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Abstract

Since the release of ChatGPT, generative mod-
els have achieved tremendous success and be-
come the de facto approach for various NLP
tasks. However, its application in the field of
input methods remains under-explored. Many
neural network approaches have been applied
to the construction of Chinese input method en-
gines (IMEs). Previous research often assumed
that the input pinyin was correct and focused on
Pinyin-to-character (P2C) task, which signifi-
cantly falls short of meeting users’ demands.
Moreover, previous research could not lever-
age user feedback to optimize the model and
provide personalized results. In this study, we
propose a novel Generative Input paradigm
named GeneInput. It uses prompts to handle
all input scenarios and other intelligent auxil-
iary input functions, optimizing the model with
user feedback. The results demonstrate that we
have achieved state-of-the-art performance for
the first time in the Full-mode Key-sequence
to Characters task. GeneInput also includes
RLHF-IME, a novel RLHF application frame-
work for input method, that eliminates the need
for manual ranking annotations and the perfor-
mance surpasses GPT-4. Relevant resources
have been open-sourced1.

1 Introduction

One of the primary objectives of IMEs is to as-
sist users in efficient text input. In some Asian
languages, such as Chinese, Japanese they do not
use alphabetic characters and cannot be directly
inputted through a standard keyboard. Users often
need to employ commercial input software, such
as Google Input Method2, Sogou Input Method3,

*Equal contributions by alphabetical order.
1https://github.com/spirit-wang/

Generative-Input/tree/master
2https://www.google.com/inputtools/services/

features/input-method.html
3https://pinyin.sogou.com/

Figure 1: PinYin input scenarios in typical input modes.

iFlytek Input Method4, and so on, to accomplish
text input.

Pinyin serves as the official romanization sys-
tem for the Chinese language. In China, there are
two common keyboard input methods: the 9-key
keyboard and the 26-key keyboard. Each of these
keyboard inputs further includes different input
modes. In practice, user input scenarios are highly
complex, with typical input modes illustrated in
Figure 1, which illustrates various potential input
modes for the Chinese sentence “我爱自然语言
处理” (I love natural language processing). Some
of the possible input modes include:

1) 26-keyboard perfect Pinyin sequence(e.g.,
“wo ai zi ran yu yan chu li”). 2) 26-keyboard ab-
breviated sequence(e.g., “w a z r y y c l”). Both of
these input modes have been extensively studied
in prior works (Chen et al., 2015; Tan et al., 2022;
Xiao et al., 2022). 3) 9-keyboard perfect Pinyin
sequence (e.g., ’96’24’94’726’98’926’248’54’). 4)
26-keyboard random abbreviated pinyin sequence
(e.g.,“wo ai zi ran y y c l”).5) 26-keyboard pinyin
with noise sequence (e.g., “wo ai zhi rna yu uan
chu li”).

With the rapid development of AI technology,
the functionality of input methods has far exceeded
P2C task. New features have emerged, such as

4https://srf.xunfei.cn/
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intelligent association, conversational assistance,
text correction, aimed at enhancing input efficiency,
enjoyment and accuracy.

To the best of our knowledge, there is currently
no related research work covering such a wide
range of practical input modes and AI-assisted in-
put scenarios. Traditional input methods typically
treat P2C as a sequence labeling task. Pre-trained
models such as BERT-CRF (Souza et al., 2019) and
GPT (Tan et al., 2022) have been applied to P2C
task. Cai et al. (2018) propose KNPTC to integrate
letter-neighbor knowledge into NMT for Pinyin
Error Correction.

This paper, for the first time, explores the fea-
sibility of using a unified generative framework
to model all typical tasks in IMEs. It unifies the
tasks as text generation tasks, completely overturn-
ing the previous paradigm of constructing IMEs.
Addressing the uncertainty in the task of mapping
key sequences to character sequences in real input
scenarios, a two-stage decoding strategy is pro-
posed. To tackle the significant issue of noise in
input, a soft constraint strategy is introduced, en-
abling users’ key sequences to yield optimal text
results. Unlike traditional input method models
with fixed resources, this paper introduces a user
feedback-based reinforcement learning approach
in the context of IMEs, allowing the online updat-
ing of the model and greatly enhancing its self-
evolving capabilities. The primary contributions
of this paper are three-fold: 1) A novel generative
input method framework is proposed, achieving
state-of-the-art performance. 2) An optimization
architecture of reinforcement learning based on
user feedback is introduced in the context of IMEs,
enabling online automatic optimization of LLM.
3) Addressing complex real-world user input sce-
narios, a two-stage decoding strategy and a soft
constraint strategy are proposed.

2 Tasks

We selected the three most representative tasks in
the input method scenarios for our research.

Full-mode Key-sequence to Characters
(FK2C) This task is the core function of the input
method. Previous studies commonly assumed
that the input sequence is noise-free and follows a
specific mode, focusing solely on the conversion
from pinyin to characters, denoted as P2C.
However, the challenges in actual input scenarios
are much more difficult, as illustrated in Fig1, and

Figure 2: Comparison between the traditional(a) and
GeneInput paradigm(b).

the same key sequence may correspond to different
input mode results. Therefore, directly modeling
the conversion of key sequences to characters is a
more challenging task than traditional P2C tasks.

Intelligent Association (IntelAssoc) This is a
typical text continuation task, which predicts the
user’s expected next sentence based on the previous
content to improve input efficiency.

Conversational Assistance (ConvAssist) This
is a text beautification task, rewriting the input to
meet specific requirements, such as being more
humorous, without changing the user’s semantics.

3 Methodology

In this paper, we propose a generative modeling
scheme GeneInput to uniformly model the typical
tasks and different input modes contained in the
input method scenario, as Figure 2(b) shows. It
leverages an LLM to model Pinyin decoding tasks
in various noisy scenarios, various AI-assisted in-
put functionalities, and utilizes user feedback to
automatically adjust and optimize the model. Ad-
ditionally, it integrates historical user input infor-
mation to provide personalized results.

3.1 GeneInput

Large language models (LLM) have achieved
good results in many tasks, and studies show
that LLM can distinguish tasks through different
prompts, thus unifying the modeling of different
tasks (Ouyang et al., 2022; OpenAI, 2023; Wei
et al., 2021). However, to the best of our knowl-
edge, there is no related work that uses LLM to
uniformly model input method related tasks, and
the existing LLM does not perform well on the
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core tasks of input method. Therefore, this work
attempts to use LLM for unified modeling of input
method typical tasks.

We designed corresponding prompts for the
three typical input method tasks introduced in sec-
tion2, and fine-tuned them based on generative
LLM. As shown in Figure 3(a), in the model, given
the corresponding task description P and input
X, we predict the corresponding output character
Y = [y1, ..., yn]. The model training objective is
to minimize the following loss function.

L = −
n∑

j=1

log p (yj |y<j , P,X) (1)

Specifically, for IntelAssoc, the input X is the
current input sentence and the output Y is the cor-
responding possible next sentence. For ConvAssist,
the input X is the user’s original input sentence and
the output Y is the beautified paraphrased sentence
of this sentence. And for the FK2C task, the input
X is the 26-key or 9-key keystroke sequence and
the output Y is the corresponding Chinese charac-
ter result. And for each task, we carefully design
a corresponding task description P to ensure that
the model knows the requirements of each task,
thus making clear distinctions among tasks. Since
FK2C is a more complex and challenging task, we
have done a more extended design for this task,
which will be introduced in section 3.2. We pro-
vide examples of each task in Appendix A.

The structure of GeneInput is simple and flexi-
ble, the task description, input and output can be
modified or extended according to different tasks.
With the user’s informed consent and authorization,
GenInput can conveniently incorporate existing his-
torical input and user profile information to provide
users with more accurate personalized results. We
conducted a case study on a small group of internal
users who participated in a performance improve-
ment project, the details of which can be obtained
in Appendix B.1.

3.2 Full-mode Key-sequence to Characters

Previous P2C studies assume that the input is seg-
mented pinyin, such as “Wo’Ban”, which already
has a deterministic input mode. We follow the ac-
tual input process to model keystroke sequences
to characters end-to-end. The same key-sequence
may have multiple modes of results. As shown
in Figure 3, when the key sequence “woban” is
entered, it can be segmented into perfect pinyin

Figure 3: The architecture of IME unified modeling (a)
and full-mode K2C (b).

“Wo’Ban”, random abbreviate pinyin “WoBaN”, or
other modes. Hence, pinyin segmentation plays
a significant role in FK2C. We refer to the pinyin
segmentation results as “pyseg” for simplicity.

3.2.1 FK2C Modeling Based on Pyseg

Research shows that it is insufficient to directly
model the mapping from input x to output y for
complex problems, and the introduction of interme-
diate processes can greatly enhance the ability of
LLM (Wei et al., 2022). As shown in Figure 3(b),
we add pyseg as an intermediate result to enhance
the modeling ability of different input modes, so
as to realize the unified modeling of multiple input
modes of the input method. First, from the task
description P and the input keystroke sequence
X = [x1, ..., xm], we predict the possible pyseg
S = [s1, ..., sn], and then combine the first two to
predict the final characters Y = [y1, ..., yn]. After
the output is extended, the corresponding training
loss function is:

Lpysegs = −
n∑

i=1

log p (si|s<i, P,X) (2)

Lcharacters = −
n∑

j=1

log p (yj |y<j , S, P,X) (3)

L = λ · Lpysegs + Lcharacters (4)

Here, λ is an adjustable hyper-parameter.
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3.2.2 Soft Alignment Constraint
Unlike hard constraint methods, such as con-
strained decoding (Tan et al., 2022), which can
only be applied to extremely desirable input sce-
narios. First, when the input is an actual sequence
of keystrokes, there is no clear alignment between
the input and the output. Secondly, when the input
is noisy, directly restricting the character decod-
ing space to fully conform to pinyin may not yield
results. To be able to handle noisy inputs while
avoiding producing unacceptable results, we design
a soft alignment constraint. See the appendix D for
specific differences. The alignment constraint can
be divided into two stages: pyseg-input alignment
and output-pyseg alignment.

Pyseg-Input Alignment Since Pinyin segmenta-
tion only performs a limited spatial mapping and
segmentation on the input, we can compare it with
the original input by mapping the decoded pyseg
back to the corresponding key-sequence, such as
“Wo’Ban” to “woban” of 26-key or “96222” of 9-
key, and remove the pysegs that are inconsistent
with the input. si represents the generated i-th
pinyin, and its probability is as follows.

p(si) =
exp(g(si))∑

P2I(s<jsj)∈νX
exp(g(sj))

(5)

In this context, g represents the logit before soft-
max, νX denotes the prefix subset corresponding
to the input X, and P2I() represents the mapping
function from pinyin to input. That is, the current
decoded pyseg should be restored as a prefix subset
of the input X, and the final pyseg restored should
be consistent with the input X.

Output-Pyseg Alignment The output string
Y = [y1, ..., yn] and pyseg S = [s1, ..., sn] corre-
spond one-to-one. By comparing the edit distance
between the pinyin of Chinese characters and the
corresponding position of pyseg, we impose a cer-
tain penalty on the noisy results, as shown in Figure
3(b), the pinyin “Nan” of the character “难(hard)”
and the “Ban” in pyseg, so as to realize the process-
ing of noisy input while avoiding excessive error
correction. The correction penalty coefficient for
the i-th step is as follows.

εi =
α

n
EditDist(si, C2P (yi,mode(si))) (6)

In this context, n is the number of inputs corre-
sponding to si, EditDistance(a, b) represents the
edit distance between a and b. The function C2P ()

is used to romanize the generated Chinese charac-
ters yi and select the corresponding perfect pinyin
or abbreviate pinyin based on the mode of si. α
adjusts the correction penalty strength.

After increasing the alignment constraints, yi
represents the generated i-th Chinese character, and
its corresponding probability is as follows.

p(yi) = (1− εi) · exp(g(yi))∑
exp(g(yj)

(7)

3.3 Online Optimization with Human
Feedback

Previously, the optimization of language mod-
els behind input method editors mainly followed
the classical paradigm of “pre-training + fine-
tuning”(Radford and Narasimhan, 2018). However,
such a complete model development process has
very high requirements on the quality and quan-
tity of training data, computational resources, time,
and so on, so it is difficult to iterate models rapidly.
In the input method scenario, the style and pref-
erence of people’s daily communication language
change fast with the passage of time, so the tra-
ditional paradigm can not meet the optimization
needs of the input method models. Recently, the
key technology behind ChatGPT, RLHF, can effec-
tively help the model to follow the human prefer-
ence(Ouyang et al., 2022). Therefore, we explored
applying RLHF on input method editor models in
order to make its outputs on the downstream tasks
more in line with the requirements of the real appli-
cation users. We refer to this part as RLHF-IME.

Studies show that the quality of the reward model
(RM) determines the upper bound of RLHF to a
large extent (Zheng et al., 2023). However, Ouyang
et al. (2022) requires many high-quality trained an-
notators to give ranking annotations, which is too
costly in terms of time and budget, we design fully
automated annotation methods that are more fea-
sible and friendly to a large number of real-world
application scenarios in the industry. Considering
the text characteristics of the input method sce-
nario, multiple RM training methods based on two
annotation systems are designed.

Figure 4 illustrates the whole process of RLHF-
IME which consists of automatic data construction,
reward modeling, and LLM optimized with the
reinforcement learning iteratively.

3.3.1 Ranking System
Ouyang et al. (2022) shows us that it is effective
to train RMs based on manually labeled rankings
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Figure 4: Workflow of RLHF-IME.

of LLM outputs. For labeling automatically, we
take three months as the statistical cycle, the label
score is calculated based on the percentage of the
number of times the answer is selected to the num-
ber of times the answer is provided as a candidate
answer as shown in Equation 8, where N i

selected is
the number of ith sample selected by users.

labeli =




0 ifN i

selected = 0,

max(1,
Ni

selected

Ni
provided

∗ 100) otherwise.

(8)

Under the ranking annotation system, we design
the following RM training method.

Query-Wise The Query-Wise method is de-
signed based on comparing samples with the same
query but different answers. Under the same query,
it is reasonable to rank different answers accord-
ing to the user labeling scores and train models to
judge the quality of answers, otherwise, compar-
ing the scores is meaningless. The loss function
is constructed by the formula 9, 10 and 11, where
n denotes the number of answers of the current
query, queryi means the query of the ith sample
and labeli means the human preference score of
the ith answer. s(x, y) stands for the RM’s scoring
of answer y when the query is x.

ld(i, j) = labeli − labelj (9)

bt(i) =
n∑

j=1

Iqueryi=queryj Ild(i,j)>0 · 1 (10)

LQW = − 1

n

n∑

i=1

1

bt(i)

bt(i)∑

j=1

ln σ[s(x, yi)− s(x, yj)]
ld(i,j)−1

(11)

3.3.2 Binary Classification System
Texts in input method scenarios are characterized
by high contextual diversity and short length (less
information in a single sentence), so it is challeng-
ing to rank different answers in one order because
most of them can be correct in some specific con-
texts. For example, in IntelAssoc, when the query
is “I haven’t slept yet”, the candidate answers “be-
cause I haven’t finished my homework yet” and
“because I drank too much coffee and am suffer-
ing from insomnia” may be the preferred answer
for different users. However, for answers that are
definitely impossible (e.g., “steak and black pep-
per go well together”), people can make a clear
distinction without any doubt. Therefore, we can
classify the answers into two classes, i.e., whether
they are likely to be reasonable answers or not. In
this system, we also use a fully automated labeling
scheme where answers that have been selected by
real users during the current three-month statistic
cycle are labeled as positive answers. Based on
this, we designed various RM training methods as
follows.

Sample-Wise This is the sample-level training
method based on each sample for a binary classi-
fication task, allowing the model to judge whether
the current answer is correct or not given the spe-
cific task and query. The loss function worked as
shown in equation 12, where yi and ŷi denote the
ground truth label and model predict value.

LSW = − 1

n

n∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (12)

Class-Wise In the training method for category
granularity, we expect models to acquire the ability
to judge the correctness of an answer by taking
the samples from each category as a whole and
training the model so that its score for the correct
answers is greater than that for the incorrect. The
loss function is shown in Equation 13, where n and
m denote the number of samples of correct and
incorrect answers.

LCW = − log σ(
1

n

n∑

i=1

s(x, yi)− 1

m

m∑

j=1

s(x, yj)) (13)

Batch-Wise This is a kind of pair-level train-
ing method. For the data within a batch, we pair
every correct sample with every incorrect one,
then construct a pair-grained training loss. In this
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method, it is not required that the queries of the
two samples in the pair are the same because, un-
der the binary annotation system, we believe that
the model scores of any correct answer should
always be higher than any incorrect answer, no
matter what the query is. For example, in the
IntelAssoc, the model should judge [query=“早
上好(Good morning)”, answer=“吃早饭了
吗？(Have you had breakfast yet?)”] to
be superior to [query=“今天天气不错(it’s a
nice day)”, answer=“衬衫的价格是九榜十五
便士(the price of the shirt is nine pounds
fifteen pence)”]. For the loss function, please
refer to Equation 14, where n and m refer to the
number of correct and incorrect answers in a batch.

LBW = − 1

nm

n∑

j=1

m∑

j=1

log σ[s(x, yi)− s(x, yj)] (14)

Contra-Wise Contrastive learning has been ver-
ified to be effective in many areas of NLP, so we
explored introducing supervised contrastive learn-
ing into RM training by using the categorization
information of the samples as supervised signals
and the loss function is constructed in line with
Khosla et al. (2020).

In the reinforcement learning stage, we use the
training method of the model “ppo-ptx” in Ouyang
et al. (2022), i.e., combining ppo loss with pre-train
loss. During the training process, we use the reward
models trained based on the above methods to score
the answers generated by fine-tuned Spark. The
reward models serve as an approximation of human
preferences to guide the optimization direction of
the generative large language models.

4 Experiments

4.1 Experiments Settings

4.1.1 Public Datasets

PD dataset (Yang et al., 2012) and TP dataset
(Zhang et al., 2017) are publicly available datasets
commonly used to evaluate the P2C effect of input
methods. PD is constructed based on the People’s
Daily corpus from 1992 to 1998. Meanwhile, TP is
constructed from user chat logs collected by Touch-
Pal IME. Each dataset contains 2K samples with
perfect pinyin input only.

4.1.2 XF Datasets
Due to the lack of publicly available datasets, we
constructed XF-datasets5 consists of datasets that
cover all tasks and training settings (as shown in
Table 1).

SFT Datasets We built millions of training data
for each of the three tasks. Additionally, we con-
structed test sets for IntelAssoc and ConvAssist
with 2K samples each for manual evaluation of the
final results. For the evaluation of FK2C effects
under different keyboards of 26-key and 9-key, we
constructed a test set of 57K, covering different
input modes such as perfect pinyin, abbreviated
pinyin, random abbreviated pinyin, and noisy input
with different error types.

RM/RL Datasets For RLHF-IME, we con-
structed multiple datasets for reward modeling and
the reinforcement learning phase. All the samples
are derived from the user behavior of real users
recruited via the Internet to participate in the user
improvement program. These users only need to
choose the most satisfactory one among multiple
model-generated candidate results as ordinary users
and do not need to do anything special to the rest
bad results, not to mention the need to rank as in
Ouyang et al. (2022). This consistency between
annotated data and the real input method ensures
the reliability of the data. Simultaneously, the sim-
plicity of this annotation method significantly in-
creases efficiency compared to using specifically
trained annotators for ranking annotations, thereby
reducing time and monetary costs. As described
in Section 3.3, for both annotation systems, we
generate labels in a fully automated way. Consid-
ering that the number of users participating in the
user improvement program for ConvAssist is rela-
tively small, so there are only datasets in the binary
classification system for it.

4.1.3 Evaluation Metrics
We used a manual subjective metric - MOS for Inte-
lAssoc and ConvAssist, where the model-generated
results were independently scored by ten human
evaluators with a range from 1 (worst) to 5 (best).

We use the precision of top-K (P@K) as the
evaluation metric for the K2C task, which is often
used in the past P2C tasks (Tan et al., 2022; Zhang
et al., 2019), indicating whether the desired result
is included in the generated top-K results.

5Publicly available at https://github.com/
spirit-wang/Generative-Input/tree/master
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IntelAssoc ConvAssist FK2C
Binary Rank Binary Binary Rank

SFT
Train Set 8M 6M 12M
Validation Set 100K 100K 100K
Test Set 2K 2K 57K

RM
Train Set 6.5M 2.5M 4.9M 8.4M 9.4M
Test Set 1.6M 0.6M 1.2M 2.1M 2.3M

RL
Prompt Set 4.1M 1.9M 4.0M

Table 1: Statistics of XF datasets.

For evaluating the RMs, we designed the follow-
ing metrics for different annotation systems.

Accuracy-Rank Accuracy-Rank(AccR) is de-
signed to evaluate RMs trained by the training
method under the ranking annotation system. Its
core idea is to compare how well the model’s pre-
dicted scores match the ranked labeling informa-
tion as displayed as Formula 15, where scorei rep-
resents the model score for the ith sample.

AccR =

∑n
i=1

∑n
j=1 Ilabeli>labelj Iscorei>scorej · 1∑n
i=1

∑n
j=1 Ilabeli>labelj · 1 (15)

Accuracy-Binary Accuracy-Binary(AccB) is
designed for the binary classification annotation
system. Positive samples are paired with the nega-
tive ones and then we compare the scores given by
the RMs and then calculate the accuracy as Equa-
tion 16, where Npos denotes the number of positive
samples, and score(pairposi ) denotes the model
score for the positive sample in the ith sample pair.

AccB =

∑Npos·Nneg

i=1 Iscore(pairposi )>score(pair
neg
i ) · 1

Npos ·Nneg

(16)

4.1.4 Base Models and Configs
In order to balance the model capability on various
downstream tasks and the cost of hundreds of mil-
lions of calls per day in the input method scenario,
we conduct experiments on the 2.6B version of
Spark, an open-sourced LLM for Chinese 6(except
for the RM) which has a GPT-like structure contain-
ing 32 layers of transformers and is equipped with
strong text generation capability after pre-training
with a large amount of Chinese corpus. For the RM,
we use the Chinese version of DeBERTa-v2-large

6https://gitee.com/iflytekopensource

PD TP
System P@1 P@5 P@1 P@5

Google IME 70.9 78.3 57.5 63.8
On-OMWA 64.6 72.9 57.1 71.1
On-P2C 71.3 80.5 71.9 89.7
Pinyin-GPT 73.2 84.1 - -

GeneInput 88.4 96.2 77.0 92.9
- align 88.1 95.9 76.4 92.5
- align - pyseg 82.1 92.4 70.1 88.6

Table 2: The results of the comparison between different
methods on the PD and TP datasets.

(Wang et al., 2022) as the foundation model, and
then add 3 linear layers connected by the GELU
(Hendrycks and Gimpel, 2016) activation function
and the final output size is 1 to let the RM give a
scaler value representing the reward score.

The SFT model is trained on 8 Atlas 800T A2
NPUs for about 1 week, the batch size is 128, we
use a cosine annealing learning schedule with an
initial learning rate of 1.6e-5, and we use the Adam
optimizer with parameters of 0.9 and 0.95. The
hyperparameters λ and α are set as 1.1 and 0.5,
respectively.

In RLHF-IME, the Spark is trained on the same
devices as the SFT model for 5 epochs and we set
the batch size as 4096. We employ the AdamW
optimizer (Loshchilov and Hutter, 2017) with a
peak learning rate of 9e-5 and a 10% warm-up
cosine scheduler. For reward modeling, we run ex-
periments on 4 Atlas 800T A2 NPUs with smaller
batch sizes (64 or 128) and learning rates (from
5e-6 to 1e-5) for different tasks.

4.1.5 Baselines
K2C Since existing research on input methods
mainly focuses on solving the 26-key perfect pinyin
input, we compare with the following baselines
based on public datasets PD and TP. GoogleIME
is a commercial Chinese IME. On-OMWA (Zhang
et al., 2017), On-P2C (Zhang et al., 2019) and
Pinyin-GPT (Tan et al., 2022) are some existing
works on this task.

LLM ChatGPT and GPT4 are chosen as repre-
sentatives of SOTA general LLMs to explore their
performance on input method tasks.

4.2 Results and Analyses
4.2.1 K2C Results
Compared with Existing Methods In Table 2,
the upper part is the baseline effect extracted di-
rectly from previous papers(Tan et al., 2022; Zhang
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26-key 9-key
System P@1 P@5 P@1 P@5

Perfect Pinyin
Google IME 88.0 90.1 75.3 77.1
GeneInput 94.2 99.5 92.0 98.4

Abbreviated Pinyin
Google IME 30.2 32.2 2.4 3.3
GeneInput 67.0 86.7 1.6 4.6

Random Abbreviated Pinyin
Google IME 65.1 66.9 41.3 43.4
GeneInput 81.5 95.3 73.4 88.4

Pinyin with Noise
Google IME 55.2 67.2 7.2 11.3
GeneInput 75.2 90.7 46.2 67.5

Table 3: Results of different input modes on XF dataset.

Method IntelAssoc ConvAssist FK2C

Rank
Query-Wise 68.5 - 73.5

Binary
Sample-Wise 99.3 77.7 98.9
Class-Wise 93.0 73.1 81.2
Contra-Wise 97.7 67.9 97.9
Batch-Wise 99.5 78.1 99.6

Table 4: Results of reward modeling.

et al., 2019), and the lower part is the effect of
our GeneInput. The P@1 and P@5 of our method
significantly exceed the existing system effects on
the two datasets. The results show that we have
achieved full-mode k2C, and still have significant
advantages over the existing single-mode modeling
methods on traditional P2C tasks.

Results on Full-mode K2C Due to the lack of
research work on full-mode modeling, we compare
with googleIME, an open commercial Chinese in-
put method, to verify the full-mode K2C effect of
the model. In Table 3, our method performs sig-
nificantly better than Google IME in each input
mode except in the 9-key abbreviated pinyin mode.
Especially on noisy input data, we also have very
good performance. Since users rarely type in the
abbreviated pinyin mode on a 9-key keyboard, we
consider the effect on the 9-key abbreviated pinyin
test set to be insignificant. The above results show
that our full-mode unified modeling is successful.

4.2.2 RLHF-IME Results

RM Results Table 4 shows the results of RMs
trained with training methods in Section 3.3. In the
ranking system, we tested the models in different
scenarios similar to Table 8 and the results indi-

System IntelAssoc ConvAssist FK2C

public
ChatGPT 3.88 4.26 12.3
GPT-4 4.41 4.35 18.1

GeneInput
Spark

+ SFT 4.38 4.25 81.0
+ RLHF-IME rank 4.40 - 81.1
+ RLHF-IME binary 4.43 4.52 84.6

Table 5: Results of LLMs on IntelAssoc, ConvAssist
and FK2C.

cated that the models perform highly consistently
with human preference. In the binary classifica-
tion system, Batch-Wise achieves the best results
on all tasks, and surprisingly, the simplest method
Sample-Wise performs nearly as well as it. Contra-
Wise also achieves good results on IntelAssoc and
FK2C. However, there is a fact that the texts in
the input method scenario are flexible in context
and short in length, which leads to a blurring of
the boundaries of contrastive learning, so there is
still a gap of about 3 or 4 points with Batch-Wise.
Class-Wise performs the worst as expected because
it is the method with the coarsest learning granu-
larity, and it is difficult for the model to capture
fine-grained sample-level preference characteris-
tics when learning with inter-category differences.
Based on the analysis, we finally decided to apply
RM from Batch-Wise in the RL stage.

SFT/RL Results The performance of LLMs on
IntelAssoc, ConvAssist and FK2C is provided in
Table 5. Since ChatGPT and GPT-4 are not ca-
pable of understanding the relations between 9-
key input sequences and corresponding Chinese
sequences, we only show the average results on
the 26-key test set of XF dataset for comparing the
performance of FK2C among LLMs. Apparently,
the existing LLMs for general purpose perform ex-
tremely poorly on FK2C and cannot meet the com-
mercial product requirements, so it is necessary to
propose our input-method-specific LLM. On Inte-
lAssoc and ConvAssist, after SFT, Spark has been
equipped with competitive capabilities, but there
is still a gap with the state-of-the-art LLMs. For-
tunately, after optimized with RLHF-IME, Spark
outperforms GPT-4 on both tasks, especially on
ConvAssist where the MOS score is even higher
by 0.17. Based on the above results, it is clear that
GeneInput is undoubtedly effective in improving
the performance of LLMs in the domain of IMEs.
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4.2.3 Abalation Analysis
To understand the effect of adding pyseg and soft
alignment constraint, we performed some ablation
experiments. As shown in Table 2, removing the
soft alignment constraint has an average loss of
about 0.5 points on P@1, while P@1 drops by
about 6.5 points on both datasets if FK2C is mod-
eled without pyseg. This result fully reflects the
important role of adding pyseg in the training pro-
cess. The soft alignment constraint is mainly to
prevent some unacceptable errors in practical use,
as well as to handle noisy inputs flexibly. Since
the model effect has been greatly improved after
adding pyseg, the improvement space of alignment
constraints is significantly reduced. Thus, the con-
tribution of the alignment constraint to P@1 is not
obvious here, but it is crucial for the actual user
experience.

For better exploring in RLHF-IME, we sepa-
rately applied reinforcement learning with reward
models trained based on the best method of each
annotation system (Query-Wise for the ranking sys-
tem and Batch-Wise for the binary classification
system). According to the results displayed in the
bottom half of Table 5), we can conclude that the
binary classification system is more suitable for
helping to optimize the input method LLM.

5 Conclusion

In this work, we explore how the next-generation
generative paradigm GeneInput can be employed
to uniformly model typical tasks within IMEs using
generative models through prompts. We harness
the text generation capability of the model to em-
power the input method system, extending their
functionality beyond mere P2C and full-mode K2C
is realized for the first time. Furthermore, we in-
troduced RLHF-IME, a novel human preference
alignment framework, allowing online model up-
dates without the need for external annotated data,
and achieved state-of-the-art performance across
all downstream tasks. In the future, we plan to
address more auxiliary input functions and further
reduce the model size to make it capable of running
efficiently on most smartphones while maintaining
high performance.

6 Limitations

In RLHF-IME, we have verified that the binary
classification system is better based on the exper-
iments on IntelAssoc and FK2C. If a sufficient

number of volunteers participate in ConvAssist, we
will conduct experiments on all these tasks, thereby
providing stronger support for that conclusion (if
exists). Besides, we have not conducted large-scale
experiments on input method personalization due
to the limitations of the scale of personalized in-
formation extraction, and we will follow up with
detailed experiments on personalization to draw
definitive conclusions like those drawn on IntelAs-
soc, ConvAssist and FK2C. In addition, the input
method editor is one of the most basic applications
used throughout people’s digital lives with or with-
out access to the Internet on PCs or mobile devices.
GeneInput will also explore incorporating model
lightweight techniques to support real-time reason-
ing of terminal mobile devices to fit the actual use
scenarios of input methods.
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A Data and prompt

In Table 6, we provide the corresponding prompt
and data examples for each subtask.

B Case Study

B.1 Personalization

For the personalization of the input method, we
have done some simple case analysis. As shown
in Table 7, for the same user inputs, we add differ-
ent input expansions and can get different output
results. For example, in IntelAsso, for the same
input “I don’t have time tonight”, we add differ-
ent user information to the input expansion, and
then we can output different results that are more
in line with the user’s occupational characteristics,
thus achieving personalized output. Similarly, in
the FK2C task, according to different context infor-
mation or user feature descriptions, corresponding
more accurate results can be output. We leave a
more detailed analysis as future work.

To prevent the leakage of user personal informa-
tion, several measures are implemented. Firstly,
users must provide explicit consent for the utiliza-
tion of their personal data to enhance system per-
formance. Secondly, all user personal information
is solely used in its distributed representation form,
and the original text is not retained. Finally, all data
undergoes encryption procedures and is regularly
cleared within fixed time intervals.

B.2 Reward Modeling

As mentioned in Section 3.3, the reward model de-
termines the upper bound of RLHF performance
to some extent. Therefore, we expect the model
scores on different answers highly compatible with
human preferences. Table 8 shows examples of
our reward model scoring for Conversational As-
sistance in different test scenarios. It is clear that it
has human-consistent perceptions of ordinary an-
swers and those with high quality, shows significant
resistance to profanity and irrelevant replies, and
at the same time has good discriminative ability
for answers to different generative tasks (e.g., the
intelligent association answer in the table). Con-
sequently, we firmly believe that it can give good
feedback to the large language models for IME in
line with human preferences during reinforcement
learning.

C The importance of the FK2C task

We briefly mentioned the application value of
FK2C in the Tasks part of the paper. In the fol-
lowing, we will introduce the necessity of FK2C in
practical applications from several aspects:
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Task Prompt

IntelAssoc

根据用户已输入的句子，续写可能的下一句。用户输入：我今天没时间
Based on the sentence the user has already entered, write the next possible sentence. Input: I don’t have time today

明天可以吗
How about tomorrow

ConvAssist

将用户输入的句子，改写成更加精彩的句子。用户输入：秋天来了
Rewrite the user’s input into something better. Input: Autumn is coming
秋天到了，缤纷的树叶掉落一地，让我们一起享受这美好的季节吧！

Autumn is coming, colorful leaves fall down, let’s enjoy this beautiful season!

FK2C

在输入法中，根据用户输入的按键序列，解码出合理的拼音切分与对应的中文结果。用户输入：woaiini
Please decode the pinyin segmentation and corresponding Chinese characters according to the key sequence. Input: woaiini

Wo’Aii’Ni，我爱你
Wo’Aii’Ni, I love you

Table 6: Examples of data and prompt for each task (the corresponding translations in English are provided below
the sentences in Chinese).

Task Input Input Extend Output

- 明天可以吗
How about tomorrow?

IntelAssoc 今晚没时间
There’s no time tonight.

用户：学生
User: Student

作业还没写完呢
I haven’t finished my homework yet

用户：程序员
User: Programmer

晚上还得加班呢
I have to work late at night

- 万一
in case

FK2C wany 上文：来找我
Context: Come to me

玩呀
playing

用户：习惯全简拼输入
User: Used to abbreviate pinyin input

我爱你呀
I love you

用户词：婉莹
User word: Wan Ying

婉莹
Wan Ying

Table 7: Examples of IME personalization (the corresponding translations in English are provided below the
sentences in Chinese).

Test Type Query Answer RM Score

Good Conversational Assistance 宝贝早安喔，希望你今天一天都开开心心
Good morning, my love. I hope you are happy all the day. 0.974

Bad Conversational Assistance 嘿嘿，早上好哦
Hey, hey, good morning. (fondly) 0.941

Bad Language 早上好
Good morning.

去你妈的
Fuck you, man. 0.022

Irrelevant Words 你还爱他吗
Do you still love him? 0.083

Intelligent Association 昨晚睡得怎么样
How did you sleep last night? 0.139

Table 8: Examples of RM for Conversational Assistance scoring in different test settings with the same query (the
corresponding translations in English are provided below the sentences in Chinese).
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• First, commercial IME products may pro-
vide service for a billion users and their in-
put habits may vary from person to person.
To support various input patterns, the model
behind commercial IME products must have
FK2C capabilities.

• Second, even for the same user, although he is
used to a particular input pattern, he will still
use other input patterns in practice. For ex-
ample, we found that with a 9-key keyboard,
users tend to use both perfect pinyin and ran-
dom abbreviated pinyin. With a 26-key key-
board, users tend to use perfect pinyin, perfect
abbreviated pinyin, and random abbreviated
pinyin. And noisy input can happen at any
time.

• Of course, we would like to personalize it so
that we can only show the results for a spe-
cific input pattern that the user is used to, but
providing results for only one input pattern
is risky as discussed above. Therefore, the
model still needs the full-mode decoding ca-
pability.

In summary, the FK2C task has great application
value and is the basis for commercial IME products
to be able to be used in practice.

D Difference between Constrained
Decoding and Alignment Constraint

Since we need to cover the full mode input sce-
nario, alignment constraint differs from constraint
decoding in two main points:

• The alignment constraint we propose is a kind
of soft constraint, while the constrained de-
coding is a kind of hard constraint that can
only be applied in extremely ideal input sce-
narios. When there is noise in pinyin, directly
constraining decoding to restrict the character
decoding space to the character subspace that
conforms to the pinyin pronunciation does not
yield any results. For example, "aii" does not
have characters that conform to the pronunci-
ation. Therefore, by calculating the edit dis-
tance between the input pinyin and the charac-
ter pinyin, we impose error correction penalty
for soft constraint, so as to ensure that the
generated result does not completely deviate
from the user’s input intention, and has error
correction ability for noisy input, and the error

correction preference strength can be adjusted
by hyper-parameters.

• We are a two-stage constraint and they have
only one-stage constraint. Since assumes that
user input is segmented pinyin, there is a clear
positional alignment between input and out-
put, and only the generated characters need to
be constrained to conform to the correspond-
ing pinyin pronunciation requirements. Our
input is the actual keystroke sequence entered
by the user, so in addition to imposing con-
straints between characters and pinyin, we
also need to constrain the pinyin segmentation
process, and this positional relationship is un-
certain, so we constrain the generated pinyin
to the prefix subset of the keystroke sequence.

Our alignment constraints are mainly designed to
prevent some unacceptable errors in practical use,
as well as flexible control of error correction capa-
bilities for noisy inputs.
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