-answering
tasks including Hellaswag (Zellers et al., 2019),
OpenBookQA (Mihaylov et al., 2018), Wino-
Grande (Sakaguchi et al., 2021), ARC-Easy and
ARC-Challenge (Clark et al., 2018), BoolQ (Clark
et al., 2019), and PIQA (Bisk et al., 2020). We eval-
uate our models using the Language Model Evalua-
tion Harness (Gao et al., 2023) framework. We use
the SFT dataset oasst_top1_2023-08-25 to prune
the TinyLlaMa-1.1B-Chat-v0.3 (Peiyuan Zhang
and Lu, 2023). Without additional declarations,
for TinyLlama we use Group PCA Projection with
group size 8.

Results. The experimental results on TinyLlaMa
are shown in Table 8. We finetune the model on the
dataset for 2 epochs with a learning rate of 1e-5 and
a batch size of 4 to obtain the pruned model. Then,
we test the performance of the pruned model under
a zero-shot setting. Our method updates both the
model parameters and the mask. Since for limited
SFT data, training too many epochs may lead to
model overfitting, while too few updates can lead
to non-convergence of the mask. Therefore we use
smaller batch sizes so that convergence of the mask
is guaranteed in case the model does not overfit the
data.

Impact of Group Size. We also explore the effect
of using different group sizes in Group PCA Pro-
jection on model performance. The experimental
results are shown in Table 9. To prevent the inter-
ference of additional factors, we only consider the
compression of the hidden dimension in this experi-
ment. From the experimental results, it can be seen
that using a smaller group size does not improve
the performance of the model. On the contrary, a
group size of 8 can be utilized without introduc-
ing too many additional parameters and performs
better than a smaller group size. We speculate that
larger group sizes with fewer additional parameters
at residuals act as a form of regularization, helping
to prevent overfitting of the calibration data by the
results of principal component analysis.

Combining with Existing Pruning Methods. Our
method can also be combined with other pruning
methods, e.g., LLM-Pruner (Ma et al., 2023). For
these methods, we first initialize the compactors

using PCA projection, after which the compactors
are directly fused to the model. Additionally, to
maintain compatibility with existing pruning meth-
ods and avoid altering the model’s structure, we
utilize the same principal component matrix across
all layers. In this way, SP3 can be viewed as a
re-representation of the model making it easier to
be pruned. In this experiment, we combine SP3

with LLM-Pruner. The experimental results are
shown in Table 10. It can be seen that combining
our method can improve the performance of the
LLM-pruner.

G More Ablation Experiments

G.1 Impact of Multi-level Masks

SP3 uses different levels of masks to compress the
model. To explore the impact of different levels
of masks on model performance, we conduct the
following experiments: (1) Use all levels of masks.
(2) Ignore head-level masks. (3) Ignore layer-level
masks. (4) Ignore head-level and layer-level masks.

The experimental results are presented in Table
11. Observations indicate superior model perfor-
mance on the SST-2 and RTE datasets when all
mask levels are utilized. For the STS-B datasets,
the removal of the head-level mask results in the
most precise models. Notably, the optimal perfor-
mance on the MRPC dataset is achieved by a model
that excludes both the head-level and layer-level
masks. Given the data volume in each dataset, we
hypothesize that minor alterations in the head-level
and layer-level masks can significantly influence
model outputs compared to the dimension-level
mask. This implies that the head-level and layer-
level masks might be more challenging to optimize.
Consequently, removing either the head-level or
layer-level mask in smaller datasets can stabilize
the optimization process, leading to a more pre-
cise model. As dataset sizes increase, the need
for model compression flexibility becomes evi-
dent, with multi-level masking yielding superior
outcomes.

G.2 Impact of Different Random Seeds

SP3 needs to use the calibration data to initialize
all the compactors. To verify the robustness of SP3

under different calibration data, we conduct experi-
ments using different random seeds to sample the
calibration data. We use SP3 to prune BERTbase

and OPT125m on datasets QNLI, SST-2, MRPC,
STS-B, and RTE using a range of random seeds
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(0, 1, 2, 3, 4, 42), where BERTbase are pruned to
5M and OPT125m are pruned to 7M. The results
of the experiment are shown in Table 12. Employ-
ing these six random seeds has produced various
calibration sets, and our experimental findings in-
dicate that these different calibration sets have a
minimal impact on the model’s performance after
compression due to their small standard deviation.

H Structures of Pruned Model

The structure of pruned models on RTE, SST-2,
STS-B, MNLI, QNLI, QQP and SQuAD are shown
in Fig. 6 and Fig. 7. We show the model structure
in terms of dimension-level and head-level sparsity.
Rather than directly displaying layer-level sparsity,
we indirectly illustrate it through histograms de-
picting dimension-level and head-level sparsity. If
a value at a certain position is 0, it suggests layer-
level pruning has taken place at that position.

I Difference Between SP3 and Low-rank
Factorization Methods

Existing low-rank factorization methods (Garg
et al., 2019; Liu and Ng, 2022; Ma et al., 2019;
Riera et al., 2022; Yin et al., 2022; Zhou et al.,
2019; Zhang and Wang, 2022) primarily focus on
decomposing the weight matrix using PCA. In con-
trast, our approach applies PCA to the features
generated during the model inference process and
re-represents these features based on the principal
components. This feature representation enhances
compression efficacy and offers a distinct perspec-
tive from traditional weight matrix decomposition
using PCA.

SliceGPT (Ashkboos et al., 2024) stands out as
the most pertinent work to our research, as it fo-
cuses on model compression via principal com-
ponent analysis of the feature matrix. However,
notable distinctions exist between our approach
and SliceGPT. Firstly, SliceGPT overlooks the vari-
ability in principal component distributions across
layers, opting for a uniform compression rate of
hidden dimension d across all layers, while our
approach adaptively determines the compression
rate for different layers through learnable masks.
Secondly, it neglects strategies for eliminating pa-
rameters introduced by residuals, which affects the
compression rate of the compressed model. To ad-
dress this problem, we instead propose the Group
PCA Projection approach to reduce the number of
parameters added at the residuals. Lastly, SliceGPT

exclusively addresses decoder-only model architec-
tures, omitting consideration for other model con-
figurations. In contrast, we consider models with a
decoder architecture, such as Llama, and OPT, as
well as models with an encoder architecture, such
as BERT.
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Algorithm 1: PCA Projection
Input: T : sampled tokens size, D: calibration data, L(1∼N): model
Output: Projection Matrix Pin, Pout, PQ, PK , PV , PO

XQ, XK, XV, XM, XF ← [], [], [], [], []
for j ← 1 to |D| do

x(0) ← D[j]
for i← 1 to N do

[WQ,WK ,WV ,WO]← L(i)

for h← 1 to dh do
X

(h,i)
Q ← Concate(X

(h,i)
Q ,W

(h)
Q x(i−1))

X
(h,i)
K ← Concate(X

(h,i)
K ,W

(h)
Q x(i−1))

X
(h,i)
V ← Concate(X

(h,i)
V ,W

(h)
Q x(i−1))

end
xM = MHA(i)(x(i−1)) + x(i−1)

xLN
M = LN(xM)

xF = FFN(i)(xM) + xM

xLN
F = LN(xF)

x(i) = xLN
F

X
(i)
M ← Concate(X

(i)
M , xM)

X
(i)
F ← Concate(X

(i)
F , xF)

end
end
for i← 1 to N do

[WQ,WK ,WV ,WO]← L(i)

for h← 1 to dh do
X

(h,i)
V ← Sample(X

(h,i)
V , T )

X
(h,i)
Q ← Sample(X

(h,i)
Q , T )

X
(h,i)
K ← Sample(X

(h,i)
K , T )

UV ,ΣV , V ⊤
V ← SVD(X

(h,i)
V )

U1,Σ1, V
⊤
1 ← SVD(X

(h,i)
Q )

U2,Σ2, V
⊤
2 ← SVD(X

(h,i)
K )

Z = Σ⊤
1 U

⊤
1 U2Σ2

UZ ,ΣZ , V
⊤
Z = SVD(Z)

UQ = Σ
1
2
ZU

⊤
Z Σ−1

1 U⊤
1

UK = Σ
1
2
ZVZΣ

−1
2 U⊤

2

P
(h,i)
V , P

(h,i)
O ← U⊤

V , UV

P
(h,i)
Q , P

(h,i)
K ← UQ, UK

end
[γM , γF ]← L(i)

R← I − 1
d
11⊤

X
(i)
M ← Sample(X

(i)
M , T )

X
(i)
F ← Sample(X

(i)
F , T )

UM,ΣM, V ⊤
M ← SVD(X

(i)
M )

UF,ΣF, V
⊤
F ← SVD(X

(i)
F )

P
(M,i)
in , P

(M,i)
out ← U⊤

MR, diag(γM)UM

P
(F,i)
in , P

(F,i)
out ← U⊤

F R, diag(γF)UF

end
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Params. SST-2 QNLI MNLI QQP RTE STS-B MRPC SQuAD

BERTbase 110M 93.1 91.5 84.8 91.2 70.4 89.1 85.6 88.4

SP3 25M 91.4 87.6 81.6 90.1 66.4 86.1 82.8 83.2

DisitilBERT (Sanh et al., 2019) 13.6M 86.4 84.5 71.3 88.0 56.3 - 72.5 56.2
LPAF (Ren and Zhu, 2023) 13.6M 89.7 88.6 81.7 90.1 67.9 - 86.0 75.1
LRC-BERT (Fu et al., 2021) 14.5M 92.9 88.7 82.7 72.2 63.1 81.2 87.9 -
AD-KD (Wu et al., 2023a) 66M 91.8 90.0 82.6 88.9 65.8 83.4 87.1 -
DynaBERT (Hou et al., 2020) 10.6M 92.0 88.5 82.3 90.4 63.2 87.0 81.4 76.6
BERT-EMD (Li et al., 2020) 66M 93.3 90.7 84.7 72.0 71.7 86.8 89.8 -
KroneckerBERT (Tahaei et al., 2022) 5.2M 88.4 86.1 80.1 70.5 64.7 81.3 87.1 -
BERT-of-Theseus (Xu et al., 2020) 66M 91.5 89.5 82.3 89.6 68.2 88.7 89.0 -

Movement (Sanh et al., 2020) 3M - - 79.5 89.1 - - - 82.3
FLOP (Wang et al., 2020) 80M 92.1 89.1 - - - 88.2 88.6 -
ROSITA (Liu et al., 2021) 14.5M 87.6 83.8 77.7 88.3 - - - -
PLATON (Zhang et al., 2022) 8.5M 90.5 88.9 82.2 90.2 65.3 87.1 84.3 79.0
CAP-f (Xu et al., 2022) 8.5M 89.7 - 81.2 90.2 - - - 70.2
Fast (Kwon et al., 2022) 66M 92.5 90.1 82.5 90.4 - 88.0 85.3 75.3
KCM (Nova et al., 2023) 50M 91.1 87.8 77.2 89.2 - 85.7 84.2 70.3

Table 5: Comparison between our SP3 and other distillation and pruning methods on BERTbase.

SST-2 QNLI MRPC RTE

TinyBERT w/ DA 91.6 87.6 83.6 62.5
TinyBERT w/o DA 89.7 86.7 81.4 63.2
SP3 91.4 87.6 82.8 66.4

Table 6: Comparison between our SP3 on BERTbase and TinyBERT, where DA means data augmentation.

Params. SST-2 QNLI QQP RTE STS-B MRPC

OPT125m 85M 92.9 90.8 90.1 66.4 87.0 82.4

CoFi∗ 7M 86.8 84.4 88.5 55.8 70.6 69.2
SP3 7M 89.9 86.7 87.8 60.3 75.6 77.2

Table 7: Pruning performance of SP3 on OPT125m, where CoFi∗ means that CoFi on OPT125m is implemented
by ourselves.

Params. ARC-e ARC-c BoolQ HellaSwag OBQA PIQA WinoGrande

TinyLlaMa 1.1B 57.5 27.4 59.2 44.0 23.8 70.8 56.0

SP3 0.85B 51.6 25.9 50.5 37.5 20.4 67.3 54.3
0.65B 44.9 22.3 61.0 33.0 17.2 61.3 53.7

Table 8: Pruning performance of SP3 on TinyLlaMa.

Params. ARC-e ARC-c BoolQ HellaSwag OBQA PIQA WinoGrande

SP3-gs1 0.85B + 0.10B 38.5 23.6 51.0 30.0 14.8 57.9 50.8
SP3-gs2 0.85B + 0.05B 42.0 21.7 52.1 31.7 17.0 60.2 55.6
SP3-gs4 0.85B + 0.03B 44.2 23.4 58.3 33.0 18.4 61.5 52.6
SP3-gs8 0.85B + 0.01B 46.0 23.6 59.0 33.6 17.6 62.0 54.0

Table 9: Pruning performance of SP3 on TinyLlaMa under different group sizes (gs).
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Params. ARC-e ARC-c BoolQ HellaSwag OBQA PIQA WinoGrande

LLM-Pruner 0.85B 46.2 23.1 45.2 35.4 16.8 65.6 53.7
LLM-Pruner + SP3 0.85B 47.3 23.3 48.4 35.9 17.0 68.0 52.0

Table 10: Pruning performance of combining SP3 and LLM-Pruner on TinyLlama.

SST-2 RTE STS-B MRPC

SP3-5M 91.4 66.4 86.1 82.8
w/o head 90.9 66.1 86.6 82.1
w/o layer 91.2 62.8 86.1 83.5
w/o head & layer 91.1 63.9 86.5 83.8

Table 11: Ablation studies of different levels of masks on datasets SST-2, RTE, STS-B, and MRPC using BERTbase.

Random seed 0 1 2 3 4 42 Mean Std

BERTbase MPRC 82.8 81.3 81.8 83.8 83.1 82.8 82.6 0.82
STS-B 86.0 86.6 85.7 85.9 86.1 86.1 86.1 0.29
RTE 64.2 62.5 62.8 64.2 63.2 66.1 63.8 1.2

QNLI 86.9 86.9 87.3 87.1 86.9 87.6 87.1 0.26
SST-2 91.1 91.3 91.3 90.8 90.7 91.4 91.1 0.26

OPT125m MPRC 78.9 78.4 78.1 76.9 76.7 77.2 77.7 0.81
STS-B 75.9 75.4 75.6 75.6 75.6 75.6 75.6 0.15
RTE 57.7 58.6 57.8 59.6 57.5 60.3 58.6 1.0

Table 12: Pruning performance on datasets QNLI, SST-2, MRPC, STS-B, and RTE via the calibration data sampled
by various random seeds.
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(a) RTE: Hidden dimensions (b) RTE: Intermediate dimensions (c) RTE: Attention heads size

(d) SST-2: Hidden dimensions (e) SST-2: Intermediate dimensions (f) SST-2: Attention heads size

(g) STS-B: Hidden dimensions (h) STS-B: Intermediate dimensions (i) STS-B: Attention heads size

Figure 6: Pruned model structures on RTE, SST-2 and STS-B datasets
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(a) MNLI: Hidden dimensions (b) MNLI: Intermediate dimensions (c) MNLI: Attention heads size

(d) QNLI: Hidden dimensions (e) QNLI: Intermediate dimensions (f) QNLI: Attention heads size

(g) QQP: Hidden dimensions (h) QQP: Intermediate dimensions (i) QQP: Attention heads size

(j) SQuAD: Hidden dimensions (k) SQuAD: Intermediate dimensions (l) SQuAD: Attention heads size

Figure 7: Pruned model structures on MNLI, QNLI, QQP and SQuAD datasets
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