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Abstract

A Large Language Model (LLM) tends to gen-
erate inconsistent and sometimes contradictory
outputs when presented with a prompt that has
equivalent semantics but is expressed differ-
ently from the original prompt. To achieve
semantic consistency of an LLM, one of the
key approaches is to finetune the model with
prompt-output pairs with semantically equiv-
alent meanings. Despite its effectiveness, a
data-driven finetuning method incurs substan-
tial computation costs in data preparation and
model optimization. In this regime, an LLM
is treated as a “black box”, restricting our
ability to gain deeper insights into its inter-
nal mechanism. In this paper, we are moti-
vated to enhance the semantic consistency of
LLMs through a more interpretable method
(i.e., model editing) to this end. We first
identify the model components (i.e., attention
heads) that have a key impact on the semantic
consistency of an LLM. We subsequently inject
biases into the output of these model compo-
nents along the semantic-consistency activation
direction. It is noteworthy that these modifi-
cations are cost-effective, without reliance on
mass manipulations of the original model pa-
rameters. Through comprehensive experiments
on the constructed NLU and open-source NLG
datasets, our method demonstrates significant
improvements in the semantic consistency and
task performance of LLMs. Additionally, our
method exhibits promising generalization capa-
bilities by performing well on tasks beyond the
primary tasks.

1 Introduction

The field of Natural Language Processing (NLP) is
experiencing a paradigm shift with the advent of
Large Language Models (LLMs). These models
have demonstrated remarkable capabilities in var-
ious tasks such as sentiment classification (Wang
et al., 2023), machine translation (Hendy et al.,
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Figure 1: Inconsistency arises when prompts sharing
equivalent semantics produce different outcomes, while
consistency is achieved when their outputs remain con-
sistently identical, irrespective of their accuracy.

2023), and summarization (Pu et al., 2023). How-
ever, an LLM tends to generate inconsistent and
sometimes contradictory outputs when presented
with a prompt that has equivalent semantics but
is expressed differently from the original prompt.
Such behavior is referred to as the issue of “seman-
tic consistency” (Gan and Mori, 2023; Rabinovich
et al., 2023; Raj et al., 2022), largely limiting the
application of LLMs to real-world scenarios. For
specific instances of inconsistency and consistency,
please refer to Figure 1.

Current mainstream solutions involve prompt
engineering or data-driven methods to handle the
problem of semantic consistency. For example,
Raj et al. (2023) proposed a prompt strategy called
‘Ask-to-Choose’ (A2C) to improve the semantic
consistency of LLMs, but this method requires care-
fully designed prompts. Applying a data-driven su-
pervised fine-tuning method (SFT) (Ouyang et al.,
2022) to finetune an LLM with prompt-output pairs
with semantically equivalent meanings is another
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effective approach. Despite their effectiveness,
these methods incur substantial computation costs
in data preparation and model optimization. Fur-
thermore, these methods treat an LLM as a “black
box”, restricting our ability to gain deeper insights
into its underlying causes of the semantic consis-
tency problem.

To address the limitations of previous methods
to enhance the semantic consistency of LLMs, we
propose a method based on model editing that can
locate the internal model components (i.e., atten-
tion heads) responsible for generating semantic in-
consistency. We subsequently inject biases into the
outputs of these model components along seman-
tic consistency activation directions. This strategy
aims to shift the outputs of the key model compo-
nents toward a direction resilient to variations of
synonymous prompts.

In order to comprehensively evaluate our pro-
posed method under varying prompts, we have con-
structed relevant NLU-task datasets in addition to
utilizing existing evaluation datasets for NLG-task.
We leverage the paraphrasing capability of GPT-41

to construct the RobustSST2, RobustMRPC, and
RobustBOOLQ datasets. These datasets cover a
wide range of tasks, including the sentiment clas-
sification dataset SST2 (Socher et al., 2013), the
text similarity dataset MRPC (Dolan and Brockett,
2005), and the question-answering dataset BOOLQ
(Clark et al., 2019).

Our method has shown significant enhancements
in both semantic consistency and task performance
on publicly available NLG datasets and our con-
structed NLU datasets. Furthermore, our method
also achieve positive results in out-of-domain ex-
periments, demonstrating a solid generalization ca-
pability. In summary, our contributions are two-
fold:

• To the best of our knowledge, we are the first
to use a model editing approach to address
the issue of prompt semantic inconsistency.
Through this interpretability-oriented method,
we can precisely diagnose the internal com-
ponents contributing to semantic consistency.
By directly injecting biases into the model,
our method avoids mass-manipulating model
parameters, resulting in a significant saving
in GPU hour (up to 23 times faster, shown
in Table 10) in a typical task compared to a

1https://platform.openai.com/docs/
api-reference/chat

traditional SFT approach.

• We have curated three datasets, designed to
address the absence of NLU semantic con-
sistency evaluation benchmark. The datasets
will be released to the community to foster
research along this line.

2 Related Work

Semantic Consistency. The study of semantic con-
sistency originated from investigations into Masked
Language Models (MLMs) like BERT and Roberta.
Elazar et al. (2021) revealed significant semantic
inconsistency in the factual information extracted
from these MLMs when subjected to paraphras-
ing. Building on this, Fierro and Søgaard (2022)
extended the examination of semantic consistency
to a multilingual context, disclosing that incon-
sistency issues are not confined to English but
are prevalent across various other languages. De-
spite the significant shift in the Natural Language
Processing (NLP) paradigm instigated by Large
Language Models (LLMs) (Brown et al., 2020),
the issue of semantic inconsistency remains (Gan
and Mori, 2023). Rabinovich et al. (2023) devel-
oped a benchmark dataset of high-quality para-
phrases specifically for factual questions, serving
as a testbed for evaluating semantic consistency in
a QA context. Existing methods mainly addressed
this issue through prompt engineering and data-
driven SFT. For example, Raj et al. (2023) proposed
an Ask-to-Choose (A2C) prompting method that
can enhance both accuracy and semantic consis-
tency in LLMs. Zhou et al. (2022) used an unsuper-
vised finetuning method. They took advantage of
the fact that multiple prompts can be used to specify
a single task and proposed to regularize prompt con-
sistency, encouraging consistent predictions across
this diverse set of prompts. Compared to previ-
ous methods, we use a model editing method to
modify the output of specific model components
in an LLM. This method is both transparent and
computationally lightweight.
Model Editing. The goal of model editing is to
modify specific knowledge or control model behav-
iors without affecting the model’s performance on
other tasks (Yao et al., 2023). There are mainly
three types of editing methods: external memory-
based methods, constrained fine-tuning methods,
and locate-then-edit methods.

Among them, (1) External memory-based meth-
ods introduce new parameters to update knowledge
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Figure 2: The flowchart of our method. Our method has three main steps: (1) We first construct the prompt pairs
[p, q] with consistency evaluation label c. (2) Based on these pairs, we perform key-components locating, which
selects the top-K (accuracy) components by training and evaluating classifiers based on these components’ output
hidden states and related consistency evaluation labels. If a classifier has high accuracy, the component and LLM
will behave very similarly (compatible), which suggests that the component is highly likely to be responsible for the
inconsistency errors, as mentioned previously. (3) For the selected top-K components, we add biases to the hidden
states of these components, which will shift the original activations of these components toward more semantically
consistent directions.

or change model behavior. An example is SERAC
(Mitchell et al., 2022), which used edit memory to
store updated knowledge and a classifier to route
between the edit memory and a pre-trained model.
(2) Constrained fine-tuning methods typically in-
volve specific fine-tuning restrictions to regulate
parameter updates, thus maintaining the model’s
performance on unedited knowledge. For example,
the method proposed by Zhu et al. (2020) imple-
mented explicit constraints on model parameters to
minimize the interference on the unmodified facts.
(3) Locate-then-edit methods first identify relevant
model parameters that store knowledge or steer
model behavior, and then edit these parameters
to achieve desirable outputs. Meng et al. (2022)
used causal analysis to find that factual knowledge
is mainly stored in the intermediate MLP layer
weights and subsequently used rank-one editing
to modify model weights related to factual knowl-
edge. Li et al. (2023) demonstrated that by iden-
tifying specific attention heads and editing their
activations, the likelihood of the model producing
truthful output can be significantly enhanced. We
adopt the “locate-then-edit” paradigm, motivated
by the objective to improve the semantic consis-
tency of the model while gaining insights into the
components in an LLM contributing to this consis-
tency.

3 Preliminary

LLM representation. The currently prevalent
LLM adopts the decoder-only architecture. Accord-
ing to Elhage et al. (2021), an LLM mainly consists

of three parts: token embedding, a sequence of de-
coder blocks, and token unembedding. Among
them, token embedding is the process of mapping
a token index to an embedding vector, while token
unembedding is the reverse operation that maps
the embedding back to the probability space of
tokens, and then samples to obtain the index of
the next token. The vast majority of parameters
in LLM are composed of stacked decoder blocks,
with each decoder block consisting of the compo-
nents of multi-head attention and MLP, which can
be represented by:

ai = xi +
∑

j=1,...,J

hi,j (1)

xi+1 = ai +mi, (2)

where xi is the i-th decoder layer hidden states. hi,j
is the hidden output of the j-th attention head in the
i-th layer. ai is the residual output after multi-head
attention. mi is the i-th MLP layer output. xi+1

is the hidden output of the i-th decoder block and
also the input of the i+1-th decoder block.

4 Methodology

We use GPT-4 to construct prompt pairs that have
the same semantics, and the target LLM outputs
of these prompt pairs should ideally be consis-
tent. However, when we use the target LLM to
predict these prompt pairs, we obtain both consis-
tent and inconsistent results. These inconsistent
results are errors made by the target LLM. To lo-
cate the sources of these errors, we assume that if
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the model components (i.e. attention heads) behave
similarly to the target LLM, then these components
are actually the causes of the semantic consistency
problems in the target LLM. On the other hand,
those components that have large behavioral differ-
ences from the target LLM indicate that they are
less relevant to the semantic consistency problems
of the prompt pairs. Based on this assumption, we
use the linear probing technique (Alain and Bengio,
2016) to identify the relevant components.

Next, we add semantic consistency biases to the
identified components to correct their erroneous
behavior. These biases are obtained by calculating
the difference between the mass mean of the consis-
tency samples and the mass mean of all samples on
the corresponding components. These biases will
shift the original activations of these components
toward more semantically consistent directions.

As shown in Figure 2, our method mainly con-
sists of three steps, which are consistent prompt
pairs construction, key components locating, and
consistent-aware editing respectively. We will pro-
vide detailed explanations of these steps in the fol-
lowing sections.

4.1 Consistent Prompt Pairs Construction

We need to construct consistent prompt pairs for
locating and editing an LLM. Specifically, we first
construct a prompt pair set D, whose element is
represented as [p, q]. Here, p represents the input
prompt, and q is the rephrased version of p, which
can be generated using existing large-scale models
like GPT-4.

Based on D, we need a consistency evaluation
label c from the target LLM for key components lo-
cating and editing. So we augment the consistency
evaluation label c to [p, q] forming ([p, q], c). In
the case of NLU tasks, we determine consistency
labels based on whether the predicted results are
the same. For NLG tasks, we can utilize GPT-4 to
assess the consistency. Subsequently, we add c to
each prompt pair in D, obtaining the set D′

4.2 Key Components Locating

With the constructed prompt pairs, we apply the
linear probing method (Alain and Bengio, 2016) to
identify which components have similar behavior
to the LLM that determine the prompts’ semantic
consistency. Specifically, we divide the dataset
D′ into probe set D′

probe and locate set D′
locate

following a 4:1 ratio.

For each component, either an attention head or
an MLP in any layer, we train a classifier that takes
the concatenated hidden states as input and uses the
consistency label c as the ground truth label. These
hidden states are the output hidden states of the
component with respect to p and q. The training
data for this classifier comes from D′

probe, and the
testing data for this classifier comes from D′

locate.
If the classifier achieves a high score on the lo-

cate set D′
locate, it implies that the component and

the overall LLM behave very similarly. On the
other hand, a low score indicates that this com-
ponent is less important for semantic consistency
problems. We locate the top K components by
ordering the classification accuracy.

More specifically, given a sample ([p, q], c), the
linear classifier training feature for candidate MLP
and attention head are f(mi, p, q) and f(hi,j , p, q),
respectively.

f(mi, p, q) = [mplast

i ;mqlast

i ], (3)

f(hi,j , p, q) = [hp
last

i,j ; hq
last

i,j )], (4)

where plast and qlast indicates the last token of p
and q, and mplast

i is the hidden output of the MLP

layer in the i-th decoder block and hp
last

i,j is the
hidden output of the j-th attention head in the i-th
decoder block, all correspond to the last token. The
reason why we only use the last token of p and q is
that for a decoder-only architecture, the last token
has visibility over all preceding tokens. Therefore,
the hidden states corresponding to the last token
can be considered a summary representation of the
entire prompt. In this manner, we can construct
training sets S(mi) and S(hi,j) for training linear
classifiers for mi and hi,j , respectively.

S(mi)={f(mi, p, q), c}([p,q],c)∈D′
probe

(5)

S(hi,j)={f(hi,j , p, q), c}([p,q],c)∈D′
probe

, (6)

where S(mi) and S(hi,j) are mapped from
D′

probe.
We train linear classifiers with S(mi) or S(hi,j),

and then evaluate these classifiers on D′
locate. The

top K components in LLM with the highest classifi-
cation accuracy are used for model editing, as these
components strongly affect the prompts’ semantic
consistency.

4.3 Consistent-aware Model Editing
Inspired by the work from Li et al. (2023) and
Jorgensen et al. (2023), we make specific adjust-
ments to the hidden states of the top-K components,
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aligning their hidden states toward greater semantic
consistency.

Specifically, we add biases to these components,
and the biases are obtained by calculating the dif-
ference between the mass mean of the consistency
samples and the mass mean of all samples on the
corresponding components. All of these samples
are from D′

probe. Formally, the biases for the can-
didate MLP and attention head are calculated by:

b(mi)=
∑

p,c=1

mplast

i

N
−
∑

p

mplast

i

M
,

b(hi,j)=
∑

p,c=1

hp
last

i,j

N
−
∑

p

hp
last

i,j

M
,

(7)

where N is the number of the prompts in D′
probe

with c = 1, and M is the number of all the in-
stances in D′

probe. After that, these biases are
added to the hidden states of the selected Top-K
components, obtaining m̂i and ĥi,j for the K se-
lected components.

m̂i = mi + α · b(mi) (8)

ĥi,j = hi,j + α · b(hi,j). (9)

Here, α is the hyperparameter that adjusts the
strength of the activations shift. In our following
experiments, we set its value to 5.0.

5 NLU Benchmark Construction

Currently, there are some NLG benchmarks related
to the semantic consistency of LLM (Rabinovich
et al., 2023). However, there is a relative scarcity
of NLU benchmarks specifically designed for se-
mantic consistency research. To address this gap,
we propose a benchmark dataset for evaluating
semantic consistency in NLU tasks. This bench-
mark comprises RobustSST2, RobustMRPC, and
RobustBOOLQ, which are derived from the sen-
timent classification dataset SST2 (Socher et al.,
2013), the text similarity dataset MRPC (Dolan and
Brockett, 2005), and the yes/no question-answering
dataset BOOLQ (Clark et al., 2019), respectively.
Our primary objective is to assess the semantic
consistency of LLMs under synonymous task in-
structions for these datasets.

More specifically, we first generate 30 synony-
mous task instructions for each task dataset. For
example, we feed the following prompt (bold font)

to GPT-4 to generate the synonymous task instruc-
tions used for RobustSST2.

Rephrase the following sentence in 30 ways, while
retaining the same meaning.
Measure the polarity of this sentence and
respond with either ’positive’ or ’negative’,
give me one word.

Then, we slice the generated task instructions
according to an 8:2 ratio, meaning the training set
uses 24 instructions, while the test set uses 6 in-
structions.

For the training set, we constructed 24 syn-
onymous prompts for each training instance,
i.e., prompti = [instructioni, instancetrain]

24
i=1,

and each prompti has a label answeri, which is
consistent across these 24 prompts.

Additionally, to create consistent prompt pairs
for model editing, we generated C2

24 prompt pairs
by iterating through all possible combinations of
these 24 prompts for each training instance. Then,
we utilized the target LLM to assess whether the
predictions generated for each prompt pair were
consistent and obtain the relevant consistency eval-
uation label c. Lastly, we sampled 250 instances
from both the c = 0 and c = 1 categories, yielding
a total of 500 instances used for model editing.

The instance in the test set is different from the
instance in the training set. Each instance in the
test set includes a constructed prompt along with
its corresponding answer [prompttest, answertest].
In specific, we first use the left 6 task instruc-
tion to construct relevant prompts i.e., {prompti =
[instructioni, instancetest]}30i=25. Subsequently, We
perform sample selection for these 6 prompts to
construct a test instance. The selection rule is that
if these 6 prompts yield the same result, we ran-
domly choose 1 prompt to construct the sample.
However, if they predict N different outcomes, we
select 1 prompt from each of the N distinct results
from N samples. By employing this approach, we
can select hard negative samples while retaining
examples that the LLM could originally predict
correctly, thereby enhancing the diversity of our
test data.

6 Experiments

6.1 Datasets

To verify the effectiveness of the model editing
method for addressing the issue of prompt semantic
consistency, we conducted tests on both NLU and
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NLG tasks. For NLU evaluation, we utilized the
specially constructed RobustMRPC, RobustSST2,
and RobustBOOLQ datasets. For NLG evalua-
tion, we selected the sport and capital categories
from the PopQA question-answering dataset as de-
scribed by Rabinovich et al. (2023). Detailed data
statistics are shown in Table 1.

Task Category Datasets Number of test cases

NLU RobustMRPC 408
NLU RobustSST2 872
NLU RobustBOOLQ 1000

NLG PopQA_sport 3829
NLG PopQA_capital 4515

Table 1: Data statistics of Evaluation Datasets.

6.2 Evaluation Metrics
For NLU tasks, we evaluate its task performance
by testing the overall accuracy of classification re-
sults across different instruction templates. To as-
sess semantic consistency, we measure the standard
deviation of the accuracy across these various in-
struction templates. For the NLG task, accuracy
and mean pairwise cosine similarity metrics intro-
duced by Rabinovich et al. (2023) are employed
to evaluate the model’s task performance and its
semantic consistency respectively. It is worth not-
ing that lower standard deviation and higher mean
pairwise cosine similarity are both indicative of
better semantic consistency.

6.3 Key Components Locating Result
We utilize the LLama2-7B chat-version model
(Touvron et al., 2023) as the target LLM to ana-
lyze the impact of candidate model components,
such as attention heads and MLPs, on LLM’s se-
mantic consistency problem. Next, we visualize the
locating results of these components, with brighter
squares (i.e. yellow squares) highlighting areas
of high locating accuracy, indicative of a strong
correlation with semantic consistency.

As the visualization result shown in Figure 3,
we find that there exists a notable concentration of
yellow squares between layers 11 and 32, suggest-
ing that attention heads and MLPs in the mid to
final LLM’s decoder blocks are highly relevant to
semantic consistency.

Furthermore, our findings suggest that model
components in the initial layers of transformer
blocks exert negligible influence on semantic con-
sistency. Their locating accuracy for synonymous

samples hovers around 50%, equivalent to random
chance, indicating these samples are treated as iden-
tical by these components. This distinction under-
scores the nuanced role of the model components
across different layers in influencing LLM’s seman-
tic consistency.

(a) Visualization Result on RobustSST2.

(b) Visualization Result on PopQA_capital.

Figure 3: The visualization experiments on the Ro-
bustSST2 (NLU) and PopQA_capital (NLG) dataset.
The horizontal axis represents the attention heads and
the MLP in certain layer, while the vertical axis indi-
cates the layer number. The column on the right shows
the locating accuracy of attention heads or the MLPs.
Brighter Squares indicate high locating accuracy.

6.4 Model Editing Experimental Result

Our comprehensive analysis, as presented in Ta-
ble 2, and Table 3, demonstrates that our editing
method can significantly enhance both semantic
consistency and task performance across a variety
of NLU and NLG tasks. Specifically, we observed
notable reductions in the standard deviation for
semantic consistency assessments on the RobustM-
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Method RobustMRPC RobustSST2 RobustBOOLQ

LLama2-7B 67.15±5.36 85.66±4.88 46.40±10.55

+Editing 68.62±4.47 89.90±4.54 57.50±5.10

Table 2: Main experiment result is on NLU datasets.
The notation 67.15±5.36 indicates an average test set
accuracy of 67.15 with a standard deviation of ±5.36.

Method PopQA_sport PopQA_capital

LLama2-7B 50.83/0.79 73.33/0.73
+Editing 53.20/0.80 74.36/0.77

Table 3: Main experiment on NLG Tasks. The nota-
tion 50.83/0.79 indicates an average test set accuracy of
50.83 with a mean pairwise cosine similarity of 0.79.

RPC, RobustSST2, and RobustBOOLQ datasets,
with decreases of 0.89, 0.34, and 5.45, respectively.
Moreover, the accuracy of model performance ex-
perienced substantial improvements, showing in-
creases of 1.47%, 4.24%, and 11.1% across these
datasets, respectively. For NLG tasks, we noted im-
provements in semantic consistency score by 1.0%
and 4.0%, respectively, while the accuracy in these
tasks rose by 2.37% and 1.03%, respectively.

The findings from these experiments clearly sup-
port the conclusion that adjustments to the outputs
of the top-K model components can significantly
enhance the model’s semantic consistency and task
performance. Importantly, these advancements are
achieved without the need for altering the model’s
underlying parameters.

6.5 Ablation Study

6.5.1 The Influence of Hyperparameter K
We investigate the impact of the K-value
on the experimental setting, selecting the Ro-
bustSST2 dataset for our analysis, with the k ∈
{5, 15, 25, 35, 45, 55}. As demonstrated in Figure
4, it is observed that the edited model achieves the
highest accuracy when the K-value is equal to 25.
Conversely, when the K-value is equal to or greater
than 35, a decline in model accuracy is noted. The
experimental findings underscore the critical impor-
tance of selecting an appropriate number of editing
heads. It is evident that excessive model editing
can result in the collapse of the model.

6.5.2 The Influence of Hyperparameter α

We also perform an ablation study to investigate
the impact of the activations shift strength hyper-
parameter α on the LLM’s task performance and

Figure 4: The performance of the proposed model edit-
ing method with different K-values.

semantic consistency. Specifically, we evaluate
the LLM edited using the proposed method on Ro-
bustSST2 dataset with α ∈ {1.0, 3.0, 5.0, 7.0, 9.0},
respectively.

As depicted in Table 4, the performance of the
edited LLM exhibits robustness within a specific
range of α values (1.0 to 7.0). Across this range,
our methods consistently enhances both the task
performance and semantic consistency of the LLM.
Concurrently, it is anticipated that an excessively
large activations shift strength (α = 9.0) can lead
to a decline in model performance. It is noted that
at α = 3.0, the LLM achieves better results than
those reported in Table 2, highlighting the need to
optimize the value of α in practice.

Method RobustSST2

LLama2-7B 85.66±4.88

+Editing (α=1.0) 89.90±4.54

+Editing (α=3.0) 89.90±2.98

+Editing (α=5.0) 89.90±4.54

+Editing (α=7.0) 88.53±5.09

+Editing (α=9.0) 83.48±7.50

Table 4: The performance of the proposed model editing
method under different α values.

6.5.3 The Influence of the Model Components
Selecting Strategy and Editing Direction

We design two ablation studies to investigate effects
of our editing method on the selection strategy of
model components and the direction of editing. In
the first study, we randomly select a number of
model components equivalent to those obtained in
our editing method, with the goal of evaluating
the effectiveness of our components selection strat-
egy on the performance of the model. The second

3349



study involves altering the editing directions to ran-
dom directions based on biases randomly generated
from a normal distribution.

Method RobustMRPC

LLama2-7B 67.15±5.36

+Editing 68.62±4.47

w/ random components 61.51±10.86

w/ random direction 64.46±6.20

Table 5: Ablation studies for the influence of model
components selecting strategy and the editing direction.
The term “random components” refers to the strategy
of randomly selecting the same number of components
as in our editing method. The “random direction” is the
approach of randomly selecting editing directions.

Table 5 demonstrates that on the RobustMRPC
dataset, both semantic consistency and the task per-
formance of the model suffer when random model
components selection or random direction editing
are applied. Compared to the unedited LLama2-7B
chat-version model, semantic consistency experi-
ences a decline of 5.5 and 0.84 points (measured
in the standard deviation of accuracy), while accu-
racy drops by 5.64% and 2.69%, respectively. The
findings highlight the critical role of model com-
ponents selection and editing direction decision in
applying model editing to enhance the semantic
consistency and task performance of an LLM.

6.5.4 Out-of-domain Experiment Result
We evaluate the performance of the edited LLama2-
7B chat-version model on out-of-domain datasets.
Specifically, after editing the model on the MRPC
dataset, we test its performance on four OOD
datasets: AG News for news categorization (Zhang
et al., 2015), IMDB for movie reviews senti-
ment classification (Maas et al., 2011), and both
CNN/Daily Mail (See et al., 2017) and XSum
(Narayan et al., 2018) for news summarization,
drawing a sample of 500 instances from each
for evaluation. For AG News and IMDB, accu-
racy serves as the evaluation metric, while for
CNN/Daily Mail and XSum, we apply the ROUGE-
L metric (Lin, 2004) for assessment.

Model AG News IMDB

LLama2-7B 70.00 88.60
+Editing 70.20 89.40

Table 6: Evaluation of OOD performance on AG News
and IMDB datasets using a subset of 500 instances from
each.

Model CNN/Daily Mail XSum

LLama2-7B 21.36 14.28
+Editing 21.14 14.45

Table 7: Experiment results on OOD performance with
500 instances from CNN/Daily Mail and XSum.

It can observed in Tables 6 and 7 that the
model’s performance remains consistent across
most datasets, demonstrating the potential general-
ization capability of the proposed editing method
across OOD tasks.

6.5.5 Comparison with the SFT Method
To compare our method with the STF approach,
we also employ the LLama2-7B-Chat model as the
base model. Specifically, we generate additional
training samples by paraphrasing the task prompt
with the same semantic meaning as the fine-tuning
data. The number of training samples is identical
to that of our model editing method (500 for each
relevant task).

Method RobustMRPC RobustSST2 RobustBOOLQ

LLama2-7B 67.15±5.36 85.66±4.88 46.40±10.55

+Editing 68.62±4.47 89.90±4.54 57.50±5.10

+SFT 80.14±2.40 91.39±1.94 81.80±3.87

Table 8: Comparison of performance and consistency
between the SFT and our method on NLU datasets.

Method PopQA_sport PopQA_capital

LLama2-7B 50.83/0.79 73.33/0.73
+Editing 53.20/0.80 74.36/0.77
+SFT 74.03/0.95 70.89/0.91

Table 9: Comparison of the performance and con-
sistency between the SFT and our method on NLG
datasets.

The experimental results presented in Tables 8
and 9 suggest that while our method enhances both
semantic consistency and task performance, the
magnitude of improvement is not as pronounced as
that achieved by SFT. Notably, SFT outperforms
our editing method on RobustMRPC, RobustSST2,
RobustBOOLQ, and PopQA_sport. The only ex-
ception is the NLG task’s PopQA_capital dataset,
where our method slightly surpasses SFT (74.36 vs.
70.89). SFT achieves superior performance by pre-
cisely adjusting model parameters based on back-
propagation (BP). In contrast, our editing method
prioritizes model components interpretability, ad-
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justing the output of the key components instead.
There is ample space for optimization.

However, in terms of computational resource
consumption, our method exhibits a significant ad-
vantage over SFT, as shown in Table 10. For in-
stance, SFT requires 2.02 GPU hours to complete
the task on the RobustSST2 dataset, whereas our
method achieves the same task with a significantly
reduced computational resource (0.11 GPU hours).

Method +SFT +Editing Efficiency

RobustSST2 2.02 0.11 18X
RobustMRPC 2.80 0.12 23X
RobustBOOLQ 1.68 0.14 12X
PopQA_sport 1.87 0.10 18X
PopQA_captial 1.93 0.10 19X

Table 10: The comparison of the computational cost
between SFT and our method in terms of GPU hour.

Furthermore, we conduct an experiment to inves-
tigate the pontential complementary effect between
SFT and our proposed model editing approach.
Specifically, we apply SFT to the LLM followed by
the proposed model editing to the fine-tuned model.
As shown in Table 11 (“+SFT&Editing”), our pre-
liminary experimental results on RobustSST2 and
RobustBOOLQ datasets indicate that the task per-
formance and semantic consistency of an LLM
can be further enhanced by applying model edit-
ing techniques to a fine-tuned model. While the
magnitude of improvement may not be substan-
tial, it nonetheless demonstrates the potential of a
two-stage approach. We intend to conduct further
investigation of this approach in future work.

Method RobustSST2 RobustBOOLQ

LLama2-7B 85.66±4.88 46.40±10.55

+Editing 89.90±4.54 57.50±5.10

+SFT 91.39±1.94 81.80±3.87

+SFT&Editing 91.51±1.91 81.80±3.63

Table 11: Comparison of performance and semantic
consistency between the SFT, Editing and SFT&Editing
method on RobustSST2 and RobustBOOLQ datasets.

7 Conclusion

This paper presents the first analysis of the internal
mechanism aspects of an LLM that contribute to
the problem of semantic inconsistency. We can pre-
cisely diagnose the key components that contribute
to a model’s semantic consistency. Based on this
finding, we propose a model editing method that

directly injects biases into the model components
of an LLM without mass-manipulating model pa-
rameters. The proposed method can significantly
improve both semantic consistency and the per-
formance of LLMs on the constructed NLU and
open-source NLG datasets. Also, our methods ex-
hibit promising generalization capabilities on four
OOD task datasets.

Limitations

Our study reveals that semantic consistency is cor-
related with both attention heads and MLPs in an
LLM. However, attention heads tend to have a more
predominant influence on an LLM than MLPs with
the majority of editing operations focusing on them.
Future research will focus on exploring the role of
MLPs in the semantic consistency of LLMs.

Despite achieving comparable results on OOD
settings, our editing method is not sufficiently val-
idated in terms of other metrics, like locality and
portability (Yao et al., 2023). Therefore, more rig-
orous and effective testing methods are required to
evaluate the performance of the proposed method.

We aim to develop an interpretability-oriented
approach to enhance the semantic consistency of
LLMs. Despite our model editing method being
comparably transparent and computationally effi-
cient, it still lags behind an SFT approach in terms
of performance. In the future, we plan to extend
our research to identify the circuits (Elhage et al.,
2021) related to semantic consistency and under-
stand their causal mechanisms. In this way, we
can further advance the development of effective
techniques that improve the semantic consistency
of LLMs while prioritizing interpretability and effi-
ciency.
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