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Abstract

Large Language Models (LLMs) have demon-
strated exceptional coding capability. However,
as another critical component of programming
proficiency, the debugging capability of LLMs
remains relatively unexplored. Previous evalu-
ations of LLMs’ debugging ability are signifi-
cantly limited by the risk of data leakage, the
scale of the dataset, and the variety of tested
bugs. To overcome these deficiencies, we intro-
duce ‘DebugBench’, an LLM debugging bench-
mark consisting of 4,253 instances. It covers
four major bug categories and 18 minor types
in C++, Java, and Python. To construct De-
bugBench, we collect code snippets from the
LeetCode community, implant bugs into source
data with GPT-4, and assure rigorous quality
checks. We evaluate two commercial and four
open-source models in a zero-shot scenario.
We find that (1) while closed-source models
exhibit inferior debugging performance com-
pared to humans, open-source models relatively
lower pass rate scores; (2) the complexity of
debugging notably fluctuates depending on the
bug category; (3) incorporating runtime feed-
back has a clear impact on debugging perfor-
mance which is not always helpful. As an ex-
tension, we also compare LLM debugging and
code generation, revealing a strong correlation
between them for closed-source models. These
findings will benefit the development of LLMs
in debugging. Our code and dataset are open-
sourced via GitHub repository and Hugging
Face dataset.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional code generation abilities. LLM-based
coding methods (Zhou et al., 2023; Shinn et al.,
2023) have achieved human-level performance on
benchmarks like HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021). LLMs have also

∗indicates equal contribution.
†Corresponding Author

Figure 1: This figure illustrates the comparative debug-
ging performance of gpt-3.5-turbo-0613 (Ope-
nAI, 2022), gpt-4-0613 (OpenAI, 2023) and human
proficiency across various bug categories. Evaluations
are also performed on open-sourced models which are
not exhibited in this figure.

become the core engine of practical programming
assistance applications like GitHub Copilot (2023).
Similar to code generation, debugging1 is also a
crucial component in programming, consuming
35-50% of the development duration and 50-75%
of the total budget (McConnell, 2004). However,
unlike coding, the debugging abilities of LLMs
remain relatively unexplored.

One primary obstacle in code debugging re-
search is the lack of evaluation benchmarks. While
some basic evaluations (Prenner et al., 2022; Soba-
nia et al., 2023; Xia and Zhang, 2023b; Zhang et al.,
2023) verify the effectiveness of LLM-based de-
bugging methods, these evaluations have notable
limitations that prevent us from comprehensively
assessing the debugging capabilities of LLMs as
exhibited in Table 1. First, as Zhang et al. (2023) re-
vealed, existing debugging benchmarks (Just et al.,
2014; Lin et al., 2017) have been more or less

1We use the colloquial terms ‘bug’, ‘buggy’, and ‘debug’
to refer to programming errors that cause unintended runtime
behavior, to code containing these errors, and to the process
of locating and eliminating them, respectively.
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Work Test Scale Against Data Leakage Bug Type Diversity Model Diversity Scenario Diversity

Prenner et al. (2022) 40 ✗ ✗ ✗ ✗

Sobania et al. (2023) 40 ✗ ✗ ✗ ✗

Xia and Zhang (2023a) 60 ✗ ✗ ✓ ✓

Zhang et al. (2023) 151 ✓ ✗ ✓ ✓

DebugBench 4,253 ✓ ✓ ✓ ✓

Table 1: Limitations of prior studies in LLM debugging. We introduce DebugBench, a new LLM debugging
benchmark to overcome these deficiencies.

leaked to the pre-training data of popular LLMs
via web scraping and other means. For instance,
ChatGPT (OpenAI, 2023) can enumerate all the
projects in Defects4J (Just et al., 2014). While
it’s challenging to ascertain the exposure due to
a lack of training details, there’s a significant risk
of data leakage. Second, all existing debugging
evaluations have been limited to a very small scale,
ranging from 40 to 151 examples, which may hurt
the generalizability of the assessments. Third, ex-
isting works reported a general pass rate across
various bug categories instead of differentiating
various bug types. Analyzing the variations in
performance across different bug types can reveal
the bottlenecks and guide focused improvements
in LLM debugging.

To overcome these deficiencies, we create De-
bugBench, a dataset of 4,253 instances for LLM
debugging evaluation. We first collect code so-
lution snippets from LeetCode (2023), a popular
programming challenge platform. To reduce the
risk of data leakage, we ensure all of the instances
in DebugBench are released after July 2022, which
is beyond the pre-training data cutoff date of tested
models. For fine-grained evaluation of various bug
types, we develop a bug taxonomy based on Barr
(2004)’s classification criteria. The classification
encompasses four major bug categories: Syntax,
Reference, Logic, and Multiples, along with 18 mi-
nor types as illustrated in Figure 1. Subsequently,
we prompt GPT-4 (OpenAI, 2023) to implant bugs
into the code solutions in pursuit of sufficient data
scales for each bug type. We cover snippet-level
code in C++, Java, and Python. To ensure integrity,
we conduct automatic filtering and manual inspec-
tion.

As shown in Figure 1, we evaluate two closed-
source language models, gpt-4-0613 (OpenAI,
2022) and gpt-3.5-turbo-0613 (OpenAI,
2023), along with four open-source models:
CodeLlama-7b-Instruct (Rozière et al.,
2023), Llama-3-8B-Instruct (Meta, 2024),

DeepSeek-Coder-33B-Instruct (AI,
2023) and Mixtral-8x7B-Instruct (Jiang
et al., 2024) in zero-shot scenarios. Our empirical
study reveals: (1) LLM debugging falls short
of human performance. Open-source models
attain low pass rate scores for debugging queries.
Closed-source LLMs surpass open-source ones
but still fall short of human-level performance; (2)
The difficulty of fixing different types of errors
differs. Multiple errors and logical errors are
significantly more challenging to repair than syntax
and reference errors; (3) Runtime feedback has a
clear impact on LLM’s debugging performance
but is not always helpful. While runtime feedback
consistently boosts the debugging performance
of syntax and reference bugs, the feedback
information is unhelpful for logic errors.

To gain deeper insights into the overall pro-
gramming capabilities of LLMs, we also compare
closed-source models’ performance on debugging
and code generation. Experimental results indicate
that for closed-source models: (1) fixing syntax or
reference errors is generally easier than code gener-
ation, while repairing logical or multiple errors can
be equally hard or even harder; (2) the debugging
and code generation performance of LLMs are cor-
related, which indicates the abilities of LLMs to
approach these two tasks are positively related. All
these findings are crucial for comprehending the
debugging capabilities of LLMs and developing
more comprehensive code models.

2 Benchmark Construction

As illustrated in Figure 2, to construct DebugBench,
we first collect questions, code snippets, and exam-
ples from LeetCode (2023) community, then em-
ploy GPT-4 (OpenAI, 2023) for bug implantation.
To ensure the integrity of the benchmark, we con-
duct automatic filtering and final human inspection.
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Figure 2: This figure illustrates the construction of DebugBench. We first collect code snippets from LeetCode
(2023) community, then employ GPT-4 (OpenAI, 2023) for bug implantation and finally conduct human / LLM
evaluation on the benchmark. Automatic filtering and final human inspection are conducted to ensure integrity of
the benchmark. The figure also provides qualitative cases for code snippets, bug instances, and evaluation samples.
More examples are accessible in Appendix H.

2.1 Formulation of Debugging

Consider the input-output pairs (xi, yi) where each
xi is a program input and yi is the corresponding
desired output, together they compose a set R that
defines the programming problem.

Let aθ(x) = y denote a program a, based on a
code script θ, that maps an input x to an output y.
We identify a code script θ that exists bugs if there
exists a pair (xi, yi) ∈ R such that aθ(xi) ̸= yi.

Consequently, an ideal debugger D that rectifies
any buggy code from θ to θ∗ should satisfy that
D(θ) = θ∗ s.t. ∀(xi, yi) ∈ R, aθ∗(xi) = yi. De-
bugging can be regarded as the converting process
of debugger D.

2.2 Source Data Collection

We collect 3,206 samples from user-submitted solu-
tions to specific programming challenges on Leet-
Code (2023). Each sample contains the question,
solution code, examples, and release date. We uti-
lize GPT-2 (Radford et al., 2019) tokenizer to to-
kenize these instances and report an average to-
ken length of 468.1 tokens, a typical length scale
of code snippets. All of instances were released
after June 2022, with an average release date of
April 2023. This minimizes the risk of data leak-
age2 (Zhang et al., 2023).

2The cutoff date of pretraining data for gpt-3.5-
turbo-0613 and gpt-4-0613 is officially September
2021 (OpenAI, 2023).

Apart from reducing data leakage, our choice of
LeetCode is driven by two other reasons: (1) Leet-
Code offers sufficiently challenging code problems
even for state-of-the-art LLMs like GPT-4 (Shinn
et al., 2023); (2) LeetCode provides comprehen-
sive test suites that facilitate automated evaluation,
while other data sources like GitHub (2023) may
suffer from arduous human labor (Hu et al., 2023)
or incomplete test suites. A qualitative example of
scraped code snippets can be found in Figure 2.

We select the three most popular programming
languages (TIOBE Index, 2023), C++, Java, and
Python3, to reflect the LLM debug capability in
real-world scenarios. Our dataset comprises 1,438
instances in C++, 1,401 in Java, and 1,414 in
Python.

2.3 Bug Implantation

After collecting source data from LeetCode (2023),
we adopt GPT-4 (OpenAI, 2023) to implant bugs
into code snippets. For implanting single errors
(one bug in one code snippet), we prompt GPT-4
(OpenAI, 2023) with the correct code, desired bug
type and instruct the model to generate a buggy
version of the input code and a few sentences of ex-
planation on the inserted bug. To implant multiple
errors, we adopt rule-based merging based on sin-
gle errors, which is similar to the merge operation
in version control systems. The prompt we use for
bug implantation can be found in Appendix A.
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Type Minor Type Number

Syntax

misused ==/= 137
missing colons 129

unclosed parentheses 133
illegal separation 68
illegal indentation 45

unclosed string 125
illegal comment 124

Reference

faulty indexing 206
undefined objects 187

undefined methods 167
illegal keywords 124

Logic

condition error 260
operation error 180
variable error 100

other error 50

Multiple
double bugs 750
triple bugs 750

quadruple bugs 718

Table 2: Bug types and their distribution in Debug-
Bench.

We instruct GPT-4 to add diverse types of bugs
into code snippets. Based on the bug classification
criteria from Barr (2004), we categorize the bug
into 4 major categories and 18 minor types. Table
2 depicts the scope of bug types in DebugBench.
This diversity enables a thorough investigation of
LLMs’ ability to debug a wide array of program-
ming errors. The definition of each minor type can
be found in Appendix B.

We choose bug synthesis rather than bugs from
traditional Debugging datasets like Defects4J (Just
et al., 2014) and QuixBugs (Lin et al., 2017) in
pursuit of a vast degree of freedom in error diver-
sity design and lower risk of data leakage. The
feature schema of generated instances be found in
Appendix C.

2.4 Quality Control

To ensure the quality of DebugBench, we conduct
automatic filtering and manual inspection.

Automatic Filtering. First, we filter the source
data collected from LeetCode (2023). We design
the following automatic filtering criteria: (1) The
code solution must be correct, that is, to pass the
whole corresponding test suites. (2) The instances
must contain necessary information like program-
ming language, release time, and question id. (3)
The release date of code snippets must be no earlier
than July 2022, the official knowledge cutoff date
of two closed-source models (OpenAI, 2023) in
case of data leakage. 72.1% of the user-submitted

Criteria Pass Rate/%

Bug Validity 97.4
Sensitive Information Security 100.0

Scenario Alignment 93.2
All Three criteria 92.1

Table 3: Results of manual inspection of DebugBench.

code snippets pass this automatic filtering. Second,
we filter the data synthesized by GPT-4 (OpenAI,
2023) since the LLM occasionally fails to perform
bug implantation as expected. We again establish
automatic filter criteria: (1) The code with im-
planted bugs must fail certain test cases to confirm
its erroneous nature. (2) The buggy code should
not include in-line comments that could leak infor-
mation about the bug. (3) The explanation for the
bug must be thorough and relevant to the assigned
bug type. Following these criteria, 79.2% of the
3,000 bug-implanted instances pass the filtering
process.

Manual Inspection. After automatic generation
and filtering, we manually inspect the quality of
DebugBench. We apply three criteria for manual
inspection: (1) Bug Validity: The bugs must cause
the intended malfunction, fail specific test cases,
and align with the assigned bug type and descrip-
tion. (2) Sensitive Information Security: The
instances must be devoid of sensitive data, such
as personal information. (3) Scenario Alignment:
The bugs should resemble those found in actual
code debugging scenarios and should not include
obvious clues, like comments indicating the bug’s
location.

We hire three programmers with over four years
of experience in programming to conduct the man-
ual inspection on 180 cases over two hours each
after training on 30 cases. Their review reveals that
the DebugBench benchmark is of high quality as
exhibited in Table 3. Failing cases can be found in
Appendix E.

2.5 Analysis of Bug Realism

To ensure the diversity of bug types and mitigate
the risk of data leakage, we adopted a method of
collecting code snippets from programming com-
munities and subsequently injecting bugs into them
to construct our test data. However, this approach
has raised concerns regarding the realism of syn-
thetically generated bugs compared to those en-
countered in real-world scenarios. This discrep-

4176



Bugs from QuixBugs Bugs from DebugBench

Incorrect assignment operator misused ==/!=
Incorrect variable variable error
Incorrect comparison operator misused ==/!=
Missing condition condition error
Missing/added +1 operation error
Variable swap variable error
Incorrect array slice faulty indexing
Variable prepend variable error
Incorrect method called undefined methods
Incorrect field dereference undefined objects
Missing arithmetic expression operation error
Incorrect data structure constant None
Missing function call None
Missing line None

Table 4: The correspondence of bug type of
QuixBugs (Lin et al., 2017) in DebugBench. The bug
types in QuixBugs are largely encompassed by those in
DebugBench.

ancy may result in DebugBench evaluations not
adequately reflecting a model’s capability to fix
bugs in actual situations.

To address these concerns, we conducted a com-
parative analysis between the characteristics of
bugs in DebugBench and those from other real-
world bug datasets. Specifically, we examined
QuixBugs (Lin et al., 2017), which contains bugs
from the Quixey Challenge based on real-world
scenarios. Our findings are as follows: (1) Bug
Types: DebugBench, which significantly greater
diversity in bug types, includes the majority of bug
types present in QuixBugs as detailed in Table 4.
(2) Bug Recognition: We utilized GPT-4 (OpenAI,
2023) and Claude 3 Sonnet (Anthropic, 2024) to
identify bugs of the same type in both datasets and
observed the recognition success rate, as presented
in Table 5. We conducted a total of 420 compar-
isons for each judger. Details about this analysis
can be found in Appendix G.

Judger QuixBugs (%) DebugBench (%) Tie (%)

GPT-4 42.6 57.1 0.3
Claude 3 46.9 53.1 0.0

Table 5: Win Rate of comparison on bugs likely to occur
in real-world scenarios as judged by GPT-4 (OpenAI,
2023) and Claude 3 Sonnet (Anthropic, 2024) with in-
struction "Which bug is likely to occur in real-world
scenarios?".

Based on these observations, we assert that the
bugs in DebugBench, despite being synthetically
injected by large models, do not exhibit significant
differences from those found in real-world scenar-
ios. In this particular evaluation scenario, it even
surpasses QuixBugs in terms of the realism of bug

instances. Therefore, we believe that the aforemen-
tioned concerns are substantially mitigated.

3 Experiments

Evaluated Models. To obtain a comprehensive
understanding of LLMs’ debugging capabilities
and identify the potential gap between open-source
and closed-source models, we conduct experi-
ments on two popular commercial models: gpt-
3.5-turbo-0613 (OpenAI, 2022) and gpt-4-
0613 (OpenAI, 2023). For open-source models,
we select CodeLlama-7b-Instruct (Rozière
et al., 2023), Llama-3-8B-Instruct (Meta,
2024), DeepSeek-Coder-33B-Instrct (AI,
2023) and Mixtral-8x7B-Instruct (Jiang
et al., 2024) for assessment.

Metric. The metric for DebugBench is based
on the test suites3 provided by LeetCode (2023).
These suites include a mix of 1-3 known test cases
and 8-100 unknown test cases for each instance.

Specifically, we use Pass Rate to quantify
the debug ability of language models. For
a buggy snippet θi and its fixed version θ∗i ,
we have a corresponding set of test cases
(x0i , y

0
i ), (x

1
i , y

1
i ), ..., (x

m
i , ymi ). Whether the bug

instance is successfully repaired can be referred to
as

∧m
j=0[aθ∗i (x

j
i ) = yji ], an aggregate result of all

test cases. The Pass Rate, PR, that represents the
test result on n bug instances are defined as:

PR =

n∑

i=0

∧m
j=0[aθ∗i (x

j
i ) = yji ]

n
× 100%

Human Performance. The proficiency of human
debuggers is assessed by three programmers, each
with over four years of experience in programming.
Before the formal experiment, they underwent a
two-hour training session focused on understanding
the purpose of human evaluation and the criteria
for metrics. This was followed by a one-hour trial
session. Each participant independently debugged
72 bugs, dedicating approximately 20 hours per
person. During this process, access to Integrated
Development Environments (IDEs) was provided
to facilitate runtime analysis but any access to deep
learning tools like GitHub Copilot (2023) was pro-
hibited.

3Users of the benchmark will require a LeetCode account
to access these test suites.
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Major Category Minor Type CodeLlama Llama-3 DeepSeek Mixtral gpt-3.5 gpt-4 human

Syntax

misused ==/= 18.2 58.4 68.6 12.4 70.5 87.9 11/12
missing colons 23.3 44.2 62.8 25.6 80.9 93.6 12/12

unclosed parentheses 27.1 51.9 86.5 14.3 81.2 89.6 12/12
illegal separation 7.4 61.8 77.9 17.6 78.1 89.0 12/12
illegal indentation 4.4 42.2 77.8 28.9 79.6 87.8 12/12

unclosed string 28.8 48.0 94.4 9.6 82.0 91.4 12/12
illegal comment 31.5 41.1 45.2 12.9 67.4 78.0 11/12

Reference

faulty indexing 27.2 53.4 67.5 11.7 72.9 77.1 10/12
undefined objects 21.9 54.5 68.4 4.3 70.6 81.7 12/12

undefined methods 15.0 46.7 43.7 6.6 59.3 78.5 11/12
illegal keywords 58.1 13.5 57.3 18.5 76.1 83.6 11/12

Logic

condition error 13.5 46.5 47.7 22.3 58.5 73.1 10/12
operation error 8.3 28.3 27.8 3.3 49.5 68.6 10/12
variable error 10.0 29.0 38.0 10.0 52.3 63.1 9/12

other error 8.0 40.0 44.0 2.0 61.1 72.2 10/12

Multiple
double bugs 3.3 43.2 46.1 8.4 56.4 70.7 11/12
triple bugs 6.7 29.3 54.5 5.6 45.5 58.9 9/12

quadraple bugs 5.0 31.2 49.2 4.5 38.7 55.9 8/12

Table 6: Debugging performance of various models against human proficiency measured by Pass Rate. Model
names are abbreviated for clarity: CodeLlama represents CodeLlama-7b-Instruct; Llama-3 is short for
Llama-3-8B-Instruct; DeepSeek is short for DeepSeek-Coder-33B-Instruct; Mixtral repre-
sents Mixtral-8x7B-Instruct; gpt-3.5 denotes gpt-3.5-turbo-0613; and gpt-4 refers to gpt-
4-0613. The experimental results reveal that closed-source models are less effective compared to human perfor-
mance and open-source models attains even lower Pass Rate scores in debugging tasks.

3.1 Debugging Capabilities

We evaluate the debugging capabilities of LLMs by
assessing two closed-source and four open-source
LLMs across 18 types of programming errors in
three distinct scenarios.

3.1.1 Overall Results

Close-Source Models As shown in Figure 1 and
Table 6, we examined the performance of closed-
source models, gpt-4-0613 (OpenAI, 2023)
and gpt-3.5-0613 (OpenAI, 2022). They re-
spectively pass 75.0% and 62.1% of the bug in-
stances, achieving a level of debugging perfor-
mance below human. The superiority of human
debuggers can be attributed to robust test cases
and interaction with the program through break-
points and developmental environments. Despite
LLMs’ limited effectiveness, they exhibit signifi-
cant time efficiency. The models complete infer-
ence processes for one bug in less than 10 seconds,
a task that averagely takes humans around 20 min-
utes. This indicates that commercial models are
now capable of partially achieving the objectives
of Automated Debugging, bringing benefits in time
efficiency, cost reduction, and minimizing human
labor. The zero-shot prompts utilized in model
evaluation can be found in Appendix A.

Open-Source Models As illustrated in Table 6,
most open-source models attain relatively lower
Pass Rate score than commercial models. This
underscores a notable shortfall in the zero-shot
debugging abilities of open versus closed-source
LLMs. The ineffectiveness is likely due to a
limited presence of debugging data in their pre-
training datasets. These findings highlight the
need for an open-source model capable of sup-
porting debugging for research utility and prac-
tical applications. However, it is also worth noting
that some open-source models like DeepSeek-
Coder-33B-Instrct do achieve a level that
is close to commercial models. It is also worth
noticing that some models like Mixtral-8x7B-
Instruct fail certain cases because they cannot
comply with the instructions regarding the format.

3.1.2 Effect of Bug Types

As illustrated in Figure 1 and Table 6, the challenge
of debugging varies markedly with the bug type for
both humans and models. Syntax and reference
errors are comparatively simpler to spot and rectify.
In contrast, logic bugs pose a greater challenge, re-
quiring an understanding of the code’s underlying
mechanisms. Additionally, the complexity of de-
bugging escalates with an increase in the number of
bugs within a code snippet. Therefore, in training
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Figure 3: Pass Rate of GPT-4 (OpenAI, 2023) and GPT-
3.5-turbo (OpenAI, 2022) with more samples containing
logical errors, particularly noting a significant improve-
ment from 1 to 4 samples.

Figure 4: Effect of runtime feedback on gpt-4-0613
(OpenAI, 2023) and gpt-3.5-turbo-0613’s (Ope-
nAI, 2022) debugging performance. It improves syntax
and reference error handling but impairs logic error res-
olution.

or improving models for debugging, special em-
phasis should be placed on enhancing their ability
to handle logic errors and scenarios with multiple
concurrent errors.

3.1.3 In-depth Analysis

In this section, we examine two additional scenar-
ios for deeper analyses.

Effect of Multiple Sampling. In this scenario, a
language model is permitted to generate multiple
responses to a single debugging query. An instance
is marked as ‘pass’ if at least one response suc-
cessfully meets all test case criteria. Due to budget
constraints, we limit our sampling to a maximum
of nine answers for each instance with logical er-
rors. As illustrated in Figure 3, increased sampling
attempts enhance debugging performance, indicat-
ing an effective trade-off: better debugging at the
cost of using more inference tokens.

Figure 5: Pass Rate of coding and debugging tasks with
same programming problems.

Effect of Runtime Feedback. Recent stud-
ies (Chen et al., 2023; Jiang et al., 2023) find out
that providing runtime information like program
output and traceback messages enhances the coding
capabilities of LLMs. In this section, we investigate
the influence of runtime messages on the debug-
ging process. We leveraged the built-in runtime
environment of the LeetCode test suites to obtain
feedback information. As illustrated in Figure 4,
the runtime feedback has a clear impact on the de-
bugging performance of LLMs. For syntax and
reference errors, traceback information effectively
identifies the locations of bugs, thereby facilitating
the debugging process. However, for logic bugs,
the details provided in traceback messages are of-
ten too low-level to facilitate effective debugging
and may even cause disruptions. This indicates that
the information provided by Runtime Feedback is
not always useful for debugging LLMs. Positive
and negative examples of runtime messages are
accessible in Appendix F.

3.2 Interplay between Debugging and Coding

As an extension of the evaluation of debugging
capabilities, we compare the difficulty and corre-
lation of these tasks to deepen our understanding
of LLMs’ proficiency in both code generation and
debugging.

Comparison of Difficulty. We analyze the de-
bugging and code generation performance of gpt-
4-0613(OpenAI, 2022) and gpt-3.5-turbo-
0613(OpenAI, 2023) on identical instances. As
illustrated in Figure 5, we find that correcting syn-
tax and reference errors typically presents less diffi-
culty than generating full code for a specific query,
while addressing logical errors or multiple issues
can be as challenging as code generation itself.
This pattern implies that the task of debugging is
relatively easier than code generation.
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Correlation between Debugging and Coding
To explore the correlation between debugging and
coding, i.e., whether a programming question is
more likely to be easy-to-debug if it is easy-to-code
and vice versa, we compute the Phi-Coefficient for
closed-source LLMs and find that all categories
of bugs have a positive Phi-Coefficient score with
code generation ranging from 0.1 to 0.3 as shown
in Table 7. This suggests that the capabilities of
LLMs to approach these two tasks are explicitly
correlated.

Model Bug Type Phi-Coefficient

GPT-4

syntax 0.221
reference 0.115

logic 0.353
multiple 0.273

GPT-3.5-Turbo

syntax 0.148
reference 0.196

logic 0.174
multiple 0.298

Table 7: Phi-Coefficient of LLMs’ coding and debug-
ging performance.

4 Related Work

4.1 LLM-based Coding

The field of LLM code generation has been exten-
sively studied. Researchers have collected code
corpora to train large language models that special-
ize in code generation (Chen et al., 2021; Nijkamp
et al., 2022; Li et al., 2023). General-purpose
LLMs also demonstrated impressive coding abili-
ties as a result of extensive pre-training on datasets
rich in code-related content (Touvron et al., 2023;
Workshop et al., 2022; OpenAI, 2022, 2023). Par-
allel to the development of these foundational mod-
els, innovative methods such as verbal reinforce-
ment learning with feedback from runtime mes-
sages (Shinn et al., 2023), and multi-agent collabo-
ration (Qian et al., 2023), have been implemented
to further refine the coding abilities of LLMs.

As another key component of programming pro-
ficiency, LLMs’ debugging capabilities have not
garnered so much attention. This can be partly at-
tributed to the absence of evaluation benchmarks.
To overcome this deficiency, we introduce Debug-
Bench, the new LLM debugging benchmark dis-
cussed in this work.

4.2 Automated Program Repair

Automated Program Repair (APR) refers to the
process of automatically fixing program bugs or
errors without human intervention. This topic has
gained significant attention due to its potential to
reduce the time and cost in software development
(Goues et al., 2019). While template-based (Liu
et al., 2019), search-based (Ke et al., 2015) and
generic (Le Goues et al., 2011) methods have been
proposed to solve the task, program repair based
on Large Language Models exhibit significant po-
tential (Prenner et al., 2022).

Prenner et al. (2022) evaluated OpenAI’s CodeX
(Chen et al., 2021) on QuixBugs (Lin et al., 2017)
and found LLM debugging promising. Sobania
et al. (2023) utilized ChatGPT (OpenAI, 2022) to
address bugs in QuixBugs, outperforming the previ-
ous state-of-the-art. Xia and Zhang (2023a) tested
LLM debugging with a conversational strategy to
refine the debugging patches based on the feed-
back from each turn on QuixBugs and achieved
higher performance. However, Zhang et al. (2023)
pointed out that evaluations on traditional APR
datasets like QuixBugs (Lin et al., 2017) and De-
fects4J (Just et al., 2014) face a severe risk of data
leakage and evaluate ChatGPT (OpenAI, 2023) on
a new benchmark of 151 bugs from competitive
programming problems.

These works are fundamental in verifying the
feasibility of LLMs for debugging, but they face
challenges that require further investigation. Apart
from data leakage, current evaluations of LLM de-
bugging face significant constraints: limited bug
diversity and constrained test scale as illustrated in
Table 1. In order to gain a deeper understanding of
the potential for LLM debugging, we conducted a
systematic evaluation with DebugBench.

5 Conclusion

In this work, we presented DebugBench, a bench-
mark specifically designed to evaluate the debug-
ging capabilities of large language models. Debug-
Bench was developed utilizing source data from
LeetCode (LeetCode, 2023) and bug implantation
with prompted GPT-4, underpinned by a stringent
quality control process.

Our experiments with DebugBench revealed
several key findings: (1) In a zero-shot scenario,
closed-source models exhibited relatively lower de-
bugging performance compared to humans, while
open-source models attained a even lower pass rate
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score in zero-shot scenarios; (2) Multiple and log-
ical errors posed a greater challenge for the re-
pair compared to syntax and reference errors; (3)
Runtime feedback enhanced the debugging perfor-
mance for syntax and reference errors but is unhelp-
ful for logical errors; (4) For closed-source LLMs,
debugging syntax or reference errors is easier than
code generation while logic or multiple errors can
equally hard or even harder. And their capabilities
in coding and debugging are correlated. Hopefully,
these findings will contribute to the advancement of
large language models in the field of automatic de-
bugging. The data is open-sourced via Apache-2.0
license.

Future Work The scope of debugging scenarios
can be expanded to more practical and complex
situations like repository-level debugging (Jimenez
et al., 2023; Bairi et al., 2023) and scenarios in-
volving human interaction. Additionally, based
on the results of human evaluation, the ability to
write reliable test cases and interact with Integrated
Development Environments (IDEs) significantly
boosts manual debugging performance. It can be
meaningful to evaluate how well LLMs write test
cases and interact with IDEs for debugging.

Limitations

This study has certain limitations that must be ac-
knowledged. The bugs in our experiments were
synthetically created and might not entirely re-
flect the intricacies of real-world coding scenarios.
The scope of our study was confined to four open-
source and two closed-source models, which do
not represent the full spectrum of existing LLMs.

Another limitation of this benchmark is the eval-
uation metric, which is based on test cases from the
LeetCode platform. While the test suites used in
the benchmark are of high quality, they may not be
as accessible as those local test cases. In particular,
the benchmark requires testers to have one or more
LeetCode accounts in order to run the online judge
system, and testers may be impacted by rate limits
and query limits imposed by the LeetCode website.
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Appendix

A Prompts

In this section, we detail the prompt utilized in the
process of bug implantation and model evaluation.

The following is the prompt we use for GPT-4 to
implant different types of bugs into code snippets.

Prompt: Observe the following code implemen-
tation. Your task is to first add a(n) {BUG_TYPE}
bug to the code and then to explain the bug you add
in 15 words. You have to write the implementation
again. You should put <bug> </bug>, <exp> </exp>
in the beginning and end of the code and explanation.
Make sure the bug incurs unexpected behaviors. Do
not write anything else in your response. You must
not add any comment about the bug in code. {CODE
IMPLEMENTATION}

The following is the prompt for zero-shot evalu-
ation.

Prompt: Observe the following faulty code. Your
task is to fix up the code and explain on the mod-
ification in less than 20 words. You have to write
the fixed code again. You should put <code></code>
and <exp></exp> on the boundary of the code and
the explanation. Do not write anything else in your
response. {BUG INSTANCE}

This is the simplified version of zero-shot
prompt.

Simplified Prompt: Observe the following faulty
code implementation. Your task is to fix up the code.
{BUG INSTANCE}

Below is the three shot prompt for model evalua-
tion.

Three-Shot Prompt: Observe the following faulty
code implementation. Your task is to fix up the code.
Example 1 {BUG INSTANCE1}
{FIXED INSTANCE1}
Example 2 ...
Example 4 {BUG INSTANCE4}
{FIXED INSTANCE4}
Test Example {BUG INSTANCE}

B Bug Type Definition

The bug instances in DebugBench are categorized
into four major categories and 18 minor types. The
definitions and distributions of these categories are
detailed in Table 8 and Table 9. It’s important to

note that instances of multiple bugs constitute a sig-
nificant portion of the total count. This is because
they can be further classified according to specific
combinations of bug types, rather than simply by
the number of bugs. To ensure a sufficient number
of instances for each unique combination of bugs,
a substantial volume of instances is required.

Type Type Number

Syntax Error 761
Reference Error 684
Logic Error 590
Multiple Error 2218

Table 8: Distribution of major bug types.

C Instance Feature Schema

As exhibited in Figure 2, the features of an instance
in DebugBench includes ‘Question’, ‘Example’,
‘Oracle Code Solution’, ‘Buggy code’, and ‘Bug
Explanation’. ‘Question’ refers to the original pro-
gramming query, which decides the requirement for
the program. ‘Example’ encompasses one to three
input-output pairs, which serve either as supple-
mentary explanations of the program requirements
or as test cases for debugging. ‘Oracle Code So-
lution’ denotes the accurate code implementation
that successfully passes all test cases, acting as the
annotation for correct solutions. ‘Buggy Code’ con-
sists of code snippets embedded with one or more
errors, forming the primary subject for debugging
processes. Lastly, ‘Bug Explanation’ provides a
brief overview by GPT-4 (OpenAI, 2023) regarding
the nature of the bug, which aids in understanding
the bug and and quality control. Qualitative exam-
ples are accessible in Appendix H.

D Expenditure Estimation

We employed commercial models from OpenAI
for constructing and evaluating our dataset which
cost around $330. The estimated expenditures for
this process are detailed in Table 10.

E Cases Failing Manual Inspection

During manual inspection, we propose three evalu-
ating criteria (1) The bugs must cause the intended
malfunction, fail specific test cases, and align with
the assigned bug type and description. (2) Sensitive
Information Security: The instances must be de-
void of sensitive data, such as personal information.
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Minor Types Definition Instance Number

misused ==/= Misuse between equality (==) or assignment (=) op-
erators.

137

missing colons Omission of colons where required, such as in control
structures (if, for, while) or function definitions in
certain programming languages.

129

unclosed parentheses Failure to close a set of parentheses, leading to syntax
errors.

133

illegal separation Improper use of separators like commas or semi-
colons, causing syntax errors.

68

illegal indentation Incorrect indentation that violates the syntax rules of
indentation-sensitive languages like Python.

45

unclosed string A string literal that is not properly closed with match-
ing quotation marks.

125

illegal comment Use of incorrect syntax for comments, or placing
comments where they are not allowed.

124

faulty indexing Accessing elements of a collection (like arrays or
lists) with an incorrect index, often leading to runtime
errors.

206

undefined objects Reference to an object that has not been defined or
imported.

187

undefined methods Calling a method that doesn’t exist for a given object
or class.

167

illegal keywords Misuse of reserved words in a programming lan-
guage.

124

condition error Logical errors in conditions used in control struc-
tures.

260

operation error Errors in arithmetic or other operations, such as divi-
sion by zero.

180

variable error Errors related to variable misuse, like using an unini-
tialized variable.

100

other error Any programming error that does not fit into the
above categories.

50

double bug Two distinct bugs present in a single snippet or sec-
tion of code.

750

triple bug Three distinct bugs present in a single snippet or
section of code.

750

quadruple bug Four distinct bugs present in a single snippet or sec-
tion of code.

718

Table 9: Definition and distribution of each minor type of bugs from categories of syntax error, reference error, logic
error and multiple error.

Process Query Number Token Num Price Model Price Expenditure

Bug Implantation 2760 500 / 500 $0.03 / $0.06 (1k tokens) gpt-4 $124.2
Model Evaluation 4405 500 / 500 $0.03 / $0.06 (1k tokens) gpt-4 $198.2
Model Evaluation 4405 500 / 500 $0.0010 / $0.0020 (1k tokens) gpt-3.5-turbo $6.6

Table 10: Expenditure Approximation of Commercial Models. Token number and model price are written in a
format of input token / output token.
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(3) Scenario Alignment: The bugs should resemble
those found in actual code debugging scenarios and
should not include obvious clues, like comments
indicating the bug’s location.

We detect some instances that violate code (1)
and code (3) and showcase them as follows.

Wrong Categories. GPT-4 (OpenAI, 2023) oc-
casionally introduces bugs that differ from their
assigned category, thereby violating code princi-
ple (1). An example of this is a bug generated in
response to a prompt specifying ’undefined meth-
ods.’ Rather than invoking undefined functions as
expected, the code triggers an infinite loop.

Buggy Code:

class TreeAncestor {

public:

vector<vector<int>>v;

TreeAncestor(int n, vector<int>&

↪→ parent) {

vector<vector<int>> par(n, vector<

↪→ int>(20));

for (int i = 0; i < n; i++) par[i

↪→ ][0] = parent[i];

for (int j = 1; j < 20; j++) {

for (int i = 0; i < n; i++) {

if (par[i][j - 1] == -1)

↪→ par[i][j] = -1;

else par[i][j] = par[par[i

↪→ ][j - 1]][j - 1];

}

}

swap(v, par);

}

int getKthAncestor(int node, int k) {

for (int i = 0; i < 20; i++) {

if ((k >> i) & 1) {

node = v[node][i];

if (node == -1) return -1;

getKthAncestor(node, k);

}

}

return node;

}

};

Unlikely Bugs. Some instances of bugs are ac-
curately categorized by their error type, yet they
are unlikely to appear in practical scenarios. For
instance, it is atypical for ’undefined objects’ in nor-
mal circumstances to be named ’undefined’, which
violates code (3).

Buggy Code:

class Solution {

public:

bool doesValidArrayExist(vector<int>&

↪→ derived) {

int xoor = 0;

vector<int>& undefined;

for (auto i: derived) xoor ^= i;

xoor ^= undefined[0];

return !xoor;

}

};

F Runtime Messages

In this section, we present several examples of run-
time messages that may or may not provide clues
for the debugging process.

When dealing with bugs that raise runtime er-
rors, these information are specifically helpful. For
example, the following runtime messages directly
points out the bug.

Buggy Code:

class Solution:

def dp(self,i,s,prev,k,ct,n,dct:

if k<0:

return float("infinity")

if i>=n:

x=0

if ct>1:

x=len(str(ct))+1

elif ct==1:

x=1

return x

if (i,prev,ct,k) in dct:

return dct[(i,prev,ct,k)]

if s[i]==prev:

inc=self.dp(i+1,s,prev,k,ct+1,

↪→ n,dct)

else:

x=0

if ct>1:

x=len(str(ct))+1

elif ct==1:

x=1

inc=x+self.dp(i+1,s,s[i],k,1,n,

↪→ dct)

exc=self.dp(i+1,s,prev,k-1,ct,n,

↪→ dct)

dct[(i,prev,ct,k)]=min(inc,exc)

return min(inc,exc)
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def getLengthOfOptimalCompression(

↪→ self, s: str, k: int) -> int:

n=len(s)

return self.dp(0,s,"",k,0,n,{})

Runtime Messages:
Line 3: SyntaxError: ’(’ was
never closed

Traceback messages may sometimes be too low-
level to offer effective information. The follow-
ing bug change one detail of operation about the
prime arrangements from ’+n’ to ’-n’, for which
the ’stackoverflow’ messages does not provide any
help.

Buggy Code:

class Solution {

public:

long long fact(int n)

{

if(n<=1)return 1;

return (n*fact(n+1)%1000000007)

↪→ %1000000007;

}

int numPrimeArrangements(int n) {

if(n==1)return 1;

if(n<=3)return n-1;

int t=0,flag;

for(int i=2;i<=n;i++)

{

flag=0;

for(int j=2;j<=sqrt(i);j++)

{

if(i%j==0)

{

flag=1;

break;

}

}

if(flag==0)

{

t++;

}

}

return (fact(t)*fact(n-t))

↪→ %1000000007;

}

};

Runtime Messages:
AddressSanitizer: stack-overflow
on the address 0x7ffcdc8e9ff8 (pc
0x000000366e14 bp 0x7ffcdc8ea000
sp 0x7ffcdc8ea000 T0)

G Comparison of Bug Realism

To address concerns regarding the realism of syn-
thetically generated bugs, we conducted a com-
parative study between instances in DebugBench
and those from real-world datasets. Specifically,
we examined QuixBugs (Lin et al., 2017), which
encompasses bugs derived from the Quixey Chal-
lenge and based on real-world scenarios. In this
study, we compared the realism of all 40 Python
and Java bugs from QuixBugs with corresponding
instances in DebugBench of the same bug type and
programming language. Each case was compared
against five random cases from DebugBench, with
the order switched to mitigate bias.

As judges, we employed GPT-4 (OpenAI, 2023)
and Claude 3 Sonnet (Anthropic, 2024) to perform
the evaluations. We set the temperature parameter
to 0.01 and top_p to 0.7. The prompt used for this
evaluation is detailed below.

System Prompt:
You are a helpful assistant with
profound knowledge in coding.
Here are two pieces of buggy code
and explanations about their bugs.
Your job is to judge which one is
more likely to occur in realistic
scenarios. You have three output
options: <Code Piece A>, <Code
Piece B>, and <About the same>.
You should only output an option
and you should not output anything
else.

User Message:
# Code Piece A
...
# Explanation about Code Piece A
...
# Code Piece B
...
# Explanation about Code Piece B
...

The results of this study are presented in Table 5.
As illustrated, the bug instances in DebugBench
are considered to have similar realism to those in
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QuixBugs. Consequently, we believe that concerns
regarding the realism of the bugs in DebugBench
can be effectively mitigated.

H Examples in BuGalley

In this section we demonstrated 4 positive and
4 negative cases of source data (blue), buggy
code (red), LLM generation and evaluation results
(green) of different language, different models and
different types of bugs.

1. GPT-4, Python3, colon missing

Question: Given a sentence text (A sentence is
a string of space-separated words) in the following
format:
First letter is in upper case. Each word in text is
separated by a single space.
Your task is to rearrange the words in text such that all
words are rearranged in an increasing order of their
lengths. If two words have the same length, arrange
them in their original order. Return the new text fol-
lowing the format shown above.

Examples: Input: text = "Leetcode is cool"
Output: "Is cool leetcode"
Explanation: There are 3 words, "Leetcode" of length
8, "is" of length 2 and "cool" of length 4.
Output is ordered by length and the new first word
starts with capital letter.

Oracle Solution Code:

class Solution:

def arrangeWords(self, text: str) ->

↪→ str:

return " ".join(sorted(text.split

↪→ (), key=len)).capitalize()

Buggy Code:

class Solution:

def arrangeWords(self, text: str) ->

↪→ str

return " ".join(sorted(text.split

↪→ (), key=len)).capitalize()

Bug Explanation: A colon is missing at the end of
the function definition line.

GPT-4 Debugging:

class Solution:

def arrangeWords(self, text: str) ->

↪→ str:

return " ".join(sorted(text.split

↪→ (), key=len)).capitalize()

Debugging Explanation: The code was missing a
colon at the end of the method definition.

Test Results: Run time: 43 ms
Run Memory: 18624000
Test Cases Results: 11111111111111111111111111
11111111111111111111111111111111111111111
1111111

Test Decision: True

2. GPT-4, C++, undefined objects

Question: A 0-indexed array derived with length
n is derived by computing the bitwise XOR of ad-
jacent values in a binary array original of length n.
Specifically, for each index i in the range [0, n - 1]:
If i = n - 1, then derived[i] = original[i] XOR origi-
nal[0]. Otherwise, derived[i] = original[i] XOR orig-
inal[i + 1].
Given an array derived, your task is to determine
whether there exists a valid binary array original that
could have formed derived. Return true if such an
array exists or false otherwise.
A binary array is an array containing only 0’s and 1’s

Examples: Input: derived = [1,1,0]
Output: true
Explanation: A valid original array that gives derived
is [0,1,0].
derived[0] = original[0] XOR original[1] = 0 XOR 1
= 1
derived[1] = original[1] XOR original[2] = 1 XOR 0
= 1
derived[2] = original[2] XOR original[0] = 0 XOR 0
= 0

Oracle Solution Code:

class Solution {

public:

bool doesValidArrayExist(vector<int>&

↪→ derived) {

int xoor = 0;
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for (auto i: derived) xoor ^= i;

return !xoor;

}

};

Buggy Code:

class Solution {

public:

bool doesValidArrayExist(vector<int>&

↪→ derived) {

int xoor = 0;

vector<int>& undefined;

for (auto i: derived) xoor ^= i;

xoor ^= undefined[0];

return !xoor;

}

};

Bug Explanation: The bug is in ‘vector<int>&
undefined;‘ the vector undefined is declared but never
defined.

GPT-4 Debugging:

class Solution {

public:

bool doesValidArrayExist(vector<int>&

↪→ derived, vector<int>&

↪→ undefined) {

int xoor = 0;

for (auto i: derived) xoor ^= i;

xoor ^= undefined[0];

return !xoor;

}

};

Debugging Explanation: The undefined vector
was declared but not defined and also was not part of
function parameter.

Test Results: Run time: N/A
Run Memory: 0
Test Cases Results: complingerror

Test Decision: False

3. GPT-4, Java, operation error

Question: Given two arrays arr1 and arr2, the el-
ements of arr2 are distinct, and all elements in arr2
are also in arr1. Sort the elements of arr1 such that
the relative ordering of items in arr1 are the same as
in arr2. Elements that do not appear in arr2 should
be placed at the end of arr1 in ascending order.

Examples: Input: arr1 = [2,3,1,3,2,4,6,7,9,2,19],
arr2 = [2,1,4,3,9,6]
Output: [2,2,2,1,4,3,3,9,6,7,19]

Oracle Solution Code:

import java.util.Arrays;

class Solution {

public int[] relativeSortArray(int[]

↪→ arr1, int[] arr2) {

Arrays.sort(arr1);

int[] ans = new int[arr1.length];

int start = 0;

int end = arr1.length - 1;

int index = 0;

for (int i = 0; i < arr2.length; i

↪→ ++) {

int target = arr2[i];

start = 0;

end = arr1.length - 1;

while (end >= start) {

int mid = start + (end -

↪→ start) / 2;

if (arr1[mid] == target) {

for (int j = start; j

↪→ <= end; j++) {

if (arr1[j] ==

↪→ target) {

ans[index++] =

↪→ arr1[j];

}

}

break;

}

if (arr1[mid] < target) {

start = mid + 1;

} else {

end = mid - 1;

}

}

}

for (int i = 0; i < arr1.length; i

↪→ ++) {
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if (index == arr1.length) {

break;

}

boolean found = false;

for (int num : arr2) {

if (arr1[i] == num) {

found = true;

break;

}

}

if (!found) {

ans[index++] = arr1[i];

}

}

return ans;

}

}

Buggy Code:

import java.util.Arrays;

class Solution {

public int[] relativeSortArray(int[]

↪→ arr1, int[] arr2) {

Arrays.sort(arr1);

int[] ans = new int[arr1.length];

int start = 0;

int end = arr1.length - 1;

int index = 0;

for (int i = 0; i < arr2.length; i

↪→ ++) {

int target = arr2[i];

start = 0;

end = arr1.length - 1;

while (end >= start) {

int mid = start + (end -

↪→ start) / 2;

if (arr1[mid] == target) {

for (int j = start; j

↪→ <= end; j++) {

if (arr1[j] ==

↪→ target) {

ans[index++] =

↪→ arr1[j];

arr1[j] = -1;

}

}

break;

}

if (arr1[mid] < target) {

start = mid + 1;

} else {

end = mid - 1;

}

}

}

Arrays.sort(arr1);

for (int i = 0; i < arr1.length; i

↪→ ++) {

if (index == arr1.length) {

break;

}

boolean found = false;

for (int num : arr2) {

if (arr1[i] == num) {

found = true;

break;

}

}

if (!found && arr1[i] != -1) {

ans[index++] = arr1[i];

}

}

return ans;

}

}

Bug Explanation: The bug I added was modifying
the array in the sorting step without considering its
impact on forthcoming operations, causing incorrect
output.

GPT-4 Debugging:

import java.util.*;

class Solution {

public int[] relativeSortArray(int[]

↪→ arr1, int[] arr2) {

int[] ans = new int[arr1.length];

int index = 0;

for (int i = 0; i < arr2.length; i

↪→ ++) {

for (int j = 0; j < arr1.

↪→ length; j++) {

if (arr1[j] == arr2[i]) {

ans[index++] = arr1[j];

}

}

4190



}

List < Integer > list = new

↪→ ArrayList < > ();

for (int i = 0; i < arr1.length; i

↪→ ++) {

boolean found = false;

for (int num : arr2) {

if (arr1[i] == num) {

found = true;

break;

}

}

if (!found) {

list.add(arr1[i]);

}

}

Collections.sort(list);

for (Integer i: list) {

ans[index++] = i;

}

return ans;

}

}

Debugging Explanation: Simplified logic to fill the
resultant array by iterating through the second array
and filling for each occurrence in the first array.

Test Results: Run time: 4 ms
Run Memory: 40848000
Test Cases Results: 11111111111111111

Test Decision: True

4. GPT-4, Python3, triple bugs

Question: You are given the root of a binary tree
and a positive integer k. The level sum in the tree
is the sum of the values of the nodes that are on the
same level. Return the kth largest level sum in the
tree (not necessarily distinct). If there are fewer than
k levels in the tree, return -1. Note that two nodes
are on the same level if they have the same distance
from the root.

Examples: Input: root = [5,8,9,2,1,3,7,4,6], k = 2
Output: 13

Explanation: The level sums are the following:
- Level 1: 5.
- Level 2: 8 + 9 = 17.
- Level 3: 2 + 1 + 3 + 7 = 13.
- Level 4: 4 + 6 = 10.
The 2nd largest level sum is 13.

Oracle Solution Code:

# Definition for a binary tree node.

# class TreeNode:

# def __init__(self, val=0, left=None,

↪→ right=None):

# self.val = val

# self.left = left

# self.right = right

class Solution:

def kthLargestLevelSum(self, root:

↪→ Optional[TreeNode], k: int) ->

↪→ int:

dq = collections.deque([root])

a = []

lvl = 1

while dq:

lvlsum = 0

for i in range(len(dq)):

n = dq.popleft()

lvlsum += n.val

if n.left: dq.append(n.left)

↪→
if n.right: dq.append(n.

↪→ right)

a.append(lvlsum)

lvl += 1

a.sort(reverse=True)

return a[k-1] if len(a) >= k else

↪→ -1

Buggy Code:

# Definition for a binary tree node.

# class TreeNode:

# def __init__(self, val=0, left=None,

↪→ right=None):

# self.val = val

# self.left = left

# self.right = right

class Solution:

def kthLargestLevelSum(self, root:

↪→ Optional[TreeNode], k: int) ->

↪→ int:

dq = collections.deque([root])

a = []

lvl = 1
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while dq:

lvlsum = 0

for i in range(len(dq)):

n = dq.popleft()

lvlsum += n.val

if n.left: dq.append(n.left)

↪→
if n.right: dq.append(n.

↪→ right)

a.append(self.

↪→ calculateLevelSum(

↪→ lvlsum))

lvl += 1

a.sort(reverse=False)

return a[k] if len(a) >= k else -1

Bug Explanation: other error+ undefined methods+
indexing error

GPT-4 Debugging:

# Definition for a binary tree node.

# class TreeNode:

# def __init__(self, val=0, left=None,

↪→ right=None):

# self.val = val

# self.left = left

# self.right = right

class Solution:

def kthLargestLevelSum(self, root:

↪→ TreeNode, k: int) -> int:

dq = collections.deque([root])

a = []

while dq:

lvlsum = 0

for _ in range(len(dq)):

n = dq.popleft()

lvlsum += n.val

if n.left: dq.append(n.

↪→ right)

if n.right: dq.append(n.

↪→ left)

a.append(lvlsum)

if len(a) < k:

return -1

else:

a.sort(reverse=True)

return a[k-1]

Debugging Explanation: Fixed iteration on chil-
dren nodes and indexing for kth largest element

Test Results: Run time: N/A
Run Memory: 16340000
Test Cases Results: 10000000000000000000000000
0000000000000000000

Test Decision: False

5. GPT-3.5-Turbo, C++, unclosed string

Question: You are given a string word that con-
sists of digits and lowercase English letters. You will
replace every non-digit character with a space. For
example, "a123bc34d8ef34" will become " 123 34
8 34". Notice that you are left with some integers
that are separated by at least one space: "123", "34",
"8", and "34". Return the number of different inte-
gers after performing the replacement operations on
word. Two integers are considered different if their
decimal representations without any leading zeros
are different.

Examples: Input: word = "a123bc34d8ef34"
Output: 3
Explanation: The three different integers are "123",
"34", and "8". Notice that "34" is only counted once.

Oracle Solution Code:

class Solution {

public:

int numDifferentIntegers(string word)

↪→ {

int n = word.length();

unordered_set<string>s;

int i=0;

while(i<n){

if(isdigit(word[i]) == false){

i++;

continue;

}

string temp = "";

while(i<n && isdigit(word[i]))

↪→ {

temp+=word[i];

i++;

}

int j=0;

while(j<temp.length() && temp[

↪→ j] == '0') j++;

temp = temp.substr(j);

s.insert(temp);

}

return s.size();
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}

};

Buggy Code:

class Solution {

public:

int numDifferentIntegers(string word)

↪→ {

int n = word.length();

unordered_set<string>s;

int i=0;

while(i<n){

if(isdigit(word[i]) == false){

i++;

continue;

}

string temp = "Start of sub-

↪→ string;

while(i<n && isdigit(word[i]))

↪→ {

temp+=word[i];

i++;

}

int j=0;

while(j<temp.length() && temp[

↪→ j] == '0') j++;

temp = temp.substr(j);

s.insert(temp);

}

return s.size();

}

};

Bug Explanation: The string temp is left unclosed
after "Start of sub-string". This will cause an error.

GPT-3.5-Turbo Debugging:

p

class Solution {

public:

int numDifferentIntegers(string word)

↪→ {

int n = word.length();

unordered_set<string>s;

int i=0;

while(i<n){

if(isdigit(word[i]) == false){

i++;

continue;

}

string temp;

while(i<n && isdigit(word[i]))

↪→ {

temp+=word[i];

i++;

}

int j=0;

while(j<temp.length() && temp[

↪→ j] == '0') j++;

temp = temp.substr(j);

s.insert(temp);

}

return s.size();

}

};

```
<exp>

To fix the code, I added double quotes

↪→ and also removed the "Start of

↪→ sub-string" as it was invalid

↪→ syntax

Debugging Explanation: To fix the code, I added
double quotes and also removed the "Start of sub-
string" as it was invalid syntax

Test Results: Run time: N/A
Run Memory: 0
Test Cases Results: complingerror

Test Decision: False

6. GPT-3.5-Turbo, Java, undefined methods

Question: Given an array of integers temperatures
represents the daily temperatures, return an array
answer such that answer[i] is the number of days
you have to wait after the ith day to get a warmer
temperature. If there is no future day for which this
is possible, keep answer[i] == 0 instead.

Examples: Input: temperatures =
[73,74,75,71,69,72,76,73]
Output: [1,1,4,2,1,1,0,0]

Oracle Solution Code:

class Solution {

public int[] dailyTemperatures(int[]

↪→ temperatures) {
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int[] arr = new int[temperatures.

↪→ length];

ArrayDeque<int[]> st = new

↪→ ArrayDeque<>();

int i=0, j=temperatures.length-1 ;

while( j >= 0){

if(st.size()==0){

arr[i++] = 0;

}

else if (st.size()>0 && st.

↪→ peek()[0]>temperatures[

↪→ j])

{

arr[i++]=1;

}

else if (st.size()>0 && st.

↪→ peek()[0]<=temperatures

↪→ [j])

{ while(st.size()>0 && st.peek

↪→ ()[0]<=temperatures[j])

↪→ {

st.pop();

}

if(st.size()==0){

arr[i++]=0;

}

else{

arr[i++]=st.peek()[1]-j;

}

}

st.push(new int[]{temperatures[j],

↪→ j});

j--;

}

int[] ans = new int[temperatures.

↪→ length]; int k=0;

for(i=arr.length-1; i>=0; i--){

ans[k++]=arr[i];

}

return ans;

}

}

Buggy Code:

class Solution {

public int[] dailyTemperatures(int[]

↪→ temperatures) {

int[] arr = new int[temperatures.

↪→ length];

ArrayDeque<int[]> st = new

↪→ ArrayDeque<>();

int i=0, j=temperatures.length-1 ;

while( j >= 0){

if(st.size()==0){

arr[i++] = 0;

}

else if (st.size()>0 && st.

↪→ peek()[0]>temperatures[

↪→ j])

{

arr[i++]=1;

}

else if (st.size()>0 && st.

↪→ peek()[0]<=temperatures

↪→ [j])

{ while(st.size()>0 && st.peek

↪→ ()[0]<=temperatures[j])

↪→ {

st.pop();

}

if(st.size()==0){

arr[i++]=0;

}

else{

arr[i++]=st.peek()[1]-j;

}

}

doSomething();

st.push(new int[]{temperatures[j],

↪→ j});

j--;

}

int[] ans = new int[temperatures.

↪→ length]; int k=0;

for(i=arr.length-1; i>=0; i--){

ans[k++]=arr[i];

}

return ans;

}
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}

Bug Explanation: The method ’doSomething()’ is
called but it has not been defined anywhere in the
class.

GPT-3.5-Turbo Debugging:

import java.util.ArrayDeque;

class Solution {

public int[] dailyTemperatures(int[]

↪→ temperatures) {

int[] arr = new int[temperatures.

↪→ length];

ArrayDeque<int[]> st = new

↪→ ArrayDeque<>();

int i=0, j=temperatures.length-1 ;

while( j >= 0){

if(st.size()==0){

arr[i++] = 0;

}

else if (st.size()>0 && st.

↪→ peek()[0]>temperatures[

↪→ j])

{

arr[i++]=1;

}

else if (st.size()>0 && st.

↪→ peek()[0]<=temperatures

↪→ [j])

{ while(st.size()>0 && st.peek

↪→ ()[0]<=temperatures[j])

↪→ {

st.pop();

}

if(st.size()==0){

arr[i++]=0;

}

else{

arr[i++]=st.peek()[1]-j;

}

}

doSomething();

st.push(new int[]{temperatures[j],

↪→ j});

j--;

}

int[] ans = new int[temperatures.

↪→ length]; int k=0;

for(i=arr.length-1; i>=0; i--){

ans[k++]=arr[i];

}

return ans;

}

// Added method for compilation

public static void doSomething(){

// Do nothing

}

}

Debugging Explanation: Added empty method
doSomething() to fix a compile time error

Test Results: Run time: 25 ms
Run Memory: 60564000
Test Cases Results: 11111111111111111111111111
1111111111111111111111

Test Decision: True

7. GPT-3.5-Turbo, Python3, variable error

Question: Given a 0-indexed integer array nums,
find the leftmost middleIndex (i.e., the smallest
amongst all the possible ones). A middleIndex
is an index where nums[0] + nums[1] + ... +
nums[middleIndex-1] == nums[middleIndex+1] +
nums[middleIndex+2] + ... + nums[nums.length-1].
If middleIndex == 0, the left side sum is considered
to be 0. Similarly, if middleIndex == nums.length -
1, the right side sum is considered to be 0. Return the
leftmost middleIndex that satisfies the condition, or
-1 if there is no such index.

Examples: Input: nums = [2,3,-1,8,4]
Output: 3
Explanation: The sum of the numbers before index 3
is: 2 + 3 + -1 = 4
The sum of the numbers after index 3 is: 4 = 4
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Oracle Solution Code:

class Solution:

def findMiddleIndex(self, nums: List[

↪→ int]) -> int:

def dnc(l, r, lo, hi):

if l == r - 1:

return l if lo == hi else

↪→ -1

mid = (l + r) // 2

right = sum(nums[mid:r])

left = sum(nums[l:mid])

left_ind = dnc(l, mid, lo, hi

↪→ + right)

return left_ind if left_ind !=

↪→ -1 else dnc(mid, r, lo

↪→ + left, hi)

return dnc(0, len(nums), 0, 0)

Buggy Code:

class Solution:

def findMiddleIndex(self, nums: List[

↪→ int]) -> int:

def dnc(l, r, lo, hi):

if l == r - 1:

return l if lo == hi else

↪→ -1

mid = (l + r) // 2

right = sum(nums[mid:r])

left = sum(nums[l:mid])

left_ind = dnc(l, mid, lo, hi

↪→ + left)

return left_ind if left_ind !=

↪→ -1 else dnc(mid, r, lo

↪→ + left, hi)

return dnc(0, len(nums), 0, 0)

Bug Explanation: The bug is in the line "left_ind
= dncl,mid, lo, hi + left" where ’left’ should be
replaced with ’right’. This error will result in incor-
rect values for the left and right sums, causing the
function to incorrectly identify the middle index or
terminate prematurely.

GPT-3.5-Turbo Debugging:

class Solution:

def findMiddleIndex(self, nums: List[

↪→ int]) -> int:

def dnc(l, r, lo, hi):

if l == r:

return l if lo == hi else

↪→ -1

mid = (l + r) // 2

right = sum(nums[mid:r])

left = sum(nums[l:mid])

left_ind = dnc(l, mid, lo, hi

↪→ + left)

return left_ind if left_ind !=

↪→ -1 else dnc(mid + 1, r

↪→ , lo + left, hi)

return dnc(0, len(nums), 0, 0)

Debugging Explanation: The condition for termi-
nation was wrong, changed r-1 to r and mid to mid+1
because mid is already included.

Test Results: Run time: N/A
Run Memory: 16508000
Test Cases Results: 00111111100111110011111111
01111001111111111001100000000000000000000
00000000010001100011111101010101001000010
00000000000000000000000000010101011101011
00110010010011100000000000000000000000000
00000010000100101100000010000000000000000
00001011111111111111111111111100000000000
0000000001111100000111

Test Decision: False

8. GPT-3.5-Turbo, C++, double bugs

Question: Given two strings s and goal, return true
if you can swap two letters in s so the result is equal
to goal, otherwise, return false. Swapping letters is
defined as taking two indices i and j (0-indexed) such
that i != j and swapping the characters at s[i] and s[j].
For example, swapping at indices 0 and 2 in "abcd"
results in "cbad".

Examples: Input: s = "ab", goal = "ba"
Output: true
Explanation: You can swap s[0] = ’a’ and s[1] = ’b’
to get "ba", which is equal to goal.
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Oracle Solution Code:

class Solution {

public:

bool buddyStrings(string s, string p)

↪→ {

int n=s.length(), m=p.length();

if(n!=m) return false;

vector<int> freq(26,0);

int first=-1, second=-1;

for(int i=0;i<n;i++){

if(s[i] != p[i]){

if(first==-1){

first=i;

}else if(second==-1){

second=i;

}else{

return false; // more

↪→ than 2

↪→ mismatching

↪→ characters

}

}

freq[s[i]-'a']++;

}

// similar strings

if(first == -1 && second == -1){

for(int i=0;i<26;i++) if(freq[

↪→ i] > 1) return true; //

↪→ can swap similar

↪→ characters

return false; // all

↪→ characters occur only

↪→ once

}else if(second == -1){

return false; // exactly 1

↪→ mismatch

}

return (s[first]==p[second] && s[

↪→ second]==p[first]); //

↪→ check similarity on 2

↪→ mismatched indexes

}

};

Buggy Code:

class Solution {

public:

bool buddyStrings(string s, string p)

↪→ {

int n=s.length(), m=p.length();

if(n!=m) return false;

vector<int> freq(26,0);

int first=-1, second=-1;

for(int i=0;i<=n;i++){

if(s[i] != p[i]){

if(first==-1){

first=i;

}else if(second==-1){

second=i;

}else{

return false;

}

}

freq[s[i]-'z']++;

}

if(first == -1 && second == -1){

for(int i=0;i<26;i++) if(freq[

↪→ i] > 1) return true;

return false;

}else if(second == -1){

return false;

}

return (s[first]==p[second] && s[

↪→ second]==p[first]);

}

};

Bug Explanation: indexing error+ operation error

GPT-3.5-Turbo Debugging:

class Solution {

public:

bool buddyStrings(string s, string p)

↪→ {

int n=s.length(), m=p.length();

if(n!=m) return false;

vector<int> freq(26,0);

int first=-1, second=-1;

for(int i=0;i<n;i++){ // modified

↪→ from i<=n to i<n

if(s[i] != p[i]){

if(first==-1){

first=i;

}else if(second==-1){

second=i;
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}else{

return false;

}

}

freq[s[i]-'a']++; // modified

↪→ from 'z' to 'a'

}

if(first == -1 && second == -1){

for(int i=0;i<26;i++) if(freq[

↪→ i] > 1) return true;

return false;

}else if(second == -1){

return false;

}

return (s[first]==p[second] && s[

↪→ second]==p[first]);

}

};

Debugging Explanation: 1. Modified the loop
condition from i<=n to i<n to prevent accessing out
of range. 2. Changed the index calculation in freq[]
from s[i]-’z’ to s[i]-’a’ to get the correct index of the
frequency array.

Test Results: Run time: 5 ms
Run Memory: 7144000
Test Cases Results: 11111111111111111111111111
1111111111111

Test Decision: True
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