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Abstract

In this paper, we investigate the effectiveness
of various LLMs in interpreting tabular data
through different prompting strategies and data
formats. Our analyses extend across six bench-
marks for table-related tasks such as question-
answering and fact-checking. We introduce
for the first time the assessment of LLMs’
performance on image-based table representa-
tions. Specifically, we compare five text-based
and three image-based table representations,
demonstrating the role of representation and
prompting on LLM performance. Our study
provides insights into the effective use of LLMs
on table-related tasks.

1 Introduction

Recent years have witnessed an explosion of Large
Language Models (LLMs), with impressive per-
formance on various Natural Language Processing
(NLP) tasks (Brown et al., 2020; Touvron et al.,
2023; Team et al., 2023). Research to date has
examined the performance of LLMs for various
aspects and abilities (Bang et al., 2023b; Bubeck
et al., 2023; Akter et al., 2023), but their effec-
tiveness on structured data such as tables is less
explored.

Unlike unstructured text, tables are systemat-
ically organized structures of a large amount of
information. This characteristic makes tabular
data serve as the foundations for numerous ap-
plications, including medical diagnostics, virtual
personal assistants, customer relationship manage-
ment (Hemphill et al., 1990; Dahl et al., 1994;
Akhtar et al., 2022; Xie et al., 2022), etc.

The evaluation of LLMs on processing tabular
data involves many challenges. First, there are
many ways to represent the information in tables.
If we represent the table in pure text, we may use

*Contributed equally to this work. Appendix A lists the
detailed contributions.

naive linearization or insert brackets to better rep-
resent table structures. Meanwhile, emerging mul-
timodal LLMs like GPT-4 (Achiam et al., 2023)
and Gemini (Team et al., 2023) offer image-based
approaches, where we can pass the table as im-
ages to the LLMs. In such cases, visual cues like
color highlighting in tables can influence outcomes.
Second, diverse prompting methods for text may
also apply to tabular data, which can yield varied
results (Wei et al., 2022). Furthermore, the tasks
involving tabular data are diverse, including table
fact-checking (Chen et al., 2019) and table question
answering (Pasupat and Liang, 2015), and table-to-
text generation (Novikova et al., 2017), etc.

In this paper, we systematically evaluate model
performance on tabular data for both textual LLMs
and multi-modal LLMs. Specifically, we investi-
gate several research questions, including the ef-
fectiveness of image-based representation of tab-
ular data and how different text-based or image-
based prompt methods affect LLMs’ performance
on table-related tasks. In addition, we provide anal-
ysis and hypothesis of LLMs’ behaviors. Our find-
ings include:

• LLMs maintain decent performance when we
use image-based table representations. Some-
times, image-based table representations can
make LLMs perform better.

• There are nuances in the prompting design for
table-related tasks, revealed by our comparisons
of various prompting methods for text- and
image-based table representations.

To the best of our knowledge, we are the first to
study how LLMs perform with image-based table
representations. We believe this paper draws new
insights into optimizing table-based information
processing.
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Text-Based

Student ID, Name, Major, 123, 
Peter, CS, 124, Mary, Math

Student ID, Name, Major, 
[ROW1], 123, Peter, CS, 
[ROW2], 124, Mary, Math

Vanilla-T

Row-Identifier

[[Student ID, Name, Major], 
[123, Peter, CS], [124, Mary, 
Math]]

Bracket

{Student ID: [123, 124], Name: 
[Peter, Mary], Major: [CS, 
Math]}

Column-JSON

[{row: 0, StudentID: 123, Name: 
Peter, Major: CS}, {row: 1, 
StudentID: 124, Name: Mary, 
Major: Math}]

Row-JSON

Image-Based

Vanilla-V

Column-Color

Row-Color

StudentID Name Major

123 Peter CS

124 Mary Math

StudentID Name Major

123 Peter CS

124 Mary Math

StudentID Name Major

123 Peter CS

124 Mary Math

OR +

Task Specific Prompt
TableQA

Table-to-text

Table Fact Checking

Question: What is the major of the student 
with Student ID 123 in College of Engineering? 
Context: The title of the table is "Student 
Records in CoE"

Question: Please write a sentence to describe 
the table.
Context: The title of the table is "Student 
Records in CoE" 

Question: Please check whether the following 
statements are supported by the table.
Context: The title of the table is "Student 
Records in CoE" 
Statements: The major of the student with ID 
123 is Data Science.

LLM

Output
TableQA

Table-to-text

Table Fact Checking

Answer: The major of 
the student with Student 
ID 123 in College of 
Engineering is CS.

Answer: The table lists 
two students, Peter who 
majors in Computer 
Science and Mary in 
Mathematics, with their 
respective Student IDs 
123 and 124.

Answer: False

Figure 1: Concept diagram. In this paper, we study differences in table representations. For each example, we
prompt LLMs with the question and the context information, as well as one of the table representations.

2 Related Work

Table-Related Tasks. Tasks involving structured
data have attracted interest in various tasks from
diverse communities (Deng et al., 2020; Chen et al.,
2021a, 2022; Deng et al., 2022), among which there
is a huge focus on tabular data (Yin et al., 2020;
Herzig et al., 2020).

Researchers have investigated various ways to
encode tabular data. Hwang et al. (2019); Liu
et al. (2021); Cong et al. (2024) linearize the ta-
ble content. Others employ model-specific tech-
niques such as adapting the attention mechanism
to better align transformer-based models with the
tabular data (Zhang et al., 2020; Yang et al., 2022)
or designing hierarchical encoding to capture the
table structure (Wang et al., 2021), further tuning
LLMs on tabular data (Zha et al., 2023; Zhang et al.,
2023), etc. In contrast, our work focuses on ex-
ploring various table representations and prompts
LLMs directly.

Prompting LLMs. Researchers have prompted
LLMs to evaluate LLMs’ performance on tradi-
tional NLP tasks (Bang et al., 2023a) as well as on
various complex reasoning tasks (Jin et al., 2022;
Wu et al., 2023; Zheng et al., 2024). On the con-
trary, to the best of our knowledge, few works have
prompted these LLMs on tasks involving tabular
data.

For closed-source LLMs, researchers adopt hard
prompts to manually craft text prompts with dis-
crete tokens (Qiao et al., 2022; Bahng et al., 2022;
Liu et al., 2023). Wei et al. (2022) develop chain-
of-though prompting, Xu et al. (2023a) develop
expert prompting. In our work, we include the
comparison between vanilla, chain-of-thought, and
expert prompting for LLMs on table-related tasks.

Models # P(B) / +V? Company

Llama-2 7/13/70 Meta
GPT-3.5 – OpenAI
GPT-4 – OpenAI
Geminipro – Google

Llama-3 8/70 Meta
Gemma 2/7 Meta
GPT-4o - OpenAI

Table 1: Comparison of LLMs used in our experiments.
“# P” represents the number of parameters in billions (B).
Note that we do not include the number of parameters
for the closed-source models as there are no official doc-
uments revealing this information. “ / ” indicates
whether the LLM is open-source ( ) or closed-source (

). “+V?” indicates whether the visual input is allowed
for the LLM. “Company” indicates which company the
LLM is from. We conduct the majority of our experi-
ments with Llama-2. GPT-3.5, GPT-4 and Geminipro.
We prompt the January 2024 versions of the GPT-3.5
and GPT-4. We include additional experiments for GPT-
4o, Llama-3, and Gemma models in Appendix G.

3 Experiment Setups

3.1 Experimented LLMs

Table 1 describes the LLMs we use for our experi-
ments. We use closed-source models such as GPT-
3.5 and GPT-4 (Brown et al., 2020; Ouyang et al.,
2022), and Gemini (Team et al., 2023). We note
that GPT-4 and Gemini are multimodal models,
which can take tables as images. For open-source
models, we use the chat models from Llama-2 (Tou-
vron et al., 2023) families from the 7 billion to the
70 billion parameter version as they are claimed
to perform on par with closed-source models like
ChatGPT.*

*https://huggingface.co/meta-Llama/Llama-2-70b-chat
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Method Name Table Representation

Vanilla-T
c1, c2, · · · , cn, v(1,1), v(1,2), · · · , v(1,n), v(2,1), v(2,2), 
· · · , v(2,n), · · · , v(m,1), v(m,2), · · · , v(m,n).

Row-Identifier
c1, c2, · · · , cn, [ROW1] v(1,1), v(1,2), · · · , v(1,n), 
[ROW2] v(2,1), v(2,2), · · · , v(2,n), · · · , [ROWm] 
v(m,1), v(m,2), · · · , v(m,n).

Bracket 
[ [c1, c2, · · · , cn], [v(1,1), v(1,2), · · · , v(1,n)], [v(2,1), 
v(2,2), · · · , v(2,n)], · · · , [v(m,1), v(m,2), · · · , v(m,n)]].

Column-JSON
{ c1: [v(1,1), v(2,1), · · · , v(m,1)], c2: [v(1,2), v(2,2), · · · 
, v(m,2)], · · · , cn: [v(1,n), v(2,n), · · · , v(m,n)] }.

Row-JSON
[{ Row: 1, c1: v(1,1), c2: v(1,2), · · · , cn: v(1,n)}, { Row: 2, 
c1: v(2,1), c2: v(2,2), · · · , cn: v(2,n) }, · · · , { Row: m, c1: 
v(m,1), c2: v(m,2), · · · , cn: v(m,n) }].

Table 2: Text-based table representation examples. We
construct the examples assuming a table of m rows
and n columns, where ci denotes the column name of
column i and v(i,j) denotes the cell value at row i and
column j. We use colored text to indicate different rows
in the table to assist readers.

3.2 Prompting Strategies
We explore two ways to represent tables in the
prompt, Text-Based and Image-Based.

Text-Based. Apart from the information con-
tained in the cells of tables, the structure of the
table maintains information such as what cell val-
ues are in the same row or column, and what cell
values correspond to a particular column. There-
fore, we explore various ways to incorporate such
structure information into the text prompt.

• Vanilla-T lists column names followed by cell
values in each row sequentially, an approach
adopted in various prior works (Hwang et al.,
2019; Liu et al., 2021).

• Row-Identifier adds an identifier as the prefix
for each row to distinguish different rows in the
linearized table sequence.

• Bracket encloses the column names and their
values in brackets to distinguish each row.

• Column-JSON represents the table in JSON
format, where column names are the keys that
map to the list of cell values corresponding to
that column.

• Row-JSON represents each row as a JSON ob-
ject, within which the column names and their
corresponding cell values are represented as key-
value pairs.

c1 c2 … cn
v(1,1) v(1,2) … v(1,n)
v(2,1) v(2,2) … v(2,n)

...
v(m,1) v(m,2) … v(m,n)

c1 c2 … cn
v(1,1) v(1,2) … v(1,n)
v(2,1) v(2,2) … v(2,n)

...
v(m,1) v(m,2) … v(m,n)

c1 c2 … cn
v(1,1) v(1,2) … v(1,n)
v(2,1) v(2,2) … v(2,n)

...
v(m,1) v(m,2) … v(m,n)

Vanilla-V Column-Color Row-Color

Figure 2: Image-based table representation examples.
We construct these examples based on the same table
described in Table 2.

Table 2 shows examples of these text-based table
representations.

Image-Based. Alternatively, we can pass the ta-
ble as an image to the recent multimodal LLMs
such as GPT-4 and Gemini. In this way, LLMs
would “view” the table in a similar way as how
we human beings view the table. We explore vari-
ous table-highlighting methods as different visual
cues may influence the model outcomes as shown
by Shtedritski et al. (2023) who study how high-
lighting can influence CLIP model (Radford et al.,
2021)’s performance on vision and language tasks.
We pass these images of the table to LLMs.

• Vanilla-V feeds the table image without any
colors or highlighting to LLMs.

• Column-Color uses a single color for each table
column. Therefore, the LLM may easily distin-
guish columns as cells in the same column are
annotated by the same color, whereas different
colors annotate cells from different columns.

• Row-Color uses a single color for each row in
the table. The same color annotates cells in the
same row, whereas different colors annotate cells
in different rows.

Figure 2 show examples for these image-based
table representations.

On top of different methods to represent tables,
we test the vanilla prompting, chain-of-thought
prompting (Wei et al., 2022), and expert prompting
(Xu et al., 2023a) by adding “let’s pretend you are
an expert in reading and understanding tables” to
the prompt. Appendix E provides an example for
each table representation and prompting method.

3.3 Datasets
We make use of six previously introduced datasets
that cover different table sources such as Wikipedia
and financial reports, examine model abilities such
as information extraction and arithmetic reasoning,
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Task Family Name Domain Input Output Metrics

Table QA WikiTQ (Pasupat and Liang, 2015) Wikipedia Table Text Acc
FinQA (Chen et al., 2021b) Finance Table + Text Text Acc

Table Fact Checking TabFact (Chen et al., 2019) Wikipedia Table Boolean Acc

Table-to-text
E2E (Novikova et al., 2017) Restaurants Table Text ROUGE, Human
ToTTo (Parikh et al., 2020) Wikipedia Table + Text Text ROUGE

LogicNLG (Chen et al., 2020) Wikipedia Table + Text Entity Acc

Table 3: Dataset descriptions. For Input, we refer to the input information other than the question, the statement for
fact-checking, or the statement that requires the model to describe the table content.

FinQA LogicNLG TabFact WikiTQ E2E Totto0

20

40

60

80

21.0 17.9

64.6

45.0
35.6

42.4
30.0 34.1

56.1

27.0
37.5

46.043.0
51.5

71.6 75.0

44.8 43.9
57.0

47.2
60.5 60.0

39.4 44.0
GMNpro(T)
GMNpro(V)
GPT-4 (T)
GPT-4 (V)

Figure 3: Performance comparison between passing the text versus image representations of tables to GPT-4 and
GeminiPro across FinQA, LogicNLG, TabFact, and WikiTQ by accuracy, and E2E and ToTTo by ROUGE-L scores.
We feed the linearized table (Vanilla-T) as the text-based representation, and the original table image (Vanilla-V) as
the image-based representation to these LLMs.

and cover table-related tasks such as table question
answering, table fact-checking, and table-to-text
generation. Table 3 provides information for each
dataset we use. Considering the limited access to
LLMs’ APIs and the scale of the comparison, we
randomly select 100 examples from the test set
for each of these datasets to conduct our analy-
sis. In total, we run the our experiments on 54,000
instances*. In addition, we have observed signifi-
cant differences between LLMs’ performance and
report the results from three significance tests in
Appendix B.

3.4 Metrics

Following Pasupat and Liang (2015); Chen et al.
(2019, 2020, 2021b), we compute accuracy scores
on WikiTQ, TabFact, LogicNLG, FinQA.

We adopt the automatic ROUGE evaluation for
table-to-text generation datasets ToTTo and E2E.
In addition, the authors manually investigate the
generation quality on the E2E dataset by whether
the generation encapsulates the table information
without any additional information that cannot be
inferred from the table.

*5 text form table representations × 3 prompting strategies
× 6 LLMs × 6 datasets × 100 examples / dataset + 3 image
table representations × 3 × prompting strategies × 2 MLLMs
× 6 datasets × 100 examples = 54,000 instances. This does
not include the number of additional experiments we run on
other models such as Gemma, Llama-3 and GPT-4o.

4 Research Questions

Using the setup described previously, we can now
seek answers to several research questions concern-
ing the use of LLMs for tabular data.

RQ1. Are image-based representations of
tabular data effective?
Test: We compare using the linearized table rep-
resentation (Vanilla-T in text-based table represen-
tation) and the table image (Vanilla-V in image-
based table representation) as the input for both
GPT-4 model and Geminipro. We use vanilla
prompting in this comparison and plot Figure 3.
We report the results for other prompting methods
in Figures 9 and 10 in Appendix C.1.

TL;DR Answer: Yes.

Full Answer: Figure 3 shows that in most cases,
LLMs perform comparably if we represent tables
as images versus text. On datasets such as FinQA,
passing image representation of tables to Geminipro
and GPT-4 outperform passing text representations
of the tables significantly. As FinQA focuses on
financial question answering with long context and
many numerical relations, we hypothesize that rep-
resenting tables as images can help LLMs in com-
plex reasoning. Since these multimodal LLMs have
a strong capability over visual input (Yang et al.,
2023), representing tables as images may reduce
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Cash $108

Other current assets 28

Intangible assets 216

… …

Question: What percentage of the intangible assets is 
related to the license of the realtor.com ae trademark?
Context: …the license of the realtor.com ae trademark , 
which has a fair value of approximately $116 million…

Gold: 0.53704
GPT-4 (T): The text does not provide information…
GPT-4 (V): …(Trademark value / Total intangible assets) * 
100 = ($116 million / $216 million) * 100 = 53.7037%

⨯
✓

Figure 4: An example from FinQA. We highlight the
relevant parts from the context and the table and omit
irrelevant parts to help readers. We feed the linearized
table (Vanilla-T) as the text-based representation (GPT-
4 (T)), and the original table image (Vanilla-V) as the
image-based representation to GPT-4 (GPT-4 (V)).

the cognitive load for LLMs to parse and under-
stand dense text. This is especially beneficial when
the context involves long passages of text that may
also contain numerous numerical relations. As
shown in Figure 4, since the context is long (around
416 English words, approximately 556 tokens for
GPT models) and involves various numerical rela-
tions, GPT-4 ignores the relevant clues in text when
we pass text representation of the table.

In contrast, when we pass the table image, GPT-4
can effectively leverage information from both the
text and visual modality for its reasoning process.

On WikiTQ and TabFact, both Geminipro and
GPT-4 perform better with the text than the image
representation of the table significantly. We notice
that both datasets are sourced from Wikipedia and
the texts from Wikipedia are commonly used to
pre-train LLMs (Brown et al., 2020; Touvron et al.,
2023). GPT-4 and Geminipro may have encoun-
tered these tables in their pre-training phase in the
text format rather than the image format, leading
to the performance disparity between text and im-
age representation of tables for both Geminipro and
GPT-4 on WikiTQ and TabFact.

RQ2. How do different text-based prompt
methods affect LLMs’ performance on
table-related tasks?

Test: We compare the five text-based table repre-
sentations introduced in Section 3.2. On top of the
five representations, we also compare how vanilla,
chain-of-thought, and expert prompting affect the
model performance. We conduct the comparison

GPT GMNpro
Llama-2

3.5 4 7B 13B 70B

Vanilla-T
V 52.5 60.3 37.1 28.8 35.3 42.7
E 51.0 63.8 39.5 29.0 35.1 46.7

CoT 55.2 62.6 53.5 32.1 37.6 48.3

Brackt
V 50.9 60.1 38.4 28.4 36.6 42.2
E 47.9 62.8 39.5 28.1 34.5 45.8

CoT 51.4 61.9 57.3 34.2 39.3 50.0

Table 4: For text-based table representations, averaged
accuracy scores across FinQA, LogicNLG, TabFact,
and WikiTQ for different LLMs. “GMNpro” represents
Geminipro model, “V”, “E”, and “CoT” represent vanilla,
expert and chain-of-thought prompting, respectively.

using all six LLMs in Section 3.1 and average their
accuracy scores across FinQA, LogicNLG, Tab-
Fact, and WikiTQ. Appendix C.2 reports LLMs’
performance on E2E and ToTTo datasets.

TL;DR Answer 2.1: Expert prompting works
the best when the LLM is an “expert”.

Full Answer 2.1: With respect to vanilla, CoT,
and expert prompting, for GPT-4, we note that ex-
pert prompting outperforms the other two prompt-
ing methods consistently. For instance, for the
vanilla linearized table representations (Vanilla-T),
expert prompting outperforms the CoT and the
vanilla prompting method by 1.2% and 3.5%, re-
spectively (Table 4). In contrast, CoT prompting
instead of expert prompting leads to the best per-
formance for all other models. For instance, for
GPT-3.5 with Vanilla-T table representation, CoT
prompting outperforms vanilla and expert prompt-
ing by 2.7% and 4.2% (Table 4).

On the other hand, GPT-4 outperforms all other
models, as the best average score GPT-4 achieves is
63.8%, compared to 55.2% by GPT-3.5 and 50.0%
by Llama-2-70B. We suspect that because of GPT-
4’s “expertise” on these tasks, expert prompting
can further enhance its reasoning ability as GPT-4
can “pretend they are an expert in reading and un-
derstanding tables”. In contrast, expert prompting
may not fit the less capable LLMs as they may not
“pretend an expert” well.

TL;DR Answer 2.2: CoT prompting can some-
times boost up the performance significantly.

Full Answer 2.2: We notice that CoT prompting
significantly improves Geminipro’s performance
from 38.4% to 57.3% using the bracket table rep-
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Year  Position

1986 … 1st

1987  1st

1991  6th

Question: How many times did Salvatore Bettiol win first place 
across competitions?

Gold: 2
Vanilla-T: three times.
Row-Identifier: 3 times.
Bracket: 2

⨯
✓

⨯

Figure 5: An example from WikiTQ. We use Geminipro
with vanilla prompting and show its prediction when we
use the linearized table representation (Vanilla-T), insert
“Row-Identifier” or “Bracket” in the representation.

resentation (Table 4), which outperforms the best
performance 55.2% by GPT-3.5. This suggests
that proper prompting can make a big difference
in LLMs’ performance and unleash the potential
within the LLM. On the other hand, it underscores
the complexity of LLMs’ evaluation and the im-
portance of prompt engineering, as we may un-
derestimate an LLMs’ performance because of an
improper prompt.

TL;DR Answer 2.3: Bracket representation can
help LLMs better understand tables.

Full Answer 2.3: Compared to linearizing tables
directly (Vanilla-T), adding brackets to distinguish
rows in the table boosts up model performances
for Geminipro and different versions of Llama-2
models (Table 4).

Figure 5 shows a WikiTQ example from
Geminipro, where the vanilla prompting fails to
count the number of “1st” place. We suspect that
the simple linearized table representation does not
have a clear boundary between rows, which may
lead to confusion or misinterpretation of data rela-
tionships. In addition, adding the row identifier in
the sequence does not help while the LLM answers
correctly with the bracket representation. We con-
jecture that LLMs may be familiar with brackets
from their pre-training exposure. Since brackets are
fundamental components of many programming
languages, and Github which contains rich code
is often used as a source for pre-training corpora
(Touvron et al., 2023), LLMs may have acquired
proficiency in recognizing and interpreting brack-
eted structures.

TL;DR Answer 2.4: Different table represen-
tations do not affect the performance of GPT
models much.

Full Answer 2.4: Even without any sophisti-
cated prompting methods, the GPT-3.5 and GPT-4

GPT-4 Geminipro
V E CoT V E CoT

VV 56.2 54.9 57.8 36.8 37.2 46.0
CC 53.3 52.8 58.0 37.1 37.8 45.1
RC 51.8 51.6 60.2 39.4 38.7 46.2

Table 5: For image-based table representations, aver-
aged accuracy scores across FinQA, LogicNLG, Tab-
Fact, and WikiTQ for GPT-4 and Geminipro. For the
headers, “V”, “E”, and ”CoT” represent vanilla, expert,
and chain-of-thought prompting, respectively. For the
row names, “VV”, “CC’, and “RC” represent Vanilla-V,
Column-Color, and Row-Color, respectively.

Week  Score

4 … 34-6

5  38-12

6  45-0

10  30-9

Question: How many games did the team score at least 30 points?

Gold: 4
Vanilla-V: 3 games.
Row-Color: 4 games. ⨯✓

Figure 6: An example from WikiTQ. We use Geminipro
with vanilla prompting and show its prediction when we
use the original table image (Vanilla-V) and the table
image that uses different colors to distinguish rows in
the table (Row-Color).

achieve a decent performance (52.5% and 60.3%
respectively using the vanilla prompting and lin-
earized table representation from Table 4), demon-
strating their strong table understanding abilities.
In such cases, brackets or other kinds of table repre-
sentations may add extra “workload” to the model,
which dilutes the models’ attention to the original
table content and thus leads to worse performance.

RQ3. How do different image-based prompt
methods affect LLMs’ performance on
table-related tasks?
Test: We test the three image-based table rep-
resentations in Section 3.2 together with vanilla,
chain-of-thought, and expert prompting. We test
the Geminipro and GPT-4 model which can take im-
ages as the input. We average the accuracy scores
across FinQA, LogicNLG, TabFact, and WikiTQ.
Appendix C.3 reports LLMs’ performance on E2E
and ToTTo datasets.

TL;DR Answer 3.1: CoT prompting helps
LLMs reason over images of the table.

Full Answer 3.1: In Table 5, we observe
that chain-of-thought prompting helps multimodal
LLMs in all image-based table representations. For
instance, when using different colors to distinguish
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rows in the table (Row-Color), the average accu-
racy score for GPT-4 improves from 51.8% by
vanilla prompting to 60.2% by chain-of-thought
prompting. By explicitly outlining the reason-
ing process, chain-of-thought prompting may help
LLMs better understand the context and relation-
ships between different rows and columns in the
table, therefore better aligning this visual informa-
tion with the question text. Such consistent perfor-
mance improvements suggest that chain-of-thought
prompting may enhance information fusion across
the text and vision modality.

TL;DR Answer 3.2: Distinguishing rows may
lead to better performance for LLMs to reason
over images of the table.

Full Answer 3.2: In Table 5, under CoT prompt-
ing, GPT4 performs slightly better when using col-
ors to distinguish different rows, which also yields
the overall best performance using images of the
table. In contrast, under CoT prompting, using
colors to distinguish columns yields similar perfor-
mance to vanilla image (58.0% to 57.8% for GPT-4
and 45.1% to 46.0% for Geminipro), suggesting
that these advanced LLMs may not capture row
information as well as column information.

Figure 6 shows a WikiTQ example with
Geminipro model’s predictions. Since the question
asks about the number of games, it requires the
model to count how many rows satisfy such a con-
dition. Using colors to distinguish rows may help
models visually segment and categorize the data.
This visual differentiation may act as a cognitive
aid, which reduces the complexity of parsing and
interpreting the tabular data.

TL;DR Answer 3.3: The more capable LLM
does not necessarily benefit more from the col-
ored images.

Full Answer 3.3: In addition, if we use the
vanilla prompt, the different coloring methods may
even hurt the performance of GPT-4 (for GPT-4,
coloring rows with different colors yields 51.8%
compared to 56.2% without adding any color), but
helpful for Geminipro (for Geminipro, coloring rows
with different colors yields 39.4% compared to
36.8% without adding any color). This suggests
that the effectiveness of how different LLMs can
leverage colored images varies, and does not de-
pend on the model’s overall performance.

Rep Cues GPT GMNpro
Llama-2

3.5 4 7B 13B 70B

T N/A 34 43 21 10 20 41
T T 30 51 25 14 16 37
V N/A - 57 30 - - -
V T - 58 34 - - -
V V - 57 28 - - -
V V+T - 61 38 - - -

Table 6: Accuracy scores of LLMs on FinQA. We
use vanilla prompting across experiments in this table.
GMNpro represents Geminipro model. We denote text
and image-based table representations as “T” and “V”
in the “Rep” column, respectively. The “Cues” column
indicates how we highlight the relevant cells, where
“N/A” indicates no information about relevant cells, “T”
indicates referring to relevant cells in the text, “V” in-
dicates highlighting relevant cells on the table image,
“V + T” indicates both highlighting relevant cells on the
table image and referring to them in the text.

RQ4. Does highlighting relevant cells yield a
better performance?
Test: We test all six LLMs in Section 3.1 on
FinQA which provides relevant cells in the table
for each instance. We refer to the relevant cells
by adding “Please pay attention to the highlighted
cells: (row index, column index, cell value)” in the
text prompt, or mark them on the table image di-
rectly. Appendix E provides our prompt examples.
We use vanilla prompting in this comparison.

TL;DR Answer: Yes.

Full Answer: In Table 6, we notice that in most
cases, referring LLMs to specific cells helps LLMs
better attend to them, thereby helping LLMs reason
over the example. However, LLMs’ performance
may get hurt when we refer to the relevant cells
through text such as Llama-2-13B and 70B. This
may be due to the inherent limitations of textual
descriptions for conveying spatial or relational in-
formation. In order to relate the mentioned cells in
the text, the model needs to figure out the connec-
tion between the mentioned cell and the cell in the
linearized table, which can be challenging to the
model given the complicated table structure.

In addition, LLMs best attend to the table items
when there are clues from both text and image. In
Table 6, we observe that marking the relevant cells
on the image while mentioning them through text
leads to the most correctly answered examples (61
examples by GPT-4 and 38 by Geminipro at the last
row in Table 6). Such a dual-modality approach
that combines visual cues with text references, en-

413



∆ Metric

FinQA 47.0 57.0 +10.0

AccLogicNLG 43.4 58.5 +15.1
TabFact 51.8 74.7 +22.9
WikiTQ 69.0 86.0 +17.0

E2E 37.1 46.0 + 8.9 ROUGE-LToTTo 30.1 47.7 +17.6

Table 7: Performance scores of the best performed
open-source ( ) LLM we test, Llama-2-70B versus
closed-source ( ) LLM we test, GPT-4 on different
datasets. The closed-source LLMs always outperform
the open-source LLMs and we report the performance
difference ∆ between them. For consistency across dif-
ferent datasets, we do not include the performances
with highlighting cells*in this comparison. Table 20 in
Appendix D provides what combinations of table repre-
sentation and prompting method yield this performance.

Question: What is the number of 1st 
place finishes across all events?

Gold: 17
GPT-4: 15 ⨯

Date Country Placing …

10/31/2008 UK 1st …

 …   

Figure 7: An example from WikiTQ where GPT-4 can-
not answer it correctly with bracket table representation
and chain-of-thought prompting. In addition, for most
of the table representations and prompting styles, GPT-4
cannot answer this question correctly.

hances LLMs’ overall reasoning ability over the
tabular data.

RQ5 and RQ6

We include two additional research questions and
our answer to them in Appendix C, including
whether these LLMs can reconstruct tables from
the image, and whether multimodal LLMs benefit
from having both formats simultaneously as input.

5 Open Problems to Increase the
Performance of LLMs on Tabular Data

Mathematical reasoning. We observe that LLMs
are not good at arithmetic reasoning similar to the
findings in prior works (Hendrycks et al., 2021;
Imani et al., 2023). As shown in Figure 7, sim-
ple arithmetic computing like counting the total
number of rows that satisfy certain conditions (‘1st’
in Figure 7) still poses challenges even for GPT-4.

*Except for ToTTo, where the task is to generate the sen-
tence based on the highlighted cells. On ToTTo, we include
the highlight information just in text.

Name EatType Area

Blue Spice pub Riverside

Question: Write a sentence to describe the table.

Model Generated

L-7B
The table contains three columns and three rows, with 
the data “Blue Spice”, “pub”, and “riverside” in the 
first column, respectively. ⨯

L-13B
The table contains information about three different 
restaurants, including their names, eat types (pub or 
restaurant), and locations (riverside or not). ⨯

L-70B
The table shows the name, eatType, and area of a 
restaurant, with one entry for Blue Spice, a pub 
located in the riverside area.

✓

Figure 8: Table-to-text generation from E2E. We
use vanilla prompting and bracket table representa-
tion across all the models. “L-7B/13B/70B” represents
Llama-2-7B/13B/70B, respectively. We highlight the
part where the model generates incorrectly in red.

This suggests that these previously proposed bench-
marks are still valuable in evaluating LLMs, as
many of these datasets involve arithmetic reasoning
such as FinQA and WikiTQ, which is challenging
for even the most sophisticated LLMs like GPT-4.
For datasets like E2E for table-to-text generation,
though relatively easy for advanced models like
GPT-4, smaller models cannot describe the table
fully correctly as shown in Figure 8. Therefore,
these datasets are still valuable for benchmarking
the progress of smaller LLMs.

Appendix F provides more examples from each
dataset where LLMs can and cannot answer well.

Closing the gap between open-source and closed-
source LLMs In Table 7, we report the best per-
formance among different prompting methods for
the best performed open-source Llama-2 models
versus the best performed closed-source GPT mod-
els on FinQA, LogicNLG, TabFact, and WikiTQ.
We note that on these tasks, GPT-4 always performs
the best among all the closed-source LLMs we test.

We observe that open-source Llama-2 models
obtain decent performances across these bench-
marks. as shown in Table 20. Figure 8 shows an
example from E2E dataset. The smaller Llama-2
models such as Llama-2-7B or Llama-2-13B make
mistakes in counting rows. However, they capture
almost all the information in the table including
the name, eat type, and area of the restaurant. As
the model scales up, the Llama-2 70B model can
describe the table accurately.

However, significant performance gaps exist be-
tween open-source Llama-2 models and closed-
source GPT-4 models. In Table 7, the gap between
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open-source Llama-2 models and GPT-4 can be
as large as 15% on FinQA and 22.9% on TabFact.
Even on LogicNLG which has the smallest perfor-
mance gap, there is an 8.4% difference between the
Llama-2 and GPT models. As Llama models often
serve as the foundation models for a wide range
of NLP research (Roziere et al., 2023; Xu et al.,
2023b), we need the effort from the open-source
community to keep developing stronger LLMs to
close the gap between open-source and closed-
source LLMs.

6 Conclusion

We have explored various representation strategies,
including both text-based and innovative image-
based approaches, to understand how to use LLMs
effectively in tasks involving tabular data. We
demonstrate the effectiveness of image-based rep-
resentations and reveal the impact of prompting
strategies on the performance of LLMs. We be-
lieve our insights contribute to the understanding
of LLMs and how to optimize LLMs for tabular
data processing.

7 Ethical Statement

We conduct our studies on six pre-existing and
publically available datasets using various existing
LLMs. Prior works have pointed out the potential
bias in these LLMs (Bender et al., 2021) which
practitioners need to be aware of.

8 Limitations

In this study, we do not intend to exhaust every
possible text representation, image representation
of tables, or every possible LLM. Moreover, we do
not have access to the closed-source LLMs behind
their API. Instead, we designed our experiments to
try to explore the research questions we raised in
this paper. We hope our findings and insights in this
paper can inspire future research on table-related
tasks.
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Idea Proposal. Naihao Deng proposed the idea
of evaluating LLMs’ performance on table-related
tasks with various text-based and image-based table
representations.

Background Survey. Zhenjie Sun conducted a
careful survey on table-related tasks. Naihao Deng
did the initial background survey on table-related
tasks when he was a research assistant in Westlake
University with Yue Zhang.

Implementation. Zhenjie Sun came up with var-
ious table representations and designed all the
prompts. Zhenjie Sun also implemented the eval-
uation pipeline for autonomous metrics. Naihao
Deng and Zhenjie Sun implemented the pipeline
for human evaluation.

Experiments. Zhenjie Sun and Naihao Deng
conducted all the experiments. Specifically,
Zhenjie Sun conducted experiments on GPT-3.5,
GPT-4 with text-based table representations, and
Geminipro. Naihao Deng conducted experiments
on Llama-2 models and GPT-4 with image-based
table representations.

Result Aggregation. Zhenjie Sun conducted the
result aggregation for all the experiments.

Human Evaluation. Zhenjie Sun, Naihao Deng,
Ruiqi He, Aman Sikka conducted the human evalu-
ation for the model generation.

Paper Writing. Naihao Deng drafted the paper.
Zhenjie Sun drafted the prompting strategies and
metrics, and actively got involved in discussions of
result analysis. Naihao Deng and Zhenjie Sun plot-
ted all the tables and figures. Naihao Deng, Zhenjie
Sun selected examples that appeared in this paper.
Ruiqi He, Aman Sikka provided suggestions on
example selections. Rada Mihalcea, Yue Zhang,
Lin Ma, and Yulong Chen participated in discus-
sions throughout the entire project and provided
revisions and feedback on the paper.

B Statistical Significance Test Results

We have observed significant differences between
LLMs’ performance. We conduct three statistical
significance tests, including Fisher’s Exact test, Mc-
Nemar’s Test, and proportion Z test for the model
predictions.

With p < 0.05:
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1. For Fisher’s Exact test, we find a statistically
significant difference in GPT-4 performance
between T and V inputs for FinQA, Logic-
NLG, TabFact, WikiTQ (Figure 3), its perfor-
mance between vanilla and expert prompting
for table text input (Table 4), and its perfor-
mance difference under vanilla and chain-of-
thought prompting for image-based table rep-
resentations (Table 5).

2. For McNemar’s Test, we find statistically sig-
nificant differences between GPT-4 perfor-
mance between T and V inputs for FinQA,
TabFact, and WikiTQ (Figure 3), as well as
between vanilla and expert prompting for ta-
ble text input (Table 4).

3. For the proportion Z test, we find a statistically
significant difference in GPT-4 performance
between T and V inputs for FinQA, WikiTQ
(Figure 3).

C Research Questions Cont’d

C.1 RQ1 Cont’d. Can we use image-based
representations of tabular data?

Figure 9 and Figure 10 show the performance com-
parison between feeding text representations versus
image representations of the table to GPT-4 and
Geminipro for chain-of-thought and expert prompt-
ing, respectively. The results resemble similar
trends as Figure 3.

C.2 RQ2 Cont’d. How do different text-based
prompt methods affect LLMs’
performance on tabular-related tasks?

Table 8 reports the averaged accuracy scores across
FinQA, LogicNLG, TabFact and WikiTQ that use
accuracy as the metric. Table 9 and Table 11 re-
port the ROUGE-L scores of LLMs’ generation on
E2E and ToTTo dataset, respectively. Table 10 re-
ports the scores annotated manually by the authors.
As discussed in Section 3.4, the authors manually
check whether the generated sentence captures all
the information from the table and does not include
any additional or misinformation. We assign “1”
for sentences who satisfy the criteria and “0” other-
wise.

GPT GMNpro
Llama-2

3.5 4 7B 13B 70B

Vanilla-T
V 52.5 60.3 37.1 28.8 35.3 42.7
E 51.0 63.8 39.5 29.0 35.1 46.7

CoT 55.2 62.6 53.5 32.1 37.6 48.3

Bracket
V 50.9 60.1 38.4 28.4 36.6 42.2
E 47.9 62.8 39.5 28.1 34.5 45.8

CoT 51.4 61.9 57.3 34.2 39.3 50.0

Column-JSON
V 48.3 59.5 32.6 24.9 28.8 39.2
E 48.8 62.8 34.0 26.4 28.2 42.5

CoT 51.2 59.6 53.6 28.0 34.8 42.8

Row-JSON
V 49.7 62.3 41.2 27.9 32.6 40.9
E 53.7 63.8 39.4 26.4 31.6 45.4

CoT 53.3 62.0 52.1 31.0 35.7 48.4

Row-Identifier
V 52.0 61.2 38.6 27.9 38.5 43.2
E 53.2 63.0 38.2 26.1 34.0 41.8

CoT 51.6 62.1 56.5 30.6 33.0 45.9

Table 8: For text-based table representations, averaged
accuracy scores across FinQA, LogicNLG, TabFact,
and WikiTQ for different LLMs. “GMNpro” represents
Geminipro model, “V”, “E”, and “CoT” represent vanilla,
expert and chain-of-thought prompting, respectively.

C.3 RQ3 Cont’d. How do different
image-based prompt methods affect
LLMs’ performance on tabular-related
tasks?

Tables 12 and 13 report the ROUGE-L scores of
GPT-4 and Geminipro when we use image repre-
sentations of tables on E2E and ToTTo dataset,
respectively. Table 14 reports the scores annotated
manually by the authors.

C.4 RQ5: Can These LLMs reconstruct
tables from the image?

Test: We conduct experiments to explore table re-
construction ideas using GPT4 on E2E and FinQA
datasets.

TL;DR Answer: Mostly yes.

Full Answer: GPT4 successfully reconstructs
97/100 tables on the E2E dataset, and 72/100 tables
on the FinQA dataset. We notice that for simpler ta-
bles, GPT4 can reconstruct tables almost perfectly.
For instance, in E2E, the only “mistake” the model
makes is to output “é” instead of “e” in “Rainbow
Vegetarian Café”.

GPT4 also demonstrates a decent capability of
reconstructing complicated tables. On FinQA,
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FinQA LogicNLG TabFact WikiTQ E2E Totto0
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46.0 46.3

63.8 58.0
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44.550.0
41.3

56.5

36.0 38.0
45.547.0 52.1

71.4
80.0

44.6 43.5
53.0 54.1 59.2 65.0

38.3 43.4
GMNpro(T)
GMNpro(V)
GPT-4 (T)
GPT-4 (V)

Figure 9: Performance comparison between passing the text versus image representations of tables to GPT-4 and
GeminiPro across FinQA, LogicNLG, TabFact, and WikiTQ by accuracy, and E2E and ToTTo by ROUGE-L scores.
We use the linearized table (Vanilla-T) as the text-based representation, the original table image (Vanilla-V) as the
image-based representation, and CoT prompting.

FinQA LogicNLG TabFact WikiTQ E2E Totto0

20
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64.0

35.0 35.9
42.4

33.0 31.7

56.0

28.0
39.2 45.0

52.0 54.1

72.0 77.0

44.9 42.8
53.0

45.3
58.2 63.0

35.6
42.3

GMNpro(T)
GMNpro(V)
GPT-4 (T)
GPT-4 (V)

Figure 10: Performance comparison between passing the text versus image representations of tables to GPT-4 and
GeminiPro across FinQA, LogicNLG, TabFact, and WikiTQ by accuracy, and E2E and ToTTo by ROUGE-L scores.
We use the linearized table (Vanilla-T) as the text-based representation, the original table image (Vanilla-V) as the
image-based representation, and expert prompting.

GPT-4 manages to reconstruct a 4-row×10-column
table with over 100 words (Table 16).

But GPT-4 is more prone to hallucination or
messing up with the spatial relations when the table
gets more complicated. For instance, for Table 17,
GPT-4 reconstructs it as Table 18. As expected,
GPT-4 fails to answer the corresponding question
to this table when using a table image as the in-
put. However, we notice that when using the text
representation of the table, GPT-4 also fails to an-
swer this question. This aligns with what we have
reported in.

As expected, GPT-4 fails to answer the corre-
sponding question to this table when using a table
image as the input. However, we notice that when
using the text representation of the table, GPT-4
also fails to answer this question. This aligns with
what we have reported in Figure 3 that On FinQA,
GPT-4 better leverages the image representations
than the text representations in general.

C.5 RQ6: Do multimodal LLMs benefit from
having both formats simultaneously as
input?

Test: We test GPT-4 with vanilla prompting for
the six datasets.

TL;DR Answer: Not generally true.

Full Answer: As shown in Table 19, it is not
generally true that multimodal LLMs benefit from
having both formats simultaneously as input.

There are cases where passing both image and
text representations would increase the perfor-
mance (e.g. GPT-4 on WikiTQ and FinQA). In
other cases, the performance is comparable to ei-
ther passing tables as text or image representation
or lies in between.

D Comparison of Llama Models and
GPT-4 Models

Table 20 provides the details of what combina-
tion of table representation and prompting method
yields the best performance with respect to the
Llama-70B and GPT-4 models.

E Prompt Examples

Figure 11 gives an example of how we construct
our prompt for an instance in WikiTQ.

F LLMs’ Generation Examples on Each
Dataset

Figure 12 gives examples for WikiTQA, TabFact,
LogicNLG, and FinQA datasets we use, how many
combinations of LLMs, table representations, and
prompting techniques can answer the question cor-
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Vanilla N/A

Expert Let's pretend you are an expert in 
reading table and answer questions.

CoT Please think step by step.

District Location Communities served

Agape Christian Academy Burton Township, Ohio and Troy Township, Ohio Accepts applications prior to the start of each school year

…

Question: where is saint anslem school located?

Vanilla-T District, Location, Communities served, Agape Christian 
Academy, Burton Township, Ohio and Troy Township …

Row-Identifier District, Location, Communities served, [ROW1], Agape 
Christian Academy, Burton Township, Ohio and Troy 
Township ...

Bracket [ [ District, Location, Communities served ], [Agape Christian 
Academy, Burton Township, Ohio and Troy Township, Ohio, 
Accepts applications prior to the start of each school year] ...]

Column-JSON { District: [Agape Christian Academy, …], Location: [Burton 
Township…] … }

Row-JSON [ { row: 1, District: Agape Christian Academy, Location: 
Burton Township, Ohio and Troy Township, Ohio,        
Communities served: Accepts applications prior to the start of 
each school year }, …]

District Location Communities served

Agape … Burton Township … Accepts applications …

…

District Location Communities served

Agape … Burton Township … Accepts applications …

…

District Location Communities served

Agape … Burton Township … Accepts applications …

…

Vanilla-V

Row-Color

Column-Color

Figure 11: An example of how we construct the prompt for WikiTQ. Given the table and question, we choose from
the three prompting methods, and combine with either the text-based or the image-based table representation.

GPT GMNpro
Llama-2

3.5 4 7B 13B 70B

Vanilla-T
V 28.6 44.8 35.6 21.2 20.6 20.0
E 29.3 44.9 35.9 15.8 20.6 16.8

CoT 21.3 44.6 21.1 16.7 17.7 18.1

Bracket
V 42.0 45.2 26.1 23.0 23.7 21.2
E 41.7 43.2 29.6 19.4 24.7 21.4

CoT 31.3 42.4 19.5 18.8 21.0 18.3

Column-JSON
V 45.5 45.6 41.6 37.1 26.2 31.4
E 43.5 45.1 41.9 27.2 25.4 29.0

CoT 43.7 46.0 22.3 30.0 23.4 23.2

Row-JSON
V 44.6 45.7 28.8 32.4 21.5 25.9
E 43.3 45.0 21.9 27.6 28.0 27.5

CoT 43.6 44.7 22.1 27.0 24.1 19.3

Table 9: For text-based table representations, ROUGE-L
scores on E2E for different LLMs. “GMNpro” repre-
sents Geminipro model, “V”, “E”, and “CoT” represent
vanilla, expert and chain-of-thought prompting, respec-
tively. We do not include the Row-Identifier here as all
the tables in E2E dataset only contains one row other
than the header row.

rectly. We notice that LLMs tend to answer well
in general if the example focuses on extracting in-
formation from the table, but answer poorly if the
question involves some arithmetic reasoning such
as counting rows and comparing with others (exam-
ples from TabFact and LogicNLG), or complicated
calculation that involves several steps (the example
from FinQA). Figure 13 provides examples from
E2E dataset.

Figure 14 provides examples from the ToTTo
dataset, the models generally describe information
better when there is less information.

GPT GMNpro
Llama-2

3.5 4 7B 13B 70B

Vanilla-T
V 28 79 60 23 15 24
E 26 81 50 8 22 12

CoT 23 86 32 17 14 19

Bracket
V 90 94 33 28 69 32
E 94 92 39 29 78 34

CoT 74 94 36 26 62 37

Column-JSON
V 91 82 88 63 63 77
E 91 84 85 56 76 73

CoT 90 84 60 55 67 75

Row-JSON
V 94 93 57 54 41 48
E 94 94 33 58 72 65

CoT 95 96 62 62 49 60

Table 10: For text-based table representations, manual
annotation scores (whether the generation contains all
the information from the table without any additional
or mis-information) on E2E for all LLMs. “GMNpro”
represents Geminipro model, “V”, “E”, and “CoT” rep-
resent vanilla, expert and chain-of-thought prompting,
respectively.

G Additional Experiments on GPT-4o,
Llama-3 and Gemma models

Table 21 provides additional results for vanilla
prompting for GPT-4o, Llama-3 and Gemma. We
have observed that the GPT-4o performs similarly
if we pass the table either through image or text.
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 Amount ( in millions)

2011 Net Revenue $ 2045

Nuclear Realized 
Price Change

-194 (194)

2012 Net Revenue 1854

Rank Nation Gold …

1 Brazil 7 …

Place Player Country …

1 Ben Curties 7 …

Rank Rowers …

4 vitasek , dolecek , hanak , irka …

 Amount ( in millions) …

2016 $ 705.4 …

Dataset Question / Statement Table Gold Correct 
(out of 108)

WikiTQ

Who won the most gold medals? Brazil 107

What is the number of 1st place finishes 
across all events? 17 8

TabFact

Ben Curtis , J B Holmes , Steve Flesch, and 
David Tom be from the united state. True 76

March be feature more often as a month in 
the date than any other month. True 13

Date Result …

3 March 2009 7 …

LogicNLG

In each of the event there were 4 [ENT] on a 
team. rowers 102

[ENT] won more medal than anyone else. Marit BjØrgen 
( Nor ) 29

FinQA

What was the average net revenue between 
2016 and 2017 in millions? 705.25 102

What are the nuclear realized price changes 
as a percentage of the decrease in net 
revenue from 2011 to 2012

101.571% 21

Rank Nation Total …

1 Marit BjØrgen ( Nor ) 5 …

Date Plaing Event …

… 1 Sprint …

Figure 12: Examples from WikiTQ, TabFact, LogicNLG, FinQA with the number of correctly answered cases. For
each example, we have 108 cases corresponding to the three prompting methods, five text-based table representations,
and six LLMs, together with three prompting methods, three image-based table representations, and two LLMs. We
omit some table content to assist readers.

GPT GMNpro
Llama-2

3.5 4 7B 13B 70B

Vanilla-T
V 43.3 43.9 42.4 21.6 22.9 27.2
E 41.4 42.8 42.4 20.7 22.2 26.3

CoT 42.7 43.5 44.5 19.8 22.8 27.4

Bracket
V 44.2 44.9 44.8 23.6 24.8 28.9
E 41.7 43.0 44.1 22.3 23.1 29.1

CoT 43.9 45.5 43.9 23.3 24.0 29.6

Column-JSON
V 45.5 45.5 44.5 22.1 22.7 30.1
E 41.1 43.1 44.8 19.9 20.8 10.3

CoT 43.9 44.2 45.1 22.1 21.5 28.8

Row-JSON
V 43.1 45.1 43.7 22.3 21.9 29.4
E 40.8 43.1 43.4 21.5 21.4 27.0

CoT 42.3 45.2 45.1 22.9 22.5 26.9

Row-Identifier
V 42.2 44.6 43.2 19.1 22.2 28.3
E 40.1 42.7 42.5 21.3 21.3 26.5

CoT 42.0 43.7 44.2 19.1 22.3 28.0

Table 11: For text-based table representations, ROUGE-
L scores on ToTTo for all LLMs. “GMNpro” represents
Geminipro model, “V”, “E”, and “CoT” represent vanilla,
expert and chain-of-thought prompting, respectively.

GPT-4 Geminipro
V E CoT V E CoT

VV 44.0 42.3 43.4 46.0 45.0 45.5
CC 44.8 41.7 44.1 47.7 44.8 45.1
RC 44.5 42.8 43.7 46.3 44.6 45.0

Table 12: For image-based table representations,
ROUGE-L scores on E2E for GPT-4 and Geminipro.
For the headers, “V”, “E”, and ”CoT” represent vanilla,
expert, and chain-of-thought prompting, respectively.
For the row names, “VV”, “CC’, and “RC” represent
Vanilla-V, Column-Color, and Row-Color, respectively.

GPT-4 Geminipro
V E CoT V E CoT

VV 44.0 42.3 43.4 46.0 45.0 45.5
CC 44.8 41.7 44.1 47.7 44.8 45.1
RC 44.5 42.8 43.7 46.3 44.6 45.0

Table 13: For image-based table representations,
ROUGE-L scores on ToTTo for GPT-4 and Geminipro.
For the headers, “V”, “E”, and ”CoT” represent vanilla,
expert, and chain-of-thought prompting, respectively.
For the row names, “VV”, “CC’, and “RC” represent
Vanilla-V, Column-Color, and Row-Color, respectively.
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Name EatType Customer 
Rating

Near

Blue Spice Coffee Shop Average Burger 
King

Name EatType Customer 
Rating

Near

Blue Spice Pub 5 out of 5 Crowne Plaza 
Hotel

Dataset Question / Statement Table Gold Correct

E2E

Write a sentence to describe the 
table.

Near Burger King is the Blue Spice 
coffee shop.  It has average customer 
ratings. 78

Write a sentence to describe the 
table.

The pub Blue Spice is based near 
Crowne Plaza Hotel and has a high 
customer rating of 5 out of 5. 60

Figure 13: Examples from the E2E dataset with the number of generations that capture all the table information
without any false information (manually annotated by the authors). For each example, we have 102 cases as we
exclude the Row-Identifier because there is one row for each table.

Award Steamer Award Dates Notes

- Air Force Outstanding 
Unit Award …  

Year Title Role

2015 Plastic Memories Isla

2015 Monster Musume Miia

…

Dataset Question / Statement Table Gold Avg 
ROUGE-L

ToTTo

Write a sentence with respect to the 
corresponding cells in the table. 
Title: Baudette Air Force Station; 
Awards

Baudette Air Force Station was 
awarded the Air Force Outstanding 
Unit Award for the period, 1 June 
1971 through 31 May 1973.

58.4

Write a sentence with respect to the 
corresponding cells in the table. 
Title: Sora Amamiya

In 2015, Sora Amamiya was cast as 
Isla in Plastic Memories and as Miia 
in Monster Musume.

40.9

Figure 14: Examples from the ToTTo dataset with the average ROUGE L scores for the generation. For each
example, we have 108 cases similar to Figure 12. Since ToTTo requires to generate information about relevant cells
in the table, we provide the relevant cells’ information through text across all the experiments on ToTTo.

GPT-4 Geminipro
V E CoT V E CoT

VV 86 83 90 77 74 78
CC 86 69 93 70 61 72
RC 85 70 89 61 57 60

Table 14: For image-based table representations, manual
annotation scores (whether the generation contains all
the information from the table without any additional
or mis-information) on E2E for GPT-4 and Geminipro.
For the headers, “V”, “E”, and ”CoT” represent vanilla,
expert, and chain-of-thought prompting, respectively.
For the row names, “VV”, “CC’, and “RC” represent
Vanilla-V, Column-Color, and Row-Color, respectively.

GPT-4 Geminipro Metric

WikiTQ 80.0 58.0

AccTabFact 64.0 61.3
LogicNLG 48.0 33.3

FinQA 61.0 45.0

ToTTo 42.4 44.2 ROUGE-LE2E 42.6 41.1

Table 15: Results on experiments providing both vanilla
image and text representations of tables for GPT-4 and
Geminipro.
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Year Ended December 31 (in millions except rates) 2018 2017 2016

Less: Average CIB Markets Interest-Earning Assets (c) 609,635 540,835 520,307
Average Interest-Earning Assets Excluding CIB Markets $1,619,553 $1,639,757 $1,581,297

Net Interest Yield on Average Interest-Earning ... 2.50% (2.50%) 2.36% (2.36%) 2.25% (2.25%)
Net Interest Yield on Average CIB Markets ... 0.51 0.86 1.22

Net Interest Yield on Average Interest-Earning ... 3.25% (3.25%) 2.85% (2.85%) 2.59% (2.59%)
... ...

Table 16: On FinQA, GPT-4 manages to reconstruct this 4-row×10-column table with over 100 words from its
screenshot (we omit some rows to save space).

Year Ended December 31 (in millions) 2010 2009 2008

U.S. $16,568 $6,263 $-2,094 (2094)
Non-U.S. (a) 8,291 9,804 4,867

Income Before Income Tax Expense/(Benefit) and Extraordinary Gain $24,859 $16,067 $2,773

Table 17: The table from FinQA where GPT-4 fails to reconstruct.

Year Ended December 31 (in millions) U.S. Non-U.S. (a) 2010 2009 2008

Income before income tax expense/(benefit)... $16,568 $6,263 $-2,094 (2094) $8,291 $9,804
$24,859 $16,067 $2,773

Table 18: The reconstructed table from GPT4 (the correct table is in Table 17 We omit the content in one cell to
save space. We notice that GPT4 messes up with the spatial relations in the table.
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Datasets T+V T V Metric

WikiTQ 80.0 75.0 60.0

AccTabFact 64.0 71.6 60.5
LogicNLG 48.0 51.5 54.1

FinQA 61.0 43.0 57.0

ToTTo 42.4 43.9 44.0 ROUGE-LE2E 42.6 44.8 39.4

Table 19: GPT-4’s performance when we pass the text
representation (T), image representation (V) and both
representation (T+V) to the model.
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Table Repr Prompting ∆ Table Repr Prompting Metric

FinQA Vanilla-T CoT 47.0 57.0 +10.0 Vanilla-V Vanilla

AccLogicNLG Vanilla-T CoT 43.4 58.5 +15.1 Row-Color CoT
TabFact Column-JSON Expert 51.8 74.7 +22.9 Row-JSON Expert
WikiTQ Row-JSON CoT 69.0 86.0 +17.0 Row-Identifier CoT

E2E Column-JSON Vanilla 37.1 46.0 +8.9 Column-JSON CoT ROUGE-LToTTo Column-JSON Vanilla 30.1 47.7 +17.6 Column-Color Vanilla

Table 20: Performance scores of the best performed open-source ( ) LLM we test, Llama-2-70B versus closed-
source ( ) LLM we test, GPT-4 on different datasets. Four datasets uses accuracy as metrics and two datasets (E2E
and ToTTo) uses ROUGE-L as metrics. The closed-source LLMs always outperform the open-source LLMs and
we report the performance difference ∆ between them. We include the table representation (“Table Repr”) and
prompting methods that yield the best performance next to the columns that report open-source and closed-source
LLM scores, respectively. For consistency across different datasets, we do not include the performances with
highlighting cells in this comparison.

GPT-4o Llama-3 Gemma Metric
Vanilla-T Vanilla-V 8B 70B 2B 7B

WikiTQ 88.0 82.0 43.0 69.0 20.0 34.0

AccTabFact 69.7 70.4 48.5 71.9 30.2 41.1
LogicNLG 54.2 54.6 25.8 31.1 15.1 20.1
FinQA 71.0 68.0 44.0 53.0 2.0 6.0

ToTTo 44.0 44.8 8.8 45.6 13.5 27.2 ROUGE-LE2E 44.2 43.7 6.6 18.1 17.7 18.6

Table 21: Results for vanilla prompting GPT4-o, Llama-3, and Gemma
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