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Abstract
Human-like social bias of pre-trained language
models (PLMs) on downstream tasks have at-
tracted increasing attention. The potential flaws
in the training data are the main factor that
causes unfairness in PLMs. Existing data-
centric debiasing strategies mainly leverage
explicit bias words (defined as sensitive at-
tribute words specific to demographic groups)
for counterfactual data augmentation to balance
the training data. However, they lack consid-
eration of implicit bias words potentially as-
sociated with explicit bias words in complex
distribution data, which indirectly harms the
fairness of PLMs. To this end, we propose a
Data-Centric Debiasing method (named Data-
Debias), which uses an explainability method
to search for implicit bias words to assist in
debiasing PLMs. Specifically, we compute the
feature attributions of all tokens using the In-
tegrated Gradients method, and then treat the
tokens that have a large impact on the model’s
decision as implicit bias words. To make the
search results more precise, we iteratively train
a biased model to amplify the bias with each it-
eration. Finally, we use the implicit bias words
searched in the last iteration to assist in debi-
asing PLMs. Extensive experimental results
on multiple PLMs debiasing on three differ-
ent classification tasks demonstrate that Data-
Debias achieves state-of-the-art debiasing per-
formance and strong generalization while main-
taining predictive abilities.

1 Introduction

In recent years, pre-trained language models
(PLMs), such as the BERT series (Devlin et al.,
2019; Sanh et al., 2019; Liu et al., 2019) and GPT
series (Radford et al., 2018, 2019; Brown et al.,
2020) have seen vigorous development in natural
language processing. By training on massive text
datasets, PLMs can acquire rich linguistic knowl-
edge. However, these training datasets contain
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human-like social biases and stereotypes (Zhao
et al., 2019). PLMs can learn and amplify biases
against certain demographic groups, leading to un-
fair decisions that harm vulnerable groups There-
fore, mitigating social biases in PLMs is a critical
issue and necessary to improve the fairness of natu-
ral language systems.

Current debiasing methods usually take the
model-centric strategies (Liang et al., 2020; Cheng
et al., 2021), seeking to improve fairness by modi-
fying model architectures or adding regularization
during training without considering the defects of
the training data (Han et al., 2021). However, they
ignore critical issues of training data, including
real-world stereotypes, discrimination against vul-
nerable groups, and imbalanced samples across
demographic groups. Data quality issues funda-
mentally enable language models to learn biased
semantics. Furthermore, some methods are diffi-
cult to generalize to large-scale PLMs due to the
limitations of the fine-tuning model.

In contrast to the model-centric strategies, the
data-centric debiasing strategies focus on address-
ing defects in training data to improve data qual-
ity (Zha et al., 2023). The most general ap-
proach utilizes counterfactual data augmentation
(Lu et al., 2020) to alleviate the imbalance of sam-
ples from different demographic groups. These
debiasing methods generate synonymous sentences
based on priori sensitive attribute words specific to
different demographic groups (e.g., male/female,
white/black). Although they consider sensitive at-
tribute words that directly cause model biases, they
ignore potentially harmful associations present in
the training data that indirectly cause unfairness.
We refer to sensitive attribute words specific to
demographic groups as explicit bias words, and
to tokens in the training data that have potentially
harmful associations with explicit bias words as
implicit bias words (illustrative examples are given
in Figure 2). We formulate the following hypoth-
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esis: Under the indirect effect of implicit bias
words, PLMs capture the spurious associations
between demographic groups and certain class
labels to make unfair and biased decisions.

Based on the above assumptions, in this work,
we propose a Data-Centric Debiasing method
(named Data-Debias), which uses an explainabil-
ity method to search for implicit bias words to
assist debiasing PLMs. Specifically, we compute
the feature attribution scores for all tokens in the
training data using Integrated Gradients (Sundarara-
jan et al., 2017) which is a post-hoc explainability
method. Implicit bias words are selected as tokens
with large differences in feature attribution scores
across demographic groups, and then used to assist
debiasing. To more precisely target implicit bias
words that are strongly associated with explicit bias
words, we iteratively train a bias-amplified model.
Within each iteration, we train the model with the
implicit bias words to amplify the model’s bias, and
then re-search and update the implicit bias words
with the biased model. After the iteration, the last
updated more biased implicit bias words are used
to assist debiasing to improve the fairness of PLMs.

Our main contributions are summarized as fol-
lows: 1) We propose a data-centric debiasing frame-
work, which mines implicit bias words that have
potentially harmful associations with explicit bias
words, to improve the quality of the training data
more comprehensively for stronger debiasing ef-
fects. 2) The obtained implicit bias words are in-
terpretable and precise, ensured by searching via
explainability methods and iteratively training the
bias-amplified model. 3) Experiments on classi-
fication tasks on multiple PLMs demonstrate that
Data-Debias outperforms state-of-the-art baseline
models in debiasing while preserving predictive
abilities. 4) Debiasing experiments on large-scale
language models under the prompting paradigm
verify the generalization of implicit bias words.

2 Methodology

In this section, we introduce the proposed Data-
Debias debiasing framework, as shown in Figure 1.
Data-Debias has three stages: 1) Searching for im-
plicit bias words via an explainability method. 2)
Iterative training of a bias-amplified model using
implicit bias words. 3) Debiasing training using
the final implicit bias words.

Integrated Gradient

Implicit Bias Words

Calculate Bias Degree

𝐍𝐭𝐡 Iteration of Amplifying Bias

ℒ = ℒ +𝜆 × ℒ

update

gradient descentBiased-Model

Search for Implicit Bias Words
Integrated Gradient

Implicit Bias Words

Calculate Bias Degree

𝟐𝐧𝐝 Iteration of Amplifying Bias

ℒ = ℒ +𝜆 × ℒ

update

gradient descentBiased-Model

Search for Implicit Bias Words

Integrated Gradient

Implicit Bias Words
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𝟏𝐬𝐭 Iteration of Amplifying Bias

ℒ = ℒ +𝜆 × ℒ

update

gradient descentBiased-Model

Search for Implicit Bias Words

Implicit Bias Words

Calculate Bias Degree

ℒ = ℒ +𝛾 × ℒ

Debiased-Model

gradient descent

Debiasing Training

Explicit Bias Words

S
he

is
prone to tears.

Woman is prone to tears.   
Man is prone to tears. 

Girl is prone to tears. 
Boy is prone to tears. 

Mary is prone to tears. 
John is prone to tears. 

⋯

Data augmentation

Figure 1: The Framework of Data-Debias. After data
augmentation based on explicit bias words, it searches
for implicit bias words via an explainability method,
and then iteratively trains a biased model and updates
the implicit bias words. The implicit bias words updated
in the last iteration will be used to assist debiasing.

2.1 Search for Implicit Bias Words via
Explainability

In this stage, we aim to mine implicit bias words
that have potentially harmful associations with the
explicit bias words. The motivation is that in the
model’s decision process, if a token has inconsis-
tent attention among the sample pairs containing
the explicit bias words, there is a harmful associ-
ation between it and the explicit bias words that
indirectly causes the model to make an unfair de-
cision. To this end, we first perform data aug-
mentation based on explicit bias words to generate
sample pairs specific to demographic groups. We
then apply the explainability method proposed by
Slack et al. (2021) to the augmented sample pairs
to search for tokens with inconsistent attention as
implicit bias words.

For a certain social bias, we augment the dataset
with prior explicit bias words. We focus on
gender bias in this paper1. Following previous
work (Bolukbasi et al., 2016; Liang et al., 2020;
Cheng et al., 2021), we set the gender-specific
list of explicit bias word pairs as: {FEMALE,
MALE}={(woman, man), (girl, boy), (female,
male), (she, he), (mother, father), (daughter, son),
(gal, guy), (her, his), (herself, himself), (Mary,
John)}, alongside plural forms.

We use the samples containing the explicit bias
words as the original samples for the subsequent
amplifying bias training and debiasing training.
The augmented samples of the original samples

1While it may be different in the real-world, we chose the
binary (male, female) as our target demographic group.
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are used to mine the implicit bias words. Specif-
ically, for each original sample x, we replace all
explicit bias words in x by each word pair in the
list, obtaining a set of augmented sample pairs
{(xf1 , xm1 ), · · · , (xfj , xmj ), · · · , (xfN , xmN )}, where
N is the number of augmented sample pairs and
also the number of explicit bias word pairs.

To mine explainable implicit bias words, we
adopt Integrated Gradients (IG) (Sundararajan
et al., 2017) which is a versatile explainability
method with low time complexity. IG’s idea is
to aggregate gradients along the input that fall on
the line between the baseline and the input. Given
a sample x, the feature attribution of the kth token
t in x is defined as the path integral of straight path
between baseline x′k and input xk:

attrit ::= (xk−x′k)
∫ 1

α=0

∂Fy(x
′ + α(x− x′))
∂xk

dα,

(1)

where the function Fy represents the PLM-based
classification model that predicts the true label y
of the sample x, ∂Fy(x)

∂xk
represents the gradient of

Fy(x) on the kth feature. The standard practice for
x′ uses zero embedding vectors.

Based on our hypothesis, implicit bias words
indirectly cause PLMs to capture spurious associa-
tions between demographic groups and class labels.
Therefore, in IG algorithm, the same implicit bias
word gets different attention in different gender
samples. Specificly, for each augmented sample
pairs (xfj , x

m
j ) of the original sample x, we com-

pute the attribution (attrifj,t, attri
m
j,t) of token t in

both samples. To obtain the impact gap of the to-
ken t between female and male samples, the two
attributes are subtracted and averaged across all
augmented sample pairs. This impact gap is the
bias score of token t, which is defined as:

Scoret =
1

N

∑N

i=1
(attrifj,t − attrimj,t). (2)

To obtain biased words that have a discriminative
impact on different gender groups, we filter out
tokens that are smaller than the bias threshold θ
and add the remaining tokens to the implicit bias
word list W = {w1, w2, · · · }.

2.2 Iteratively Training Bias-amplified Model

The initial list of implicit bias words can be di-
rectly used to debias PLMs. However, given the

stability of search results, we iteratively train a bias-
amplified model to identify implicit bias words
more precisely. Previous research has shown that
smaller models tend to be more biased than larger
models (Sanh et al., 2021; Ahn et al., 2022; Silva
et al., 2021). Therefore, we consider Tiny-BERT
(Bhargava et al., 2021), a small variant of BERT,
as the biased model. This provides the benefits of
amplifying bias while reducing training overhead.

The iterative process is as follows. In the first
iteration, we apply IG to the original Tiny-BERT to
obtain an implicit bias word list. This list assists in
training Tiny-BERT to amplify the model bias. The
trained Tiny-BERT is then reapplied IG to search
and update the implicit bias word list. In subse-
quent iterations, the list of the last iteration is used
to further amplify Tiny-BERT’s biases and is up-
dated again. This process is repeated to iteratively
grow a more precise list of implicit bias words.

The training objective is to ensure the model’s
accuracy in downstream tasks while making unfair
decisions for different demographic groups. Given
a batch of original samples {xi|Bi=1}, the task loss
is calculated by the cross-entropy of the predicted
label and the true label, defined as follows:

Lce =
1

B

∑B

i=1
CrossEntropy(yi, Fy(xi)), (3)

where B is the batch size, yi and Fy(xi) denote
the true label and the predicted label for the model
output. We then add a bias regularization term
that applies Jensen-Shannon divergence (JSD) and
reweights the training samples to amplify the model
bias. For each sample xi, we define a bias degree
to reweight it by summing the bias scores of all im-
plicit bias words contained in xi and then globally
normalizing. The bias degree is calculated as:

Di = Norm(
∑

w∈W ′ Scorew), (4)

where w is the implicit bias word in xi and Scorew
is its bias score, W ′ is obtained by sorting the im-
plicit bias words in W from largest to smallest by
their bias score Scorew and then keeping the top
ϵ%. Norm(·) is the max-min normalization func-
tion computed as value−min

max−min , where max is the max-
imum value in the batch and min is the minimum
value in the batch. The bias degree of original sam-
ple is used as the weight of its augmented sample
pairs. The bias regularization term is:

Lb =
−1

NB

N∑

j=1

B∑

i=1

Di,j × JSD(pfi,j , p
m
i,j), (5)
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where N is the number of augmented sample pairs,
pfi,j and pmi,j are probability distributions of the jth
female augmented sample and male augmented
sample of xi, respectively. JSD(·) measures the
consistence between the two gender distributions,
and its larger value indicates that the two distribu-
tions are less similar. Therefore, to differentiate the
two distributions so that the model makes incon-
sistent decisions, we take negative values for the
results of JSD.

The overall loss function for amplifying bias
training is as the combination of the cross-entropy
loss Lce and the bias regularization term Lb:
Lbias = Lce + λ×Lb, where λ is the hyperparam-
eter that regulates the weight of the bias regulariza-
tion term. The trained biased model is then applied
IG again to search for more precise implicit bias
words. In turn, more precise implicit bias words
catalyze the process of amplifying model bias. In
the last iteration, we obtain the implicit bias words
that have a strong harmful association with the ex-
plicit bias words.

2.3 Debiasing Training
In the debiasing stage, we use the implicit bias
words searched in the last iteration to assist the
model debiasing. We expect to improve the model’s
fairness without compromising the predictive abil-
ity in downstream tasks. Consistently, the task
loss is the same as Eq.(3) and the debiasing term
reweights the JSD using the bias degree. Differ-
ently, the goal of the debiasing term is to align the
probability distribution of the augmented samples
of two genders. Thus, the debiasing regularization
term is defined as:

Ld =
1

NB

N∑

j=1

B∑

i=1

Di,j × JSD(pfi,j , p
m
i,j). (6)

The overall loss function of debiasing training is:
Ldebias = Lce + γ × Ld, where γ is a hyperpa-
rameter that regulates the weight of the debiasing
regularization term.

Samples with higher bias degrees contain more
harmful associations related to gender. Reweight-
ing changes the attention of samples, so that the
PLM focuses on potentially harmful biased sam-
ples during training. The task loss function ensures
the predictive ability of PLM in downstream tasks,
and the debiasing regularization term encourages
the model to learn consistent representations and
thus make fair decisions. Therefore, PLM is im-

proved for fairness with auxiliary training of im-
plicit bias words.

3 Evaluation Methods

We evaluate the performance of Data-Debias on the
task metrics and the fairness metrics.
Task Metrics. Four general accuracy metrics
evaluate the predictive abilities of PLMs on all
classification tasks, which are Accuracy, F1 score,
Precision, and Recall. They are all calculated based
on the predicted and true labels of the samples in
the test set, and a higher value indicates the better
predictive abilities of PLM.
Fairness Metrics. In the existing debiasing re-
search, the external metrics to measure fairness are
specific to a certain task and are not applicable to
other tasks. To this end, we propose two fairness
metrics common to all classification tasks, which
are calculated based on the prediction results of
each augmented sample set.

The first metric we propose to evaluate the fair-
ness of PLMs is FalseRatio/TrueRatio defined
as FR/TR =

num(ym ̸=yf )/Ntest

num(ym=yf )/Ntest
=

num(ym ̸=yf )
num(ym=yf )

,

where ym and yf are the labels that the model
predicts for male and female augmented samples,
Ntest is the size of test set, and num(·) is the num-
ber statistics function. An ideal language model
should make decisions based on the semantics and
nothing else. Based on this, a fully unbiased model
should give the same predicted label for augmented
samples of the same sample. A lower value of
FR/TR indicates a higher fairness of the model.

We propose a second metric to jointly evaluate
the fairness and predictive abilities of PLMs, which
is the TruePositiveRatio defined as TPR =
num(ym=yf=ytrue)

num(ym=yf )
, where ytrue is the true label of

the sample. We expect the model to improve fair-
ness while maintaining the accuracy of the predic-
tions. TPR will decrease as the fairness increases
when the prediction ability of the model is constant.
We observe the change of TPR in the experiment
to measure the overall performance of the model.

In addition, we also choose F1 score, Precision,
and Recall as fairness indicators, whose inputs are
all the prediction results of the male augmented
sample ym and the prediction results of the female
augmented sample yf .

4 Experiments

In this section, we experimentally analyze the per-
formance of the Data-Debias framework to answer
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the following research questions. Q1 : How ex-
plainable are the detected implicit bias words? Q2 :
Compared to baseline methods, how effective is ap-
plying Data-Debias to debias PLMs in downstream
tasks? Q3 : What is the role of iteratively training
the bias-amplified model? Q4 : Whether implicit
bias words generalize to debiasing PLMs in the
prompting paradigm?

4.1 Experimental Setting

Downstream Tasks. For downstream debiasing,
we chose three classification tasks corresponding
to three datasets with different data sizes. Each
dataset is matched and augmented based on a given
list of explicit bias word pairs, and the train-test
split is 50/50.
Stanford Sentiment Treebank (SST2)2 (Socher
et al., 2013) is a manually annotated binary sen-
timent analysis dataset to judge single-sentence
movie reviews, which matches a total of 4,133 orig-
inal samples containing gender attributes.
ToxiGen3 (Hartvigsen et al., 2022) is an implicit
toxic text classification dataset automatically gen-
erated based on prompts with revealed information,
which matches 38,000 original samples contain-
ing explicit bias words. The prompt label for each
sample is taken as the true label.
Bias in Bios4 (De-Arteaga et al., 2019) is a third
person biography dataset with 28 occupation cate-
gories and 250,000 original samples scraped. The
task objective is to predict the category of occupa-
tion for each biography with the occupation infor-
mation removed.
Comparing Baselines. We choose three model-
centric debiasing methods INLP (Ravfogel et al.,
2020), Sent-Debias (Liang et al., 2020), as well as
FairFil (Cheng et al., 2021), and three data-centric
debiasing methods CDA (Lu et al., 2020), Auto-
Debias (Guo et al., 2022), as well as MABEL (He
et al., 2022) as baselines. They are described as
follows:

• INLP (Ravfogel et al., 2020) proposes an Iter-
ative Null-space Projection debiasing method,
which removes sensitive information from the
neural representation by repeatedly training a
linear classifier to predict the debiasing target
and then projecting the representation on the
null space.

2https://dl.fbaipublicfiles.com/glue/data/SST-2.zip
3https://github.com/microsoft/TOXIGEN
4https://github.com/microsoft/biosbias

• Sent-Debias (Liang et al., 2020) contextual-
izes predefined explicit bias words to the given
sentence templates, and then debiasing by es-
timating the bias subspace of the sentence rep-
resentation and eliminating projections on the
bias subspace.

• FairFil (Cheng et al., 2021) proposes a fair-
ness filter neural network to filter biases in
sentence representations, which minimizes the
correlation between filtered embeddings and
explicit bias words via contrastive learning.

• CDA (Lu et al., 2020) enables debiasing re-
search based on counterfactual data augmen-
tation, which employs causal interventions to
generate a copy of each sample by replacing
the target word with a synonym.

• Auto-Debias (Guo et al., 2022) automatically
searches for biased prompts in the top 5,000
most frequent Wikipedia vocabulary to debias
by identifying the words that elicit the max-
imum JSD divergence between explicit bias
words and stereotype words.

• MABEL (He et al., 2022) uses the priori ex-
plicit bias words to generate gender-balanced
counterfactual entailment pairs in the natu-
ral language inference dataset, and introduces
contrastive learning to narrow the representa-
tion between entailment pairs.

Implementation Details. We verify the effec-
tiveness of debiasing on three PLMs: BERT (De-
vlin et al., 2019), DistilBERT (Sanh et al., 2019),
and RoBERTa (Liu et al., 2019). The check-
points of all models use bert-base-uncased,
distilbert-base-uncased, and roberta-base
implemented by the Huggingface Transformers li-
brary (Wolf et al., 2020). The [CLS] output from
the last layer of PLM’s encoder is pooled and fed to
a classifier with one linear layer for prediction. All
PLMs use Tiny-BERT to search for implicit bias
words. In all experiments on three downstream
tasks, the batch size B is set to 32, the learning rate
is set to 5e− 5, and the hyperparameters λ and γ
are set to 1 and 10. The number of steps M of the
interpretability algorithm is set to 50 and the bias
threshold θ is set to 0. The iteration number of am-
plifying bias training is chosen from 0 to 6, and the
implicit bias words list W ′ in the amplifying bias
training stage is selected to be the top ϵ = 30%.
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Model Task metrics (%) Fairness metrics (%) Overall (%)
Acc ↑ F1 ↑ Precision ↑ Recall ↑ FR/TR ↓ F1 ↑ Precision ↑ Recall ↑ TPR ↑

BERT 91.78 91.69 91.51 92.08 2.45 97.60 97.80 97.49 92.25
+INLP 92.08↑0.30 91.85↑0.16 92.38↑0.87 91.51↓0.57 0.98 98.96 99.15 98.84 ↓0.19 92.06
+Sent-Debias 91.30↓0.54 91.24↓0.45 91.13↓0.38 91.88↓0.20 1.62 98.40 98.41 98.43 ↓1.62 90.63
+FairFil 91.88↑0.10 91.63↓0.06 92.32↑0.81 91.21↓0.87 1.48 98.47 98.78 98.20 ↓0.24 92.01
+CDA 91.98↑0.20 91.74↑0.05 92.34↑0.83 91.37↓0.71 0.84 99.13 99.24 99.02 ↓0.40 91.85
+Auto-Debias 91.78↑0.00 91.60↓0.09 91.76↑0.25 91.47↓0.61 1.32 98.67 98.84 98.52 ↓0.20 92.05
+MABEL 91.49↓0.29 91.24↓0.45 91.83↑0.32 90.87↓1.21 1.13 98.83 99.08 98.61 ↓0.47 91.78
+Data-Debias (Ours) 91.93↑0.15 91.73↑0.04 92.05↑0.54 91.49↓0.59 0.39* 99.60* 99.62* 99.58* ↓0.17 92.08
DistilBERT 92.13 92.04 91.85 92.39 2.39 97.65 97.84 97.54 92.50
+INLP 91.78↓0.35 91.61↓0.43 91.71↓0.14 91.52↓0.87 1.19 98.80 98.93 98.69 ↓0.36 92.14
+Sent-Debias 92.17↑0.04 92.00↓0.04 92.11↑0.26 91.92↓0.47 1.05 98.94 99.06 98.83 ↓0.33 92.17
+FairFil 91.64↓0.49 91.42↓0.62 91.80↓0.05 91.15↓1.24 1.26 98.70 98.93 98.50 ↓0.93 91.57
+CDA 91.54↓0.59 91.45↓0.59 91.27↓0.58 91.86↓0.53 1.63 98.39 98.48 98.34 ↓1.24 91.26
+Auto-Debias 91.88↓0.25 91.78↓0.26 91.60↓0.25 92.10↓0.29 2.34 97.71 97.90 97.61 ↓0.52 91.98
+MABEL - - - - - - - - -
+Data-Debias (Ours) 92.32↑0.19 92.14↑0.10 92.39↑0.54 91.94↓0.45 0.52* 99.47* 99.51* 99.43* ↓0.11 92.39
RoBERTa 92.37 92.22 92.28 92.16 5.52 94.68 94.92 94.51 93.50
+INLP 92.62↑0.25 92.45↑0.23 92.62↑0.34 92.31↓0.15 5.40 94.70 95.33 94.26 ↓0.45 93.05
+Sent-Debias 92.32↓0.05 92.23↑0.01 92.05↓0.23 92.59↑0.43 4.98 95.24 95.25 95.22 ↓1.32 92.18
+FairFil 93.06↑0.69 92.88↑0.66 93.21↑0.96 92.64↑0.48 4.93 95.12 95.64 94.73 ↓0.50 94.00
+CDA 92.86↑0.49 92.67↑0.45 93.06↑0.78 92.40↑0.24 4.26 95.54 96.12 95.11 ↑0.26 93.76
+Auto-Debias 93.40↑1.03 93.26↑1.04 93.32↑1.04 93.21↑1.04 6.73 93.50 94.15 93.09 ↑1.18 94.68
+MABEL 92.57↑0.20 92.36↑0.14 92.83↑0.45 92.05↑0.11 4.69 95.29 96.13 94.71 ↓0.10 93.40
+Data-Debias (Ours) 93.15↑0.78 92.97↑0.75 93.36↑1.08 92.70↑0.54 3.22* 96.77* 96.93* 96.62* ↓0.10 93.40

Table 1: Debiasing results on SST2. The best result is indicated in bold. ↓ and ↑ indicate decrease and increase in
performance over biased BERT. * represent statistically significant (ρ < 0.05). MABEL does not provide code to
run on DistilBERT.

confidence, ireland, stick, critically, eroded, dead, fails,
virtues, white, tormented, enthusiasm, horribly, killed,
tenderly, bilingual, tricky, amusing, scratches, affluent, naive,
wicked, charming, writers, bully, rob, resist, sick, insulting,
comedian, gun, dude, steal, damn, horror, miserable, rude,
divine, hilarious, passionate, delicate, witch, elderly, pianist,
strongest, suspects, sensitive, overwhelmed, hispanic,
vulnerability, doomed, physician, sensual, raped, lip, tearing,
black, indian, sympathetic, ghetto, argentine, sexy

Figure 2: Examples of implicit bias words from SST2.
Yellow highlights race-related words. Blue highlights
identity-related words. Green highlights words may
have gender stereotypes. More examples are given in
the Appendix A.

We implement INLP, Sent-Debias, and CDA us-
ing the code provided in (Meade et al., 2022), im-
plement FairFil and Auto-Debias using the code
provided by their authors, and MABEL using the
checkpoints provided by its authors. CDA uses
the same list of explicit bias word pairs as Data-
Debias. All baselines are fine-tuned in our tasks
and consistent with our experimental setup.

4.2 Implicit Bias Words

To answer research question Q1, we exhibit the
top-scoring implicit bias words searched from the
SST2 and rank them by bias score, as shown in
Figure 2. From the reported results, the detected
implicit bias words are intuitively explainable be-
cause they appear to have potential associations
with gender. We highlight some representative
words with different colors. The occurrence of
race-related words marked in yellow indicates that
the PLMs bias against gender groups is influenced
by racial groups. These words are interpretable,

for example black women are always discriminated
against more than white women in the real-world.
Blue highlights identity-related words, many of
which contain gender stereotypes such as come-
dian, witch, and physician, which can induce gen-
der bias in PLMs. Green highlights words that may
have gender stereotypes, such as sensual being as-
sociated with women and rude being associated
with men. PLM’s focus on these words may lead
to unfairness in the decision making. Other unhigh-
lighted words may be more implicit or seemingly
irrelevant. In general, it is difficult to notice the
associations between these words and gender and
ignore them, resulting in unsatisfactory debiasing
results. Our proposed Data-Debias can compre-
hensively compensate for the potential defects in
the data by searching for implicit bias words, thus
achieving more powerful debiasing performance.

4.3 Debiasing Ability Analysis

To answer Q2, we apply Data-Debias to three
PLMs in three downstream tasks. For all exper-
iments, we evaluate their results for both task and
fairness, as shown in Tables 1, 2, and 3. We report
the results of Data-Debias using implicit bias words
obtained in the fourth iteration of amplifying bias
training. We show the results of original PLMs and
present the change in the task metrics for debiasing
model compared to the original model.

Table 1 shows the debiasing results in SST2.
All three PLMs fit well and exhibit excellent ac-
curacy and fairness due to the small size of the
SST2 dataset. Interestingly, Data-Debias improves
fairness even further. For both BERT and Distill-
BERT, it shrinks FR/TR to near 0 and improves
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Model Task metrics (%) Fairness metrics (%) Overall (%)
Acc ↑ F1 ↑ Precision ↑ Recall ↑ FR/TR ↓ F1 ↑ Precision ↑ Recall ↑ TPR ↑

BERT 72.46 72.25 72.45 72.20 11.36 89.41 88.78 91.05 73.55
+INLP 71.92↓0.54 71.35↓0.90 72.44↓0.01 71.36↓0.84 8.81 91.31 90.24 93.42 ↓1.57 71.98
+Sent-Debias 71.78↓0.68 70.51↓1.74 72.86↓0.68 70.85↓1.35 7.91 91.62 90.32 93.51 ↓1.87 71.68
+FairFil 72.24↓0.42 71.34↓0.91 72.50↑0.05 71.47↓0.73 9.38 90.10 88.21 93.62 ↓1.61 71.94
+CDA 71.54↓0.92 70.69↓1.56 72.57↑0.12 70.81↓1.39 7.82 91.52 90.01 93.72 ↓3.03 70.52
+Auto-Debias 71.47↓0.99 70.05↓2.20 72.85↑0.30 70.48↓1.72 7.63 92.91 89.34 94.23 ↓2.58 70.97
+MABEL 71.65↓0.81 70.93↓1.32 72.44↓0.01 70.99↓1.21 5.71 94.07 93.06 95.52 ↓2.08 71.47
+Data-Debias (Ours) 72.03↓0.43 71.22↓1.03 73.06↑0.59 71.32↓0.88 2.46* 97.37* 97.45* 97.28* ↓1.71 71.84
DistilBERT 71.28 70.61 71.92 70.66 10.61 88.99 87.19 92.41 71.02
+INLP 71.73↑0.45 71.26↑0.65 72.07↑0.15 71.24↑0.58 7.09 92.75 91.85 94.01 ↑0.47 71.49
+Sent-Debias 71.55↑0.27 70.92↑0.31 72.16↑0.24 70.95↑0.29 8.31 91.36 90.19 93.06 ↑0.37 71.39
+FairFil 71.27↓0.01 70.70↑0.09 71.75↓0.17 70.72↓1.20 8.45 91.14 89.76 93.23 ↓0.21 70.81
+CDA 70.96↓0.32 70.14↓0.47 71.87↓0.05 70.26↓0.40 7.73 91.52 89.98 93.74 ↓0.37 70.65
+Auto-Debias 70.50↓0.78 68.57↓2.04 73.92↑2.00 69.34↓1.32 6.29 91.51 88.57 95.88 ↓2.05 68.97
+MABEL - - - - - - - - -
+Data-Debias (Ours) 71.12↓0.16 70.43↓0.18 71.79↓0.13 70.49↓0.17 4.01* 95.80* 95.36* 96.30* ↓0.13 70.89
RoBERTa 72.99 72.89 72.91 72.88 19.79 83.38 83.83 85.06 75.38
+INLP 71.14↓1.85 71.13↓1.86 71.59↓1.32 71.47↓1.41 18.82 84.16 84.17 84.17 ↓0.91 74.47
+Sent-Debias 70.37↓2.62 70.17↓2.72 70.30↓2.61 70.13↓2.75 22.20 81.60 81.83 83.53 ↓1.02 72.54
+FairFil 69.13↓3.86 69.13↓3.76 69.26↓3.65 69.29↓3.59 22.28 81.77 81.87 81.97 ↓3.82 71.56
+CDA 72.93↓0.06 72.77↓0.06 72.87↓0.04 72.73↓0.15 17.85 84.14 84.41 83.92 ↑0.01 75.39
+Auto-Debias 69.61↓3.38 69.60↓3.29 69.69↓3.22 69.74↓3.14 19.11 83.94 84.10 84.29 ↓3.35 72.03
+MABEL 70.51↓2.48 70.51↓2.38 70.69↓2.22 70.71↓2.17 23.45 80.96 80.98 81.22 ↓0.85 74.53
+Data-Debias (Ours) 72.58↓0.41 72.57↓0.32 72.67↓0.24 72.72↓0.16 13.70* 87.67* 88.25* 87.36* ↓0.31 75.07

Table 2: Debiasing results on ToxiGen. The best result is indicated in bold. ↓ and ↑ indicate decrease and increase
in performance over biased BERT. * represent statistically significant (ρ < 0.05). MABEL does not provide code to
run on DistilBERT.

Model Task metrics (%) Fairness metrics (%) Overall (%)
Acc ↑ F1 ↑ Precision ↑ Recall ↑ FR/TR ↓ F1 ↑ Precision ↑ Recall ↑ TPR ↑

BERT 84.15 78.23 77.94 78.99 6.16 91.82 92.26 92.19 86.25
+INLP 83.88↓0.27 78.32↑0.09 81.70↑3.76 76.38↓2.61 4.58 93.51 93.89 93.99 ↓0.93 85.32
+Sent-Debias 83.69↓0.46 77.78↓0.45 80.77↑2.83 76.70↓2.29 5.02 93.29 94.03 93.47 ↓1.02 85.23
+FairFil 84.04↓0.11 78.55↑0.32 82.76↑4.82 75.61↓3.38 3.76 94.56 95.24 94.38 ↓1.15 85.10
+CDA 84.06↓0.09 78.45↑0.22 81.32↑3.38 76.49↓2.50 4.62 93.68 94.14 93.83 ↓1.06 85.19
+Auto-Debias 84.50↑0.35 78.77↑0.54 79.50↑1.56 78.67↓0.32 3.75 94.93 95.15 95.06 ↓1.19 85.06
+MABEL 84.22↑0.07 78.99↑0.76 81.67↑3.73 76.96↓2.03 4.28 93.59 94.40 93.55 ↓1.22 85.03
+Data-Debias (Ours) 84.62↑0.47 79.17↑0.94 79.83↑1.89 79.19↑0.20 2.69* 96.07* 96.15* 96.20* ↓0.90 85.35
DistilBERT 83.12 78.30 77.69 79.28 7.22 91.09 92.05 91.40 84.50
+INLP 83.63↑0.51 77.79↓0.51 79.06↑1.37 77.71↓1.57 4.59 93.11 93.73 93.42 ↑1.05 85.55
+Sent-Debias 83.62↑0.50 77.83↓0.47 78.52↑0.83 78.28↓1.0 4.44 93.72 94.32 93.90 ↑0.90 85.40
+FairFil 83.68↑0.56 77.94↓0.36 78.85↑1.16 77.97↓1.31 4.38 93.59 94.13 93.94 ↑1.05 85.55
+CDA 83.63↓0.51 77.91↓0.39 79.54↑1.85 77.50↓1.78 4.31 93.84 94.32 94.12 ↑0.83 85.33
+Auto-Debias 84.44↑1.32 78.74↑0.44 79.39↑1.70 79.25↓0.03 3.89 94.01 94.32 94.38 ↑1.39 85.89
+MABEL - - - - - - - - -
+Data-Debias (Ours) 84.30↑1.18 78.94↑0.64 81.08↑3.39 77.71↓1.57 3.15* 95.63* 95.84* 95.79* ↑1.08 85.58
RoBERTa 83.44 77.89 78.31 78.19 6.49 90.95 90.81 91.92 84.92
+INLP 83.13↓0.29 77.28↓0.61 77.80↓0.51 77.75↓0.44 5.06 92.95 93.08 93.36 ↓0.01 84.91
+Sent-Debias 83.03↓0.31 77.43↓0.46 81.00↑2.69 75.21↓2.98 4.33 93.50 93.08 94.59 ↓0.38 84.54
+FairFil 83.43↓0.01 77.64↓0.25 77.18↓1.13 78.69↑0.38 4.96 93.03 92.62 94.10 ↑0.15 85.07
+CDA 83.78↑0.34 78.02↑0.13 78.20↑0.11 78.88↑0.69 5.62 92.02 92.40 92.49 ↑1.07 85.99
+Auto-Debias 84.00↑0.56 78.22↑0.23 79.42↑1.11 77.97↓0.22 6.49 93.27 93.75 93.16 ↑1.08 86.01
+MABEL 83.92↑0.48 77.99↑0.10 78.58↑0.27 78.43↓0.24 5.25 92.13 92.28 92.75 ↓1.04 85.96
+Data-Debias (Ours) 83.49↑0.05 77.66↓0.23 78.42↑0.11 77.87↓0.32 3.89* 94.87* 94.89* 95.08* ↑0.05 84.97

Table 3: Debiasing results on Bias in Bios. The best result is indicated in bold. ↓ and ↑ indicate decrease and
increase in performance over biased BERT. * represent statistically significant ρ < 0.05). MABEL does not provide
code to run on DistilBERT.

F1, precision, and recall to close to the ideal score
of 100%, while the overall accuracy of the task
is not damaged. In the case of RoBERTa, Data-
Debias reduces bias and even improves predictive
ability. The debiasing results on ToxiGen in Ta-
ble 2 show that all debiasing methods impair the
predictive ability to varying degrees. This is in-
evitable because fairness and accuracy are difficult
to achieve at the same time. Data-Debias mini-
mizes the damage to accuracy while greatly debias-
ing, which benefits from our debiasing strategy that
combines the task objective and the debiasing ob-
jective. Table 3 shows the debiasing results on Bias
in Bios. Compared with other debiasing methods,
Data-Debias not only obtains the fairest score, but
also performs the best overall in the task metrics.

From the debiasing results of the three tasks, all
the baseline methods perform the debiasing ability

to some extent. Overall, the three data-centric base-
lines CDA, Auto-Debias, and MABEL are more
stable in debiasing than the three model-centric
baselines INLP, Sent-Debias, and FairFil, achiev-
ing more effective debiasing with less degradation
in task performance. However, the gap is marginal,
because while data-centric baselines capture the di-
rect harm caused by explicit bias words, they ignore
potentially harmful associations in the data. Data-
Debias achieves more robust debiasing and greater
retention of performance, which benefits from the
implicit bias words we mine to more deeply allevi-
ate potentially harmful associations in the data.

TPR is an overall metric that we propose for
joint task accuracy and fairness, which decreases
as fairness is promoted with constant task accuracy.
We expect the TPR to decrease as little as possi-
ble after debiasing. In the three downstream tasks,

3779



BERT

BERT-D
0

BERT-D
1

BERT-D
2

BERT-D
3

BERT-D
4

BERT-D
5

BERT-D
6

0.912

0.914

0.916

0.918

0.920

0.922

0.924

0.926

0.928

0.930
 Acc
 F1
 Precision
 Recall

(a). Task Metrics for Debiasing

BERT

BERT-D
0

BERT-D
1

BERT-D
2

BERT-D
3

BERT-D
4

BERT-D
5

BERT-D
6

0.005

0.010

0.015

0.020

0.025

 FR/TR
 TPR
 F1
 Precision
 Recall

(b). Fairness Metrics for Debiasing

0.920

0.940

0.960

0.980

1.000

Figure 3: On the SST2 task, the results of debiasing
BERT with implicit bias words from each iteration.

Data-Debias achieves the least TPR drop compared
to the baseline and even improves the original Dis-
tillBERT and RoBERTa on Bias-in-Bios task.

In summary, our proposed debiasing method
Data-Debias has outstanding performance in differ-
ent classification tasks and different PLMs, and it
can extremely improve the fairness of PLMs while
preserving the accuracy to the greatest extent.

4.4 Ablation Analysis

To answer research question Q3, we study ablation
experiments with iteration numbers 0-6, and the re-
sults of debiasing in BERT are shown in Figures 3,
4, and 5. The results of bias-amplified Tiny-BERT
are provided in the Appendix B.

For debiasing training, we report task metrics
and fairness metrics for debiasing BERT using
the implicit bias words searched in each iteration
in three tasks. BERT-DN on the x-axis represents
the BERT debiased using the implicit bias words
searched in the Nth iteration. Note that BERT-D0 is
applied to implicit bias words searched by the 0th
iteration (i.e., original Tiny-BERT). According to
the Figures 3(b) to 5(b), we find that the fairness of
BERT is extremely improved at BERT-D0 even with-
out amplifying Tiny-BERT’s bias, which verifies
the effectiveness of our proposed Data-Debias in
debiasing performance. Then, BERT’s bias gradu-
ally decreases as the number of iterations increases.
This shows that implicit bias words become more
precise with amplifying bias training, leading to
better debiasing effects. It is important to note
that the elimination of bias is not endless, and the
fairness peaks at the 4th or 5th iteration and then de-
creases. We analyze that excessive iterative training
destroys the language modeling ability of the bi-
ased model, which in turn affects the performance
of searching for implicit bias words.

Furthermore, we observe that the overall TPR
metric fluctuates without significant decrease
within a small range of the original BERT scores.
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Figure 4: On the ToxiGen task, the results of debiasing
BERT with implicit bias words from each iteration.
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Figure 5: On the Bias in Bios task, the results of debias-
ing BERT with implicit bias words from each iteration.

This suggests that Data-Debias alleviates bias with-
out negatively affecting the performance of the
model. It can also be verified based on Figures 3(a)
to 5(a). In most iterations, the scores of all task
metrics are improved over the original BERT, indi-
cating that moderate debiasing is beneficial to the
accuracy of the model.

In summary, it is necessary to iteratively train
the bias-amplified model, which plays a role in
advancing the debiasing of the PLMs. Note that the
degree of debiasing, i.e., the number of iterations,
needs to be carefully chosen to avoid damaging the
language modeling capability.

4.5 Generalization Analysis
To answer research question Q4, we experiment
with zero-shot and few-shot tasks on two large-
scale PLMs, that is T5-Large (Raffel et al., 2020)
and LLaMA-7B (Touvron et al., 2023), to probe
generalization of implicit bias words. We test on
the validation set of three tasks.

We first find the augmented sample pairs that
cause the model biases, then match them with im-
plicit bias words. The top three implicit bias words
with the highest bias scores in each biased sam-
ple are taken to generate auxiliary prompts, which
are sent to the model to guide fair decisions. The
template for the auxiliary prompts is as: Reduce
the focus on keywords ’bias_word1’, ’bias_word2’,
and ’bias_word3’. We expect that simple and direct
prompts can guide the model to pay less attention
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to implicit bias words, thereby weakening the po-
tentially harmful associations in the data.

We report the results of zero-shot tasks on T5 and
few-shot tasks on LLaMA, as shown in Figure 6.
Excitingly, the experimental results show that pro-
viding PLMs with simple auxiliary prompts can
effectively improve the fairness of decision. From
the test results of three downstream tasks, we ob-
serve that T5 and LLaMA are sensitive to implicit
bias words, especially in ToxiGen dataset, with
an effective rate of 91.08% and 95.64%, respec-
tively. Furthermore, the TPR scores achieve decent
results, indicating that the model maintains predic-
tive abilities while improving fairness. Although
these implicit bias words are not re-searched by
applying IG to T5 and LLaMA, they still perform
exceptionally well in debiasing PLMs. More exper-
imental details can be found in the Appendix C.

Experiments demonstrate that implicit bias
words have strong generalization and can be
applied to large-scale PLMs under the prompt
paradigm without fine-tuning the model. It is ex-
tremely exciting for large-scale PLMs, we can im-
prove the fairness of decision by simply adding an
auxiliary prompt that contains implicit bias words.

5 Related Work

According to the training strategy, we divide ex-
isting debiasing methods into two types: model-
centric debiasing and data-centric debiasing.

5.1 Model-Centric Debiasing

The model-centric debiasing strategies focus on
identifying more effective models to improve
the fairness of the models. Biases are miti-
gated by changing the model structure or training
strategies (Webster et al., 2020), and introducing

projection-based (Ravfogel et al., 2020) or con-
trastive learning (Liang et al., 2020; Cheng et al.,
2021) to disregard sensitive attributes in representa-
tions. Model-centric debiasing strategies have two
fatal flaws: 1) task-specific models are highly spe-
cialized and difficult to generalize to more tasks;
2) the quality of training data is ignored. There
are many defects in the training data from messy
sources. Unfiltered utterances on the Internet con-
tain a large amount of discrimination, prejudice,
and stereotypes of human society, and even a syn-
thetic corpus is difficult to guarantee that samples
are balanced.

5.2 Data-Centric Debiasing

The data-centric debiasing strategies aim to im-
prove data quality and pursue data excellence. Rep-
resentative methods are a range of extended meth-
ods for counterfactual data augmentation (Lu et al.,
2020), such as Auto-Debias (Guo et al., 2022), MA-
BEL (He et al., 2022), and CCPA (Li et al., 2023),
which augment original training data with explicit
bias words to compensate for imbalanced samples.
However, these methods only take into account
explicit bias words that directly cause bias, and
ignore other unfavorable factors that may be mixed
in the training data with complex distribution. In
this paper, we define implicit bias words that have
potentially harmful associations with explicit bias
words, considering both direct and indirect causes
that affect model fairness.

6 Conclusion

This paper mitigates social biases from a data per-
spective to improve fairness in PLMs. We propose
a data-centric explainable debiasing method, which
identifies implicit bias words that have potentially
harmful associations with explicit bias words in
the training data and reduces PLMs’ focus on im-
plicit bias words to alleviate biases. Implicit bias
words are guaranteed to be interpretable by search-
ing with Integrated Gradient and precise by itera-
tively amplifying bias training. Extensive experi-
ments on three classification tasks demonstrate that
Data-Debias can extremely improve the fairness
of PLMs while maintaining the predictive abilities.
The implicit bias words have strong generalization
and can be applied to large-scale PLMs under the
prompt paradigm without fine-tuning the model.
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Limitations

In this work, we focus on debiasing the gender bias
for PLMs. In the future, we will try to mitigate
social biases other than gender, such as race and
religion. In this paper, our proposed Data-Debias is
specific to classification tasks, and in the future we
plan to extend it to more downstream tasks, such
as natural language inference and generative tasks.
In addition, we will further explore the application
of implicit bias words to debiasing on more large-
scale PLMs.
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A Implicit Bias Words

As shown in Figure 10, we exhibit the top-scoring
implicit bias words searched from the three datasets
and rank them by bias score.
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Figure 7: On the SST2 task, the results of iteratively
amplifying bias training Tiny-BERT with implicit bias
words from each iteration.

Tiny
-B

ERT

Tiny
-B

ERT-B
1

Tiny
-B

ERT-B
2

Tiny
-B

ERT-B
3

Tiny
-B

ERT-B
4

Tiny
-B

ERT-B
5

Tiny
-B

ERT-B
6

0.660

0.670

0.680

0.690

0.700

0.710

 Acc
 F1
 Precision
 Recall

(a). Task Metrics for Amplifying Bias

Tiny
-B

ERT

Tiny
-B

ERT-B
1

Tiny
-B

ERT-B
2

Tiny
-B

ERT-B
3

Tiny
-B

ERT-B
4

Tiny
-B

ERT-B
5

Tiny
-B

ERT-B
6

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

 TPR
 FR/TR
 Recall
 Precision
 F1
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Figure 8: On the ToxiGen task, the results of iteratively
amplifying bias training Tiny-BERT with implicit bias
words from each iteration.
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(b). Fairness Metrics for Amplifying Bias

Figure 9: On the Bias in Bios task, the results of itera-
tively amplifying bias training Tiny-BERT with implicit
bias words from each iteration.

B Results of Bias-amplified Tiny-BERT

For amplifying bias training, we report the task
metrics and fairness metrics of Tiny-BERT with dif-
ferent iteration numbers in three downstream tasks,
as shown in Figures 7, 8, and 9. Tiny-BERT-BN on
the abscissa represents Tiny-BERT trained with N
iterations of amplifying bias. It is observed from
Figures 7(b) to 9(b) that Tiny-BERT’s fairness gets

worse as the iteration numbers increases, as ex-
pected from the amplifying bias training phase. At
the same time, the task accuracy and overall index
TPR of the model shows a general downward trend
with the increase of the iteration number. Although
the performance of Tiny-BERT is increasing before
the 4th iteration in the SST2 task, more iterations
still cause performance degradation. This suggests
that social biases within a model can damage its
language modeling ability on downstream tasks.

Task LLM Acc↑ FR/TR↓ TPR↑
SST2

T5 94.87 1.20 94.57
LLaMA 86.31 5.55 86.32

ToxiGen
T5 58.01 2.31 56.25

LLaMA 51.37 2.22 51.43

Bios-in-Bias
T5 59.16 5.15 59.49

LLaMA 49.34 12.52 48.20

Table 4: Original results for testing zero-shot tasks on
T5 and few-shot tasks on LLaMA without auxiliary
prompts.

Task LLM bias_num ap_num debias_num tpr_num

SST2
T5 290 101 88 48

LLaMA 1291 497 258 128

ToxiGen
T5 5626 2465 2245 1334

LLaMA 5403 1904 1821 993

Bios-in-Bias
T5 73831 63620 43892 10652

LLaMA 167699 143735 79659 16417

Table 5: The results of debiasing T5 and LLaMA with
auxiliary prompts. bias_num represents the number
of biased augmented sample pairs, ap_num represents
the number of sample pairs in bias_num with auxiliary
prompts, debias_num represents the number of sample
pairs in ap_num that are debiased, and tpr_num repre-
sents the number of sample pairs in debias_num that are
consistent with the predicted result and the true label.

C Generalization Analysis

We experimentally analyze the generalization of
implicit bias words in two large-scale pretrained
language models (LLMs). We use T5-Large5 to test
zero-shot tasks and LLaMA-7B6 to test few-shot
tasks implemented by the Huggingface Transform-
ers library. For T5, we simply input the prompts
with the task instructions and let the model predict
the label of the sample. For LLaMA, we input two
demonstration samples to help the model under-
stand the goal of the task. The adopted prompt for
each task is shown in Table 6.

We measure task accuracy by the agreement be-
tween the predicted labels of the original samples

5https://huggingface.co/t5-large
6https://huggingface.co/huggyllama/llama-7b
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confidence, ireland, stick, critically, eroded, dead, fails, virtues, white, tormented, enthusiasm, horribly,
killed, tenderly, bilingual, tricky, amusing, scratches, affluent, naive, wicked, charming, writers, bully, rob,
resist, sick, insulting, comedian, gun, dude, steal, damn, horror, miserable, rude, divine, hilarious, passionate,
delicate, witch, elderly, pianist, strongest, suspects, sensitive, overwhelmed, hispanic, vulnerability, doomed,
physician, sensual, raped, lip, tearing, black, indian, sympathetic, ghetto, argentine, sexy

SS
T

2
T

O
X

IG
E

N

paramount, cincinnati, triumph, widow, comedies, universities, struggled, titanic, chemistry, humanist,
descendant, guitars, maturity, gentle, fascination, fidelity, jewelry, imaginative, persist, cinderella, intensely,
disneyland, animation, curve, complexion, nigerian, expressive, mathematician, disabilities, erotic, outrage,
critically, sailor, dancer, outdated, iceland, duchess, segregated, stepmother, swedish, finance, disguised,
artist, italians, tolerant, kenya, champ, inspiration, creativity, nobel, generous, amour, lublin, fascinated,
loneliness, philippine, depression, astronaut, capitalist, romantic, shakespeare

B
ios in B

ias

resigning, complained, moaning, commotion, stepfather, brethren, straining, cocky, seamen, repulsed,
tolerated, panicked, prayed, inferior, canadiens, hungarians, bodyguards, ammunition, looting, undertaker,
furiously, flirt, nemesis, headmaster, nanny, romans, dynasties, uruguayan, fragrance, cheered, sacrifices,
blinded, warships, telecast, plump, bewildered, insurrection, scarred, batsman, pastor, informally, skeptical,
nationalists, sobbing, muscled, thieves, reigns, stepmother, priesthood, pupils, squinting, pornographic, filthy,
sexes, pharaoh, assaulted, peacefully, crouch, widowed, rebellion, adultery

Figure 10: Examples of implicit bias words. Yellow highlights race-related words. Blue highlights identity-related
words. Green highlights words that may have gender stereotypes.

and the true labels, and measure fairness by the
agreement between the predicted results of the aug-
mented sample pairs, and calculate the TPR score
of the fair sample pairs. We report the original
results for the undebiased T5 and LLaMA in Ta-
ble 4. The results show that T5 performs better
than LLaMA in terms of accuracy and fairness on
all three tasks even though it only has 770M pa-
rameters. We analyze that T5, which reconstructs
all NLP tasks into a unified text-to-text format for
training, is better adapted to classification tasks
than LLaMA, which is not fine-tuned on down-
stream tasks. For the obtained biased sample pairs,
we guide LMs debiasing with the implicit bias word
generation assisted prompts, and Table 5 reports
the specific values corresponding to Figure 6.
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LLM Task Prompt

T5

SST2 Determine whether the sentiment of the sentence is positive or negative: Sample
ToxiGen Determine whether the sentence is toxic or non-toxic: Sample

Bios-in-Bias

Occupation classification, selected from [accountant, architect, attorney, chiropractor,
comedian, composer, dentist, dietitian, dj, filmmaker, interior designer, journalist,
model, nurse, painter, paralegal, pastor, personal trainer, photographer, physician, poet,
professor, psychologist, rapper, software engineer, surgeon, teacher, yoga teacher]:
Sample

LLaMA

SST2
Tweet: I hate it when my phone battery dies. Sentiment: Negative
Tweet: My day has been good. Sentiment: Positive
Tweet: Sample Sentiment:

ToxiGen
Tweet: Black people are monkeys. Toxic: Yes
Tweet: Women are good drivers. Toxic: No
Tweet: Sample Toxic:

Bios-in-Bias

Occupation classification, selected from [accountant, architect, attorney, chiropractor,
comedian, composer, dentist, dietitian, dj, filmmaker, interior designer, journalist,
model, nurse, painter, paralegal, pastor, personal trainer, photographer, physician, poet,
professor, psychologist, rapper, software engineer, surgeon, teacher, yoga teacher].
Tweet: He teaches in high school. Occupation: teacher
Tweet: She graduated from computer college and is good at programming. Occupation:
software engineer
Tweet: Sample Occupation:

Table 6: Prompts adopted for the zero-shot task on T5 and the few-shot task on LLaMA. Sample denotes the test
sample.
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