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Abstract

Finding interpretable factors for stock returns
is the most vital issue in the empirical asset
pricing domain. As data-driven methods, ex-
isting factor mining models can be categorized
into symbol-based and neural-based models.
Symbol-based models are interpretable but in-
efficient, while neural-based approaches are
efficient but lack interpretability. Hence, min-
ing interpretable factors effectively presents
a significant challenge. Inspired by the suc-
cess of Large Language Models (LLMs) in
various tasks, we propose a FActor Mining
Agent (FAMA) model that enables LLMs to
integrate the strengths of both neural and sym-
bolic models for factor mining. In this pa-
per, FAMA consists of two main components:
Cross-Sample Selection (CSS) and Chain-of-
Experience (CoE). CSS addresses the homo-
geneity challenges in LLMs during factor min-
ing by assimilating diverse factors as in-context
samples, whereas CoE enables LLMs to lever-
age past successful mining experiences, expe-
diting the mining of effective factors. Exper-
imental evaluations on real-world stock mar-
ket data demonstrate the effectiveness of our
approach by surpassing the SOTA RankIC by
0.006 and RankICIR by 0.105 in predicting
S&P 500 returns. Furthermore, the investment
simulation shows that our model can achieve
superior performance with an annualized return
of 38.4% and a Sharpe ratio of 667.2%.

1 Introduction

The task of predicting market trends in finance
presents a formidable challenge, given the in-
tricate interplay of various factors (Hou et al.,
2011), such as the dynamics of demand and sup-
ply (Hendricks and Singhal, 2009), market senti-
ment (Verma and Soydemir, 2009) and government
regulations (Ali Imran et al., 2020). In the field of
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Figure 1: An illustration of three distinct factor mining
approaches: (a) symbolic factor model, (b) neural factor
model, and (c) our proposed neural-symbolic model.

quantitative trading, the conventional approaches
often extract factors as indicative signals for mar-
ket trends from raw historical stock data first, then
serve them as input features for machine learning
models (Sharpe, 1964; Ross, 2013; Duan et al.,
2022). A pivotal step in this process entails discern-
ing and extracting effective factors that demonstrate
robust predictive capabilities for market trends (Ng
et al., 1992). As an illustrative example, the Cap-
ital Asset Pricing Model (CAPM) (Sharpe, 1964)
employed the market’s excess return as a predictive
factor for the return of a financial asset, thereby
contributing a seminal factor to finance.

Hence discovering factors with high returns
has been a trendy topic among investors and re-
searchers. The prevailing methods for mining fac-
tors can be in general divided into two groups,
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namely symbolic factor and neural factor models.
As illustrated in Figure 1(a), in symbolic factor
models, factors are represented as symbolic ex-
pressions, then symbolic regression (Makke and
Chawla, 2024) serves as a common technique for
factor mining (Jin et al., 2019; Zhang et al., 2020;
Chen et al., 2021; Cui et al., 2021). For instance,
considering two factors, Factor1 = “close/open”
and Factor2 = “log(close)”, the factor values are
calculated by the opening and closing price, then
the two factors are inputted into a symbolic regres-
sion model to generate a novel factor, NewFactor
= “log(close/open)”. The interpretability of the
symbolic factor model arises from the explicit rep-
resentation of the calculation process for the factors.
However, due to the vast search space of symbolic
factors, mining with symbolic factor models of-
ten proves inefficient. Conversely, neural factor
approaches, gaining recent popularity, transform
factors into numerical features to optimize factor
extraction. As depicted in Figure 1(b), neural factor
models predict market trends by extracting numer-
ical factor features from stock data through fea-
ture extractors (Kelly et al., 2019; Gu et al., 2021;
Duan et al., 2022). Compared with symbolic factor
models, neural factor models exhibit proficiency
in extracting effective numerical factors. However,
the financial interpretability in neural factor mod-
els struggles with implicit features. The question
we are facing is: Can an effective approach be de-
vised for mining financially interpretable factors
conducive to predicting market trends?

Recent advancements in LLMs have demon-
strated success across financial tasks, including
sentiment analysis (Guo et al., 2023) and financial
text generation (Yang et al., 2023b). Thanks to its
powerful In-Context Learning (ICL) ability (Brown
et al., 2020), we conceptualize LLMs as a neuro-
symbolic model illustrated in Figure 1(c) that
bridges two distinct representations, i.e., numerical
and symbolic factors, aiming to achieve efficient
mining of interpretable ones. It is facile to consider
utilizing the factors disclosed (Kakushadze, 2016)
as contextual examples to generate new factors
through ICL. Since the disclosed factors are often
limited in number, high correlation, and low com-
plexity, direct mining factors using ICL encounter
challenges. These issues can be summarized in two
aspects: (1) The heightened homogeneity observed
among factors, characterized by the uniform struc-
ture, culminates in the generation of the singular

factor form through ICL. (2) The presence of a
noteworthy proportion of ineffective factors acts
as an impediment, hindering ICL from effectively
exploring novel patterns. Therefore, the efficacy of
mining effective factors using LLMs is contingent
upon selecting diversity-guiding factors as contex-
tual samples to mitigate homogeneity. Additionally,
encouraging ICL to explore new patterns is key to
increasing the proportion of effective factors.

In this paper, we present the FActor Min-
ing Agent (FAMA), consisting of two main
parts: Cross-Sample Selection (CSS) and Chain-
of-Experience (CoE) methods. CSS is designed
to ensure the diversification of factor mining by
amalgamating low correlation classes of factors
as contextual samples, which empowers LLMs to
incorporate diversity-guiding factors and mitigate
the homogeneity of mined factors. CoE efficiently
encourages ICL to explore new paradigms by in-
corporating the paths of mining effective factors
as experiential prompts, which contributes to the
further optimization of factor mining in LLMs. Our
experimental results show better performance of
our model in predicting stock market returns com-
pared to previous approaches. Moreover, our model
also demonstrates a superior annualized return and
Sharpe ratio in the investment simulations.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first
ones to use LLMs as a bridge between sym-
bolic and neural representations in the task of
factor mining.

• We propose a factor mining agent (FAMA)
to facilitate LLMs as factor miners, in which
its components CSS and CoE are designed to
tackle homogeneity issues and encourage ICL
in exploring new directions, respectively.

• We expand the capabilities of LLMs to per-
form factor mining tasks and present a series
of experiments to demonstrate the effective-
ness of our proposed model.

2 Problem Formulation

2.1 Financial Factor

Consider a stock dataset for N stocks over T trad-
ing days. The features of all stocks are denoted
as X = [x1, x2, ..., xN ]. Consider the M features,
such as open and close prices, pertaining to each
stock j, denoted as xj ∈ RM×T . We define the
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factor space as F , where each factor f ∈ F is
defined as f : RM×T → RT . The value of fac-
tor f on stock j is defined as f(xj) ∈ RT . To
conveniently represent the symbolic form of fac-
tors, we employ the symbol function s(f) to de-
note the symbolic text of factor fi. For example,
s(f101) = “((close− open)/(high− low))”.

2.2 Factor Distance and Correlation

In practice, factor categorization has traditionally
depended on artificial classification rooted in fi-
nancial principles, such as momentum (Carhart,
1997) and trend (Han et al., 2016) factors. De-
spite the demonstrated high accuracy associated
with this approach, it involves a labor-intensive
process. To enhance the efficiency of factor classi-
fication, we advocate for a quantitative exploration
of correlations among factors. We consider the
factor space F is equipped with a distance map-
ping d : F × F → R, thereby establishing it as a
complete distance space (F , d), then correlations
between factors can be defined within this space
(F , d) as r : F × F → [−1, 1]. This approach en-
ables a more efficient analysis of factor correlations
without a labor-intensive process.

2.3 Factor Mining

The goal of factor mining is to produce a new set
of factors F ⊂ F that will lead to better predic-
tive performance of stocks in their portfolios. To
evaluate the predictive performance of factors, we
employ the Rank Information Coefficient (RankIC).
RankIC measures the correlation between a factor’s
ranking in equity exposure and its subsequent re-
turn ranking. The RankIC on period t and average
RankIC γ is defined as follows:

RankICt(f, rj) = Corr(orderft−1, order
rj
t ),

γ(f) =
1

N

1

T

N∑

j=1

T∑

t=1

RankICt(f, rj),

(1)
where orderft−1 signifies the factor value ranking
at time t − 1, and order

rj
t represents the return

ranking of stock j at time t, with Corr(x, y) de-
noting the correlation coefficient between vectors
x and y. Given a factor set F = {f1, ..., fp}, its
effectiveness is assessed by computing the average
RankIC of the factors within the set, as described
below:

γ(F ) = Ei[γ(fi)], fi ∈ F. (2)

The objective of factor mining is to commence
with an initial set of factors, denoted as F0, and
iteratively mine new factors to enhance the overall
predictive performance. This process involves a
total of m mining iterations. The set of factors ob-
tained after the i-th mining iteration is represented
as Fi. Therefore, we aim for the sequence of aver-
age predictive performance metrics to satisfy the
following relation:

γ(F0) ≤ γ(F1) ≤ · · · ≤ γ(Fm) (3)

3 Factor Mining Agent

As illustrated in Figure 2, our proposed FActor
Mining Agent (FAMA) consists of two main parts:
(1) Cross-Sample Selection (CSS) and (2) Chain-
of-Experience (CoE). FAMA improves the mining
factor effectiveness through iterative mining. In
each iteration, FAMA generates diversity guiding
factors via CSS and empirical paths through CoE
as prompts fed into LLMs for mining factors.

3.1 Definitions

To measure the distance and correlation between
factors quantitatively mentioned in Section 2.2, we
start with calculating the weighted average price of
the stock pool. It is defined as:

p = wX, (4)

where w ∈ Rn denotes the total market value
weight corresponding to the company’s stock. Sub-
sequently, we calculate the factor exposure vi of
factor fi at the weighted average price p and em-
ploy z-score normalization as:

vi =
fi(p)−mean(fi(p))

std(fi(p))
. (5)

Consequently, we define the distance between two
factors as:

d(fi, fj) = ∥vi − vj∥2. (6)

Then, the correlation coefficient between the fac-
tors is defined as:

r(fi, fj) = Corr(vi,vj)

=

∑T
t=1(vit − vi)(vjt − vj)∑T

t=1(vit − vi)2(vjt − vj)2
.

(7)
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Figure 2: An overview of the FAMA model. FAMA(CI-n) denotes the nth iteration of the FAMA model. Initially,
(a) the input factors, stock data, and experience chain data are fed into the FAMA model. Subsequently, (b) the
CoE module utilizes the outcomes of FAMA(CI-(k − 1)) to produce a novel CoEk, and incorporates the diverse
guidance factors generated by the (c) CSS module to formulate a prompt. Lastly, the prompt is fed into the LLMs to
mine a new factor of FAMA(CI-k) as illustrated in (d), which is then stored in the factor database.

3.2 Cross-Sample Selection

The CSS selects low-correlation guiding factors
as contexts thereby avoiding homogeneity of the
generated factors. It categorizes the factors into
different classes, sampling from the classes to get
a context sample of diversity factors. Here, we pro-
pose a clustering algorithm based on KMeans (Kr-
ishna and Murty, 1999) for factor clustering. The
factor value vi of factor fi obtained from Equa-
tion 5 is used for clustering. Initially, we ran-
domly select k factor values as clustering centers
{µ1,µ2, · · · ,µk}. For each factor value vi, its
class is calculated as c(fi) = argminj ∥vi−µj∥2.
Subsequently, we update the clustering center using
the formula:

µj =
1∑

c(fi)=j

1

∑

c(fi)=j

vi. (8)

We define the loss of the factor cluster model as:

J =

k∑

i=1

∑

c(fj)=i

∥vj − µi∥2. (9)

The optimal classification is defined as:

c∗ = argmin
c

J. (10)

We denote the set of factors Ci belonging to the
same class i as:

Ci = {fj | c∗(fj) = i}. (11)

Subsequently, we randomly draw a sample f i from
each category Ci to get a factor combination:

FC = [f1, f2, · · · , fk], f i ∈ Ci. (12)

Finally, l(l ≤ k) factors in the factor combination
FC are selected as context samples:

S = [s(f i1), s(f i2), · · · , s(f il)], f ij ∈ FC.
(13)

3.3 Chain-of-Experience

This part aims to involve past successful mining
experiences in ICL to facilitate factor mining ef-
fectiveness. The generation of experience chains
is divided into two phases: the initial generation
phase and the enhanced generation phase. In the
initial phase, we employ the initial set of factors for
generation. Following the acquisition of the previ-
ous factor clustering results Ci through Equation 11
and with the size of Ci denoted as pi, the initial
experience chain for category Ci is generated. This
generation process relies on the ranking result of γ
as defined in Equation 1, which can be described
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as follows:

CoE0
i = s(f

(i)
1 ) → s(f

(i)
2 ) → · · · → s(f (i)

pi ),

γ(f
(i)
1 ) ≤ γ(f

(i)
2 ) ≤ · · · ≤ γ(f (i)

pi ).
(14)

In the enhanced phase, the experience chain
utilized in the previous step is denoted as
CoE

(k−1)
i . We choose ICL-generated factor f∗(i)

with CoE
(k−1)
i having a higher γ than all chain fac-

tors. Then, we compute the correlation r defined
in Equation 7 for the new factor f∗(i) and factors
on CoE

(k−1)
i to get the highest correlation factor

f
(i)
h . If the matched factor f (i)

h is at the end of the
chain Ci, the new factor is treated as an extension
of the experience. Otherwise, the new factor f∗(i)

represents a new experience, and it is introduced
into the chain subsequent to a split triggered by the
matching factor f (i)

h . This process can be defined
uniformly as:

CoEk
i = s(f

(i)
1 ) → · · · → s(f

(i)
h ) → s(f∗(i)),

r(f
(i)
h , f∗(i)) ≥ r(f

(i)
j , f∗(i)),∀0 ≤ j ≤ pi.

(15)

Our proposed Factor Mining Agent (FAMA)
synergistically integrates the Cross-Sample Selec-
tion (CSS), as outlined in Section 3.2, and the
Chain-of-Experience (CoE), explicated in Section
3.3, thereby automating the generation of diversity-
guiding factor samples and experience chains for
iterative factor mining. Within each iteration, an
initial step involves clustering the factors within
the collection into distinct categories, serving as
preparation for subsequent CSS and CoE processes.
We then proceed by leveraging the samples gen-
erated through CSS as in-context examples. Sub-
sequently, we select the most pertinent experience
chain. Finally, we amalgamate these components
into a prompt, which is subsequently inputted into
the LLM to generate new factors. If the resultant
factor demonstrates improved performance metrics,
it will be incorporated into the experience chain.
This inclusive step fosters the development of a new
experience chain for subsequent iterations, thus nur-
turing the iterative refinement process. The specific
operational framework of FAMA is delineated in
Algorithm 1. Detailed elucidations of the functions
integral to the algorithmic execution are provided
in Appendix A.

Algorithm 1: Factor Mining Agent
Data: Initial factor set F0 = {f1, · · · , fn}, number

of mining m, minimum factor number u.
Result: Final factor set Fm, experience chain set

CoEm.
1 Generate initial experience chain set

CoE0 = {e1, · · · , ek}; // 14
2 for i← 1 to m do
3 Initialize new factor set Fi and chain set CoEi;
4 C ← Cluster(Fi−1);// 11
5 S← SelectSamples(C); // 13
6 foreach s ∈ S do
7 e←MatchCoE(s, CoE(i−1));
8 prompt← s+ e;
9 f ′← LLM(prompt);

10 if γ(f ′) > max(γ(f)), ∀f ∈ e then
11 e′←GenChain(e,f ′); // 15

12 CoEi ← CoEi ∪ {e′};
13 Fi ← Fi ∪ {f ′};
14 if (γ(Fi) > γ(Fi−1)) & (|Fi| ≥ u) then
15 break;

16 return Fm, CoEm;

4 Experiments

Our experimental investigation revolves around ad-
dressing three key questions:

• Q1: How does our proposed model compare
to prior factor mining models?

• Q2: Which factors within the experience
chain contribute to the enhancement of the
RankIC&RankICIR?

• Q3: How does our model perform under a
more realistic investment situation?

4.1 Experiment Settings

We begin by employing 38 factors from Al-
pha101 (Kakushadze, 2016) as our initial factor
set F0. To establish the number of clusters m, we
utilize manual application of financial knowledge
to classify the initial factors into distinct categories.
Through this process, we ascertain that the initial
factors achieve reasonable categorization when the
number of categories is set to 7; hence, m is se-
lected as 7. The number of randomly sampled
factors l is designated as 2, and the minimum fac-
tor number u is defined as 15. We selected text-
davinci-0021 as the LLM for factor mining, con-
figuring the following parameters: temperature=0
and max_tokens=1500. We retained the default

1https://platform.openai.com/docs/model-index-for-
researchers
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Category Model Interpretability Training data usage RankIC RankICIR

Symbolic
Alpha101 ! - 0.018(0.000) 0.200(0.000)

GP ! 100% 0.017(0.005) 0.141(0.034)
LLM ! - 0.015(0.008) 0.139(0.011)

Neural
DTransformer # 100% 0.025(0.005) 0.124(0.015)

ALSTM # 100% 0.028(0.006) 0.167(0.021)
FactorVAE # 100% 0.048(0.008) 0.379(0.042)

Neural
Symbolic

FAMA(C) ! 10% 0.023(0.006) 0.204(0.019)
FAMA(I-1) ! 10% 0.016(0.006) 0.149(0.017)

FAMA(CI-3) ! 10% 0.030(0.008) 0.372(0.031)
FAMA(CI-7) ! 10% 0.054(0.010) 0.485(0.051)

Table 1: The performance of the compared models in returns prediction on the test dataset. Higher values for RankIC
and RanksICIR indicate superior performance. Interpretability indicates that the mined factors are financially
interpretable. LLM is the result of directly mining factors using LLMs. The term FAMA(C) corresponds to the
CSS model. Additionally, FAMA(I-n) signifies the application of the CoE iteration n. The bold part highlights
the best-performing model in the evaluation. The mean and standard deviation of results from 10 experiments are
reported. The results of {LLM, FAMA(C), FAMA(I-1), FAMA(CI-3), FAMA(CI-7)} elucidate the ablation result of
CSS and CoE methods.

parameters specified in the OpenAI API documen-
tation2 for any additional settings. The full factors
and prompt examples are listed in Appendix B and
Appendix D.

4.2 Datasets
Given that these factors are specifically crafted
for the U.S. stock market, we opt for the corre-
sponding U.S. stock index, namely the S&P500 as
the stock set. Our dataset comprises all stocks
from the S&P500 index, with a focus on key
fields including closing price, opening price, low
price, high price and volume. The temporal
scope of the stock data spans from 2015/01/01
to 2022/01/01. The dataset is divided into a
training set (2015/01/01-2020/01/01), a valida-
tion set (2020/01/01-2021/01/01) and a test set
(2021/01/01-2022/01/01). In our model, we only
use stock data for the time period 2020/06/01-
2021/01/01 as the training and validation set, which
is 10% amount of the provided training set.

4.3 Baselines
We explored SOTA models in recent years for com-
parison, encompassing both symbolic factor mod-
els and neural factor models as follows:

• Alpha101 (Kakushadze, 2016) publicly dis-
closed by WorldQuant LLC 3, accompanied

2https://platform.openai.com/docs/api-
reference/completions/create

3https://www.worldquant.com/

by precise code-based definitions. It serves
as our initial set of factors from which our
factors are derived.

• GP (Chen et al., 2021) Genetic programming
algorithms create new factors through the mu-
tation of factor expression trees, a widely cited
model in factor mining.

• ALSTM (Qin et al., 2017) proposes a frame-
work based on attentional mechanisms and
long and short-term memory to predict stock
trends.

• DTransformer (Wang et al., 2022) forecasts
market indices by leveraging fundamental
rules characterizing stock market dynamics
through an encoder-decoder architecture and
a full attention mechanism.

• FactorVAE (Duan et al., 2022) generates a
prior risk factor return rate within the Varia-
tional Autoencoder (VAE) framework. It re-
fines the prior factor return rate to approxi-
mate the posterior factor return rate.

4.4 Cross-Sectional Returns Prediction

In this experiment, we employ both the neural and
symbolic factor models to forecast future stock re-
turns for answering Q1. The RankIC is calculated
between the forecasted and actual stock returns, as
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defined in Equation 2. For symbolic models, fac-
tors with RankIC greater than 0.01 in 2020/06/01-
2021/01/01 were selected to form a test factor set.
To better illustrate the relationship between pre-
diction effectiveness and risk, we introduce the
RankICIR, defined as the ratio of the mean value
of the RankIC to the standard deviation:

RankICIR = Ef [Ej [
γ(f)

σRankICt(f,rj)
]]. (16)

As evidenced in Table 1, FAMA demonstrates
superior performance compared to the most recent
benchmark, FactorVAE. FAMA exhibits improve-
ments of 0.006 on RankIC and 0.106 on RankICIR.

In addition, it can be observed from Table 1, that
both CSS and CoE exhibit improvement in factor
mining effects. Achieving satisfactory prediction
results using CSS or CoE individually faces chal-
lenges. When CSS and CoE are employed together,
the predictive performance of the model improves
with an increasing number of mining iterations.
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Figure 3: The results of parameter effects. Subfigure
(a) illustrates RankIC and RankICIR in relation to the
number of CoE iterations. Meanwhile, Subfigure (b)
portrays the plot of RankIC and RankICIR with respect
to the number of CSS samples.

To explore the impact of the number of CoE iter-
ations on the model, we set the CoE iterations from
1 to 7 and verify the effect of the corresponding iter-
ations. Results in Figure 3(a) show that the model’s
prediction effectiveness gradually improves with
an increase in CoE iterations. The improvement
effect of CoE largely depends on the generation
effect of the previous round of factors.

To explore the impact of sample number selec-
tion on the model, we changed the number of cross-
sample selections and conducted experiments. As

shown in Figure 3(b), until the number of samples
is 3, increasing the number of samples improves the
performance of the model. When the quantity of
samples surpasses a threshold of three, the efficacy
of the model shows a decrement. This observation
signifies that an excessive abundance of samples
fails to enhance the performance.

4.5 Randomized Modification of
Chain-of-Experience
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Figure 4: Impact of randomly deleting CoE nodes at
different locations on model prediction. Initial is the
performance of factors generated by retaining the com-
plete experience chain of factors. Head, Middle, Tail
are the performance of factors generated after randomly
deleting the factors located at the head, middle, and tail
of the experience chain.

In the pursuit of unraveling the fundamental com-
ponents of the CoE function, we conducted an ex-
periment that entailed the random deletion of nodes
within the CoE. The objective of this endeavor is to
address the inquiry encapsulated in Q2. Nodes are
categorized into head nodes, middle nodes, and tail
nodes. Given that intermediate nodes may con-
sist of multiple nodes, we randomly select one
among them as the middle node. In each round
of CoEs, we systematically delete the head node,
middle node, and tail node, utilizing the modified
CoEs for factor mining. The results, averaged over
multiple rounds, are depicted in Figure 4. We ob-
served that the removal of initial nodes enhances
the performance of factor mining. This observation
suggests that the inclusion of an excessive number
of low-performing nodes compromises the efficacy
of factor mining in the LLM. Thus, it becomes im-
perative to adjust the length of the chain over time
for optimal results.

4.6 Portfolio Investment Simulation
We intend to answer Q3 by designing an invest-
ment simulation of the stock market. For symbolic
models, we use the test factors in Section 4.4 and
allocate funds for each factor fi as follows:

wi =
RankICpast

i∑n
i=0RankICpast

i

, (17)
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where RankICpast
i represents the mean RankIC

value during 2020/06/01-2021/01/01. We choose
stocks with the top 20% factor value to buy and
sell them in next day.

We evaluate the portfolio investment perfor-
mance using standard metrics, including Annu-
alized Return (AR), Volatility (Vol), and Sharpe
Ratios (SR):

AR = (1 +R)252/N − 1, (18)

V ol = σp ∗
√
252, (19)

SR =
(Rp −Rf )

σp
∗
√
252, (20)

where R represents the cumulative return rate, N
is the total number of trading days, σp is the daily
standard deviation of the portfolio, Rp is the ex-
pected daily return rate of the portfolio, Rf is the
risk-free rate 4.

Models AR(↑) Vol(↓) SR(↑)
S&P500 26.3% 11.5% 209.3%

GP 11.2% 6.8% 159.2%
Alpha101 19.7% 4.5% 406.1%
ALSTM 25.4% 22.5% 89.3%

DTransformer 27.8% 24.7% 93.5%
FactorVAE 31.8% 22.8% 132.2%

FAMA 38.4% 4.9% 667.2%

Table 2: Portfolio investment performance of the com-
pared models on the test datasets. ↑ indicates a larger
value is better, ↓ indicates a smaller value is better. The
S&P500 represents a portfolio comprising all S&P500
stocks.

As depicted in Table 2, the symbol-based ap-
proach exhibits lower volatility but yields compar-
atively lower returns. Conversely, neuro-based ap-
proaches show higher returns, albeit accompanied
by elevated volatility. It is noteworthy that our ap-
proach adeptly strikes a balance between returns
and volatility, demonstrating a consistent perfor-
mance throughout the investment simulation with-
out experiencing significant fluctuations. This deli-
cate equilibrium is achieved while concurrently re-
alizing a commendable return, highlighting the ro-
bustness and stability inherent in our model. FAMA
surpasses current SOTA models, in the context of
portfolio investment simulation. Specifically, there
is a notable increase of 6.6% in AR and a substan-
tial improvement of 261.1% in the SR.

4For simplicity, we set the risk-free rate to zero.

5 Related Work

5.1 Financial Factor Mining
The initial phase of factor mining involves the man-
ual mining of factors. The Capital Asset Pricing
Model (CAPM) (Sharpe, 1964), posits that the
expected return of a financial asset primarily de-
pends on the market’s excess return. This con-
tributed a groundbreaking factor to the financial
field. To refine this conceptual framework, the
Fama-French 3-factor model (Fama and French,
1993) extends the CAPM by introducing size and
value risk factors alongside market risk factors.
However, manual factor mining is considered labor-
intensive. To address this limitation and efficiently
mine effective factors in the market, various sym-
bolic factor-based models have been proposed. Au-
toAlpha (Zhang et al., 2020) expedites the identi-
fication of promising factor search spaces through
the utilization of genetic algorithms. Furthermore,
AlphaEvolve (Cui et al., 2021) has developed a
factor mining framework grounded in AutoML, fa-
cilitating the evolution of initial factors into new
factors characterized by excess returns and cor-
relations. Factors derived through symbolic fac-
tor models exhibit clear factor calculation steps,
making them easily interpretable. However, con-
strained by the vast symbolic factor target space,
these models are generally challenging to optimize.
This has prompted increased interest in the easy-to-
optimize neural factor models. In a recent study,
AE (Gu et al., 2021) introduces a novel latent fac-
tor conditional asset pricing model employing an
autoencoder. Additionally, FactorVAE (Duan et al.,
2022) integrates a dynamic factor model with a
variational autoencoder to approximate the optimal
factor model. The neural factor model, a method
for extracting numerical characteristic factors from
stock data through feature extraction, is known for
its heightened optimization efficiency (Md et al.,
2023; Lai et al., 2023; Wei et al., 2023). Despite
this advantage, factors constrained by implicit fea-
tures present challenges in terms of artificial iden-
tification, resulting in a lack of interpretability in
neural factor models. In response to this, our pro-
posed model takes a strategic approach by combin-
ing symbolic factors and leveraging neural factors
for feature extraction, achieving both financial in-
terpretability and high efficiency in the realm of
factor mining. This neural-symbolic model aims
to strike a balance, achieving both financial inter-
pretability and high efficiency in the realm of factor
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mining.

5.2 Financial Large Language Model

LLMs find extensive application in the financial
sector, spanning portfolio management, financial
risk modeling, financial text mining, and financial
advisory (Li et al., 2023). They hold promise in ele-
vating the intelligence level of accounting practices
and driving advancements in financial management
intelligence (Minggao et al., 2023). Two prevalent
methodologies exist for integrating LLMs into fi-
nance. The first method involves enhancing the
financial text comprehension capabilities of LLMs
through fine-tuning with specialized financial cor-
pora (Yang et al., 2023a; Wu et al., 2023). The
second approach employs prompt engineering, en-
abling generic LLMs to directly undertake vari-
ous financial tasks such as predicting future stock
trends (Lopez-Lira and Tang, 2023) and offering
investment advice (Ko and Lee, 2024). The deploy-
ment of LLMs in the financial sector encounters
numerous complex challenges, including business
requirements, industry barriers, data privacy con-
cerns, accountability, ethical considerations, and
the knowledge gap between financial professionals
and AI specialists (Lee et al., 2024). Firstly, there
is a significant difficulty in collecting and process-
ing high-quality financial data in diverse formats.
Furthermore, LLMs are prone to generating infor-
mation that, while seemingly plausible, may lack
accuracy due to their inherent propensity for hal-
lucinations. In addition, financial texts typically
have stringent timeliness requirements, and the dif-
ficulty of updating LLMs complicates the handling
of such time-sensitive financial information.

6 Conclusion

In this paper, we consider Large Language Mod-
els (LLMs) as a neural symbolic model for finan-
cial factor mining. To facilitate LLMs to pursue
our task, we proposed a model called Factor Min-
ing Agent (FAMA), which comprises two integral
components: Cross-Sample Selection (CSS) and
Chain-of-Experience (CoE). CSS mitigates the ho-
mogeneity in the mined factors by amalgamating di-
verse guidance factors. CoE encourages In-Context
Learning (ICL) to explore novel factor paradigms
by leveraging the paths leading to the mining of
effective factors as experiential prompts. Both CSS
and CoE components are integrated into our factor
mining agent to effectively mine financially inter-

pretable factors. Experimental results demonstrate
the effectiveness of our proposed approach. Our
future work includes exploring more avenues to
enhance the optimization of factor mining and ad-
dressing the hallucination phenomenon of LLMs.

Limitations

When employing LLMs for factor mining, we ob-
served the hallucination phenomenon of LLMs
within the financial domain that introduces inter-
ference in the factor mining process. In future
endeavors, our emphasis will be directed towards
mitigating the hallucination effects of LLMs in the
context of factor mining.

Ethics Statement

We utilize the OpenAI API in strict adherence to
the OpenAI User Rules for the generation of finan-
cial factors, ensuring the absence of harmful and
unethical information. Our approach has under-
gone validation in historical market scenarios and
expressly does not offer any form of investment
advice.

Acknowledgements

This work was supported by the National Nat-
ural Science Foundation of China (Grant No.
72271233, U23A20388), Suzhou Key Laboratory
of Artificial Intelligence and Social Governance
Technologies (SZS2023007), Smart Social Gov-
ernance Technology and Innovative Application
Platform (YZCXPT2023101) and Key Research
and Development Program of Yunnan Province
(202303AP140008).

References
Zulfiqar Ali Imran, Abdullah Ejaz, Cristi Spulbar,

Ramona Birau, and Periyapatna Sathyanarayana
Rao Nethravathi. 2020. Measuring the impact of gov-
ernance quality on stock market performance in de-
veloped countries. Economic Research-Ekonomska
Istraživanja, 33(1):3406–3426.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark M Carhart. 1997. On persistence in mutual fund
performance. The Journal of finance, 52(1):57–82.

3899



Tianxiang Chen, Wei Chen, and Luyao Du. 2021. An
empirical study of financial factor mining based on
gene expression programming. In 2021 4th Interna-
tional Conference on Advanced Electronic Materials,
Computers and Software Engineering (AEMCSE),
pages 1113–1117. IEEE.

Can Cui, Wei Wang, Meihui Zhang, Gang Chen, Zhao-
jing Luo, and Beng Chin Ooi. 2021. Alphaevolve:
A learning framework to discover novel alphas in
quantitative investment. In Proceedings of the 2021
International Conference on Management of Data,
pages 2208–2216.

Yitong Duan, Lei Wang, Qizhong Zhang, and Jian Li.
2022. Factorvae: A probabilistic dynamic factor
model based on variational autoencoder for predict-
ing cross-sectional stock returns. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 4468–4476.

Eugene F Fama and Kenneth R French. 1993. Com-
mon risk factors in the returns on stocks and bonds.
Journal of financial economics, 33(1):3–56.

Shihao Gu, Bryan Kelly, and Dacheng Xiu. 2021. Au-
toencoder asset pricing models. Journal of Econo-
metrics, 222(1):429–450.

Yue Guo, Zian Xu, and Yi Yang. 2023. Is chatgpt a fi-
nancial expert? evaluating language models on finan-
cial natural language processing. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 815–821.

Yufeng Han, Guofu Zhou, and Yingzi Zhu. 2016. A
trend factor: Any economic gains from using infor-
mation over investment horizons? Journal of Finan-
cial Economics, 122(2):352–375.

Kevin B Hendricks and Vinod R Singhal. 2009.
Demand-supply mismatches and stock market reac-
tion: Evidence from excess inventory announcements.
Manufacturing & Service Operations Management,
11(3):509–524.

Kewei Hou, G Andrew Karolyi, and Bong-Chan Kho.
2011. What factors drive global stock returns? The
Review of Financial Studies, 24(8):2527–2574.

Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian
Guo. 2019. Bayesian symbolic regression. arXiv
preprint arXiv:1910.08892.

Zura Kakushadze. 2016. 101 formulaic alphas. Wilmott,
2016(84):72–81.

Bryan T Kelly, Seth Pruitt, and Yinan Su. 2019. Charac-
teristics are covariances: A unified model of risk and
return. Journal of Financial Economics, 134(3):501–
524.

Hyungjin Ko and Jaewook Lee. 2024. Can chatgpt
improve investment decisions? from a portfolio man-
agement perspective. Finance Research Letters, page
105433.

K Krishna and M Narasimha Murty. 1999. Genetic
k-means algorithm. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics),
29(3):433–439.

Tzu-Ya Lai, Wen Jung Cheng, and Jun-En Ding. 2023.
Sequential graph attention learning for predicting dy-
namic stock trends (student abstract). In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 37, pages 16244–16245.

Jean Lee, Nicholas Stevens, Soyeon Caren Han, and
Minseok Song. 2024. A survey of large lan-
guage models in finance (finllms). arXiv preprint
arXiv:2402.02315.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen.
2023. Large language models in finance: A survey.
In Proceedings of the Fourth ACM International Con-
ference on AI in Finance, pages 374–382.

Alejandro Lopez-Lira and Yuehua Tang. 2023. Can
chatgpt forecast stock price movements? return pre-
dictability and large language models. Return Pre-
dictability and Large Language Models (April 6,
2023).

Nour Makke and Sanjay Chawla. 2024. Interpretable
scientific discovery with symbolic regression: a re-
view. Artificial Intelligence Review, 57(1):2.

Abdul Quadir Md, Sanjit Kapoor, Chris Junni AV,
Arun Kumar Sivaraman, Kong Fah Tee, H Sabireen,
and N Janakiraman. 2023. Novel optimization
approach for stock price forecasting using multi-
layered sequential lstm. Applied Soft Computing,
134:109830.

Li Minggao, Yi Fengchao, Li Yagang, et al. 2023. Re-
search on the application of llm in power finance
middle platform. In 2023 2nd Asian Conference on
Frontiers of Power and Energy (ACFPE), pages 282–
289. IEEE.

Victor Ng, Robert F Engle, and Michael Rothschild.
1992. A multi-dynamic-factor model for stock re-
turns. Journal of Econometrics, 52(1-2):245–266.

Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng,
Guofei Jiang, and Garrison W Cottrell. 2017. A dual-
stage attention-based recurrent neural network for
time series prediction. In Proceedings of the 26th
International Joint Conference on Artificial Intelli-
gence, pages 2627–2633.

Stephen A Ross. 2013. The arbitrage theory of capital
asset pricing. In Handbook of the fundamentals of fi-
nancial decision making: Part I, pages 11–30. World
Scientific.

William F Sharpe. 1964. Capital asset prices: A theory
of market equilibrium under conditions of risk. The
journal of finance, 19(3):425–442.

3900



Rahul Verma and GökÇe Soydemir. 2009. The impact
of individual and institutional investor sentiment on
the market price of risk. The Quarterly Review of
Economics and Finance, 49(3):1129–1145.

Chaojie Wang, Yuanyuan Chen, Shuqi Zhang, and Qi-
uhui Zhang. 2022. Stock market index prediction
using deep transformer model. Expert Systems with
Applications, 208:118128.

Zikai Wei, Anyi Rao, Bo Dai, and Dahua Lin. 2023.
Hirevae: an online and adaptive factor model based
on hierarchical and regime-switch vae. In Proceed-
ings of the Thirty-Second International Joint Confer-
ence on Artificial Intelligence, pages 4903–4911.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan
Wang. 2023a. Fingpt: Open-source financial large
language models. FinLLM Symposium at IJCAI
2023.

Yi Yang, Yixuan Tang, and Kar Yan Tam. 2023b. In-
vestlm: A large language model for investment using
financial domain instruction tuning. arXiv preprint
arXiv:2309.13064.

Tianping Zhang, Yuanqi Li, Yifei Jin, and Jian Li. 2020.
Autoalpha: An efficient hierarchical evolutionary al-
gorithm for mining alpha factors in quantitative in-
vestment. arXiv preprint arXiv:2002.08245.

A Algorithm

Function Description
Cluster generate factor clustering sets

SelectSample select factors as in-context samples
MatchCoE match the relevant CoE
GenChain generate a new CoE

Table 3: Algorithm function description.

B Factor

We select the following factors (alphas) from Al-
pha101 (Kakushadze, 2016) as the initial factor set:
“002, 003, 004, 005, 006, 008, 011, 012, 013, 014,
015, 016, 017, 018, 019, 020, 022, 025, 026, 028,
029, 030, 031, 032, 033, 034, 035, 036, 037, 038,
039, 040, 041, 042, 043, 044, 045, 047, 050, 052,
053, 054, 055, 057, 060, 061, 062, 064, 065, 066,
068, 071, 072, 073, 074, 075, 077, 078, 081, 083,
084, 085, 086, 088, 092, 094, 095, 096, 098, 099,
101”.

C Additional Experiment

Model RankIC RankICIR
gpt-3.5-turbo 0.054 0.481

text-davinci-003 0.056 0.492

Table 4: The performance of FAMA using other LLMs
in returns prediction.
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D Prompt

“function_definition” is from “Functions and Operators” in Alpha101 (Kakushadze, 2016).
Instruction

You are an alpha generator. You should follow the following rules:
1. The inputs are the alpha factors that are currently performing well, and you are

required to output a new alpha factor that is generated from the fusion of
these factors, and your factor must be different from the input factor.

2. Do not repeat example answer.
3. You should return new different factors in a json array.
4. The specific function is defined as follows:
{function_definition}
5. Follow the path in "improve_path". -> Indicates that the following factors have

better performance than the previous factors. You should refer it to build new
alpha.

Input Example

alphas: ["(-1 * correlation(open, volume, 10))"]
generate_factor_num: 1
improve_path: "close/open" -> "rank(close)/rank(open)"

Output Example

["rank(correlation(open, volume, 10) / rank(open))"]
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