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Abstract

Context length expansion of transformer mod-
els is considered a key challenge, especially
when handling context beyond the training
length during inference stage. In this pa-
per, we propose Generalized extrapolatioN
scalE (GeNE), a straightforward and effec-
tive method applied to the interpolate function
of positional embeddings to achieve training
short, test long. Experimental results show
that GeNE notably improves long context lan-
guage modeling. By randomly scaling the ex-
trapolation ratio during the finetuning, GeNE
achieves stable extrapolation on 64k contexts
by training on 16k length. Further, the in-
struction following Llama2 model based on
GeNE achieved competitive results compared
with other open-source models of the same pa-
rameter scale. Our code is available at https:
//github.com/LhLi-QED/GeNE.

1 Introduction

Large language models (LLMs) based on trans-
former architectures (Vaswani et al., 2017) have
been shown to have excellent performance in prac-
tice on a variety of natural language processing
tasks. However, sequences are usually truncated to
be less than a predefined value during pre-training,
forming a fixed context window and becoming one
of the limitations of LLMs in the application of
long context tasks. One of the challenges in ex-
tending the context window of LLMs is the ex-
trapolation of positional embedding (PE), so it is
necessary to explore efficient and balanced extrap-
olation methods.

Rotary Position Embedding (RoPE) (Su et al.,
2024) encodes position information by implement-
ing rotation transformations at varying frequencies
across different dimensions, and its superior perfor-
mance has been demonstrated in models such as
GPT-NeoX (Black et al., 2022), LLaMA (Touvron
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Figure 1: Overview of our approach. In each training
batch, GeNE randomly increases the extrapolated scale
to simulate the patterns of longer contexts. And GeNE
uses a smaller critical dimension compared to previous
extrapolation functions.

et al., 2023a), Llama2 (Touvron et al., 2023b) and
Mistral (Jiang et al., 2023). Previous work on the
extension of RoPE mainly focuses on artificially
designing extrapolation functions, such as position
interpolation (PI) (Chen et al., 2023b), NTK-aware
(bloc97, 2023) and YaRN (Peng et al., 2023). Ar-
tificially designed extrapolation functions exhibit
good generality, but expressing the extrapolation in
greater detail can prove challenging. CLEX (Chen
et al., 2023a) parameterizes the extrapolation func-
tion by a neural ordinary differential equation, thus
establishing a continuous extrapolation for each
frequency of the RoPE with remarkable improve-
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ment.
In this paper, we present GeNE, an advanced and

simple method for extrapolating context window
sizes. We argue that for RoPE-based LLMs, there
are two sufficient conditions for context length ex-
trapolation: (1) the model needs to be trained to
adapt to denser position embeddings, (2) the posi-
tion index will not lead to out-of-distribution PE
when context length extends. For the first condi-
tion, in order to achieve "train short, test long",
we propose Batch-wise Random Scaling (BRS),
a simple but effective method that can adapt the
model to longer sequence PE patterns even finetun-
ing with short sequence. Additionally, we utilize
the "NTK-by-parts" style (Peng et al., 2023) extrap-
olation function to satisfy condition (2) to avoid
any out-of-distribution positional embedding.

We evaluated the effectiveness of GeNE in three
aspects: (1) test splits of proof-pile (Azerbayev
et al., 2022) and PG19 (Rae et al., 2020) for lan-
guage modeling, and (2) LongBench (Bai et al.,
2023) for downstream tasks (3) passkey retrieval
(Mohtashami and Jaggi, 2024) for retrieval capa-
bility. GeNE efficiently extrapolates the context
length and achieves competitive results in language
modeling. Specifically, models based on GeNE
trained on 16k lengths can extrapolate the length
to 64k in the inference phase. The ablation experi-
ment further proves the effectiveness of our method.
Additionally, compared with open-source models
of the same parameter scale, GeNE’s instruction
finetuning model has also achieved comparable re-
sults. Finally, additional experiments reveal that
setting an appropriate critical dimension enables
the model to perform better in the maximum achiev-
able context length during the inference phase. In
summary, our contributions are as follows:

1. We propose GeNE, an advanced method for
extending the context window of RoPE-based
LLMs, and verify its effectiveness through
extensive experiments.

2. The results of our experiments indicate that
random scaling has a more pronounced effect
on the expansion of context length for GeNE.

2 Related Work

Relative Positional Embeddings for Long Con-
text. Since relative positional embeddings usu-
ally have better extrapolation performance than
absolute positional embeddings, it is widely used

in large language models. T5 (Raffel et al., 2020),
ALiBi (Press et al., 2022), KERPLE (Chi et al.,
2022) and Sandwich (Chi et al., 2023) achieved
relative position encoding by adding a bias term
to attention score. Unlike position embeddings
based on biases of attention scores, RoPE (Su et al.,
2024) is applied to the vectors of queries and keys
and achieves relative position embeddings through
inner products.

Interpolation and Extrapolation of RoPE. To
further achieve expansion of the context window
of LLMs with a small amount of fine-tuning, ex-
trapolation or interpolation of RoPE is an effective
method. Interpolating the position index (Chen
et al., 2023b) or modifying the base value of RoPE
(emozilla, 2023; Liu et al., 2023; Roziere et al.,
2023) can facilitate a degree of context length
extension. In addition, (Peng et al., 2023; Pal
et al., 2023) implement interpolation or extrapo-
lation at various scales for different feature dimen-
sions. Finetuning with a larger or smaller rope base
can also significantly extend the context length
(Roziere et al., 2023; Liu et al., 2023). CLEX
(Chen et al., 2023a) continuously scales the ex-
trapolated factor through neural ordinary differen-
tial equations. Especially, (Su, 2023; Jin et al.,
2024) found that ensuring the consistency of local
relative position embeddings with pre-trained em-
bedding also facilitates extrapolation and achieves
longer text and lower perplexity. Different from
the above methods, RandPos (Ruoss et al., 2023)
and PoSE (Zhu et al., 2024) mainly focus on the
position index, and they are also compatible with
those methods above.

3 Preliminaries

3.1 RoPE
The basic idea of RoPE (Su et al., 2024) is to fuse
the position information into the query and key vec-
tors, and encode the relative position through the
dot product operation of self-attention. Denote an
input sequence of length N as x0,x1, . . . ,xN−1 ∈
Rd, where d is the embedding dimension. We de-
note the query and key vectors of xn as qn =
Wqxn,kn = Wkxn, respectively. RoPE groups
the embedding dimensions pairwise and imple-
ments a 2D rotation transformation in each group:

f(un, n) = [R(nθi)un,i:i+1]
d
2
−1

i=0 , θi = b−
2i
d (1)

where un represents the nth query or key vector.
R(nθi) is a 2D rotation matrix with rotation an-
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gle nθi. b is a hyperparameter named the base of
RoPE, which is set to 104 in Llama2 (Touvron et al.,
2023b).

3.2 Extrapolation of RoPE
Formally, let N0, N be the pre-trained context
length and the finetuning context length, respec-
tively, and the ratio of extrapolation be r = N

N0
.

Previous approaches (Chen et al., 2023b; bloc97,
2023) implement length extrapolation by manually
setting a extrapolation function f(r, i) in θi(r) =
f(r, i)(b

2i
d )−1 to achieve extrapolation. For exam-

ple, we have fPI(r, i) = r−1, fNTK(r, i) = r−
2i

d−2 .
Moreover, further study shows that different wave-
lengths λi = 2π/θi require different extrapola-
tion functions. For those dimensions that satisfy
λi ≤ N0, they can be extrapolated directly, while
for those dimensions whose wavelength satisfies
λi > N0, interpolation is required because extrap-
olation will lead to out-of-distribution encodings.
In particular, the dimension with the smallest value
satisfy λi > N0 is referred as critical dimension
(Liu et al., 2023):

βcritic = 2

⌈
d

2
logb

N0

2π

⌉
(2)

YaRN extends the context window beyond 128k by
interpolating for dimensions larger than critical di-
mension and using extrapolation at different scales
for other parts (Peng et al., 2023).

4 GeNE

4.1 Batch-wise Random Scaling
For interpolation-based extrapolation methods,
when the test context length gets larger, the po-
sition embedding will get denser, especially for
those parts larger than the critical dimension, which
could lead to higher perplexity. To address this
problem we simply randomly scale the extrapo-
lation ratio during finetuning to make the model
adapt to a denser position embedding pattern.

Concretely, to adapt θGeNE(r) to a wider range
of extrapolation ratios, we randomly increase r in
each batch so that it exceeds NTrain

N0
. Formally, we

denote the predefined random scaling factor as s,
and the extrapolation ratio r of each batch is re-
set to s̃r, where s̃ is sampled from {1, . . . , s} with
a uniform distribution. And the scaling factor of
RoPE is defined as S = r · s. The extrapolation
ratio is set to r · s to enable the model to adapt
to a denser position embedding pattern, while an

extrapolation ratio of r ensures that the model does
not forget the maximum range of position embed-
ding. When the extrapolation ratio lies between
these two values, it serves as a gradual transition.

4.2 Interpolating Method of GeNE

We adopt "NTK-by-parts" (Peng et al., 2023) style
interpolation to initialize rξ(i) considering that us-
ing artificially designed for initialization can speed
up convergence (Chen et al., 2023a) and ensure that
no out-of-distribution position embedding occurs:

ξ(i) =

{
2i
βcritic

, 0 ≤ i ≤ βcritic
2

1, βcritic
2 < i ≤ d

2 − 1
. (3)

And we denote that fGeNE(r, i) = r−ξ(i). Further-
more, we conducted more extensive experiments
on the selection of the critical dimension. Specifi-
cally, we defined the critical dimension as

βcritic = 2

⌈
d

2
logb

N0

2mπ

⌉
(4)

where m is a hyperparameter. For more details,
please refer to Section 5.3.

We also consider trainable parameters for the
extrapolation function so that each attention head
can flexibly and independently adjust the extrapo-
lation scale. Concretely, for a transformer model
with L layers and H attention heads, we define the
vector of rotational angular velocity parameterized
by {ψl,h(i), ϕl,h(i) ∈ R} as

θGeNE-Param(r) = (eψ(i) ·rξ(i)b 2i
d +ϕ(i) ·r)−1 (5)

where l ∈ {0, . . . , L − 1}, h ∈ {0, . . . ,H −
1}, i ∈ {0, . . . , d/2 − 1}, and the parameters
{ϕl,h(i), ψl,h(i)} are initially set to zero.

5 Experiments

In this section, we evaluate GeNE on long context
language modeling and long context benchmarks.
We compared GeNE with other methods include
PI (Chen et al., 2023b), Dynamic-NTK (emozilla,
2023), YaRN (Peng et al., 2023) and CLEX (Chen
et al., 2023a). by fine-tuning on Llama2-7B model
(Touvron et al., 2023b). In addition, we conduct
ablation experiments on batch-wise random scal-
ing (BRS) and the interpolating method of GeNE.
For practical tasks, we evaluate GeNE on the Long-
Bench, comparing it with other open-source mod-
els in long context tasks.
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Table 1: Perplexity of different methods on the test splits of proof-pile (Azerbayev et al., 2022) and PG19 (Rae
et al., 2020). The better performance are in bold. We conduct the experiment three times with different random
seeds. On long context language modeling, our GeNE achieves competitive results compared with CLEX which is
the previous state-of-the-art method.

Method
Proof-pile

4k 8k 16k 32k 64k
PI 2.94±0.11 2.72±0.10 2.57±0.15 2.59±0.13 3.48±0.10
Dy-NTK 3.10±0.22 2.71±0.19 2.56±0.17 2.47±0.16 2.67±0.16
YaRN 2.84±0.09 2.63±0.08 2.54±0.11 2.39±0.13 2.44±0.13
CLEX 3.26±0.13 2.62±0.10 2.534±0.12 2.37±0.08 2.43±0.14
GeNE(ours) 2.91±0.14 2.64±0.10 2.535±0.13 2.38±0.09 2.40±0.11

Method
PG19

4k 8k 16k 32k 64k
PI 7.82±0.13 7.57±0.15 7.45±0.14 7.98±0.12 12.30±0.11
Dy-NTK 8.27±0.18 7.70±0.15 7.65±0.16 7.63±0.17 9.43±0.21
YaRN 7.76±0.09 7.63±0.10 7.55±0.09 7.57±0.12 8.42±0.12
CLEX 8.23±0.11 7.60±0.09 7.46±0.10 7.56±0.14 8.12±0.15
GeNE(ours) 7.73±0.10 7.54±0.08 7.43±0.12 7.48±0.10 7.53±0.14

Table 2: We performed ablation experiments with the
same random seed. NTK† denotes using fNTK as men-
tioned in Section 3.2 instead of fGeNE as initialization
while keeping other methods unchanged.

Method
Proof-pile

4k 8k 16k 32k 64k
GeNE-Param 2.812 2.602 2.453 2.343 2.296
GeNE 2.8132 2.603 2.455 2.345 2.298
w/o BRS 2.824 2.613 2.456 2.350 2.755
NTK† 2.814 2.604 2.459 2.349 2.309
vanilla NTK 2.828 2.612 2.464 2.395 2.803

Method
PG19

4k 8k 16k 32k 64k
GeNE-Param 7.802 7.560 7.433 7.420 7.670
GeNE 7.801 7.568 7.438 7.421 7.667
w/o BRS 7.846 7.614 7.461 7.581 10.861
NTK† 7.826 7.581 7.454 7.446 7.685
vanilla NTK 7.964 7.650 7.459 7.596 10.122

Dataset For long text language modeling, our
finetune dataset is collected from RedPajama-arxiv
and RedPajama-book (Computer, 2023), and trun-
cated to the length of 16k for every sample. We
use the test splits of proof-pile (Azerbayev et al.,
2022) and PG19 (Rae et al., 2020) for evaluation.
Specifically, we sample 20 items from each of the
two datasets and ensure each sample has at least
64k tokens. For instruction fine-tuning, we con-
duct instruction fine-tuning based on the filtered
UltraChat (Ding et al., 2023; Tunstall et al., 2023)
dataset.

Finetune Settings For long context modeling
finetuning, we use the AdamW (Loshchilov and
Hutter, 2019) with a learning rate of 2× 10−5 for
all the above models. We set a global batch size of
128, and finetune on 8 × A100 GPUs for 300 steps
with a linear warmup of 100 steps. Additionally,
we use Deepspeed Zero (Rajbhandari et al., 2020)
and FlashAttention-2 (Dao, 2023) for acceleration.

5.1 Evaluation on Language Modeling

We fine-tune all of the models based on a 16k con-
text length, and we evaluate sliding window per-
plexity (Peng et al., 2023) (Sw = 1024) for lan-
guage modeling with the sequence length from 4k
to 64k. The results are shown in Table 1. We
adopt the scaling factor of RoPE S = 16 for YaRN
(Peng et al., 2023), CLEX (Chen et al., 2023a) and
GeNE, as for Dynamic NKT (emozilla, 2023), we
set α = 2. Our GeNE achieved competitive results
in both long-text and short-text language model-
ing, and in particular, our GeNE outperformed all
baseline models on PG19. And it can maintain the
perplexity reduction in 32k text language modeling
and has better stability in 64k.

We further performed the ablation experiment on
the language modeling, and the results are shown in
Table 2. For ablation of BRS, we fix the extrapola-
tion ratio as r · s. Ablation results showed that both
BRS and GeNE-Param could improve the perfor-
mance of language modeling. The improvement of
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Figure 2: Retrieval accuracy of passkey. Here, S = 16
indicates a target extrapolation length of 64k, while
S = 32 corresponds to 128k.

BRS implementation becomes more notable with
the increasing extrapolation length. And previous
method such as NTK can also benefit from our ap-
proach. Considering that the pre-trained position
embedding is consistent for each layer and atten-
tion head for Llama2, we believe that this makes
the model fully adapted to this pattern so that the
model benefits less from diverse position embed-
dings.

5.2 Evaluation on Benchmark
We further conduct finetune with the UltraChat
(Ding et al., 2023; Tunstall et al., 2023) dataset
for 400 steps based on the checkpoint of GeNE
finetuned on 4k length in language modeling to
make it capable of instruction following tasks. We
evaluate Llama2-7b-chat (Touvron et al., 2023b),
CodeLlama-7b-Instruct (Roziere et al., 2023),
longchat-7b-v1.5-32k (Li et al., 2023), vicuna-7b-
v1.5-16k (Zheng et al., 2023) and our GeNE on
LongBench (Bai et al., 2023) and report the aver-
age scores on each type of task in Table 3.

5.3 Evaluation on Synthetic Retrieval Tasks
Synthetic retrieval tasks such as passkey retrieval
(Mohtashami and Jaggi, 2024) can measure the
model’s maximum context length. In this section,
we compare the maximum context length achiev-
able under different hyperparameter settings of
GeNE finetuned on a context length of 16k.

For passkey retrieval, we compare the retrieval
accuracy under different values of the hyperparam-
eter m in Equation 4. Our testing context lengths
range from 4k to 128k. For each length, we con-
ducted 50 tests. The results are shown in Figure 2.

The results indicate that the selection of the criti-
cal dimension affects the model’s actual maximum
length. When we set m = 3, the model achieves an
accuracy rate of over 90% within the target length.
As form < 3, the accuracy rate declines at a length
of 64k.

6 Conclusion

In this paper, we introduce GeNE, a simple and ef-
fective context window expansion method. GeNE
stably extrapolates the context window from 4k
to 64k and is competitive in long-text language
modeling compared with the current state-of-the-
art method CLEX. Experiments demonstrate that
compared with trainable extrapolation functions,
random scaling has a more notable impact on ex-
trapolation.

7 Limitations

Although our experiments based on GeNE found
that random scaling has a notable impact, more
research is needed to determine whether this is
a general conclusion. For example, (Chen et al.,
2023a) found that trainable parameters are still nec-
essary for continuous dynamic extrapolation. We
did not perform significance tests for cases with
small gaps because collecting statistics requires
finetuning the model multiple times, causing higher
computational costs.

In addition, (Su, 2023; Jin et al., 2024) show
that another sufficient condition for modeling long-
text languages is to keep the code distance of local
position encoding unchanged. This method can
also achieve long text language modeling without
finetuning, while our approach still requires around
0.6B of tokens for finetuning.

8 Ethics Statement

This research is mainly about how to effectively
extend the context window length of language mod-
els, which in itself does not have the possibility of
directly posing any social risks. Context length ex-
trapolation is a key issue in large language models,
aiming to create more powerful language models.
However, these language models can be abused
by humans, which is a common problem currently
faced in the field of NLP.

4215



References
Z. Azerbayev, E. Ayers, and B. Piotrowski. 2022. Proof-

pile.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, mul-
titask benchmark for long context understanding.
arXiv preprint arXiv:2308.14508.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

bloc97. 2023. Ntk-aware scaled rope allows llama mod-
els to have extended (8k+) context size without any
fine-tuning and minimal perplexity degradation.

Guanzheng Chen, Xin Li, Zaiqiao Meng, Shangsong
Liang, and Lidong Bing. 2023a. Clex: Continuous
length extrapolation for large language models. arXiv
preprint arXiv:2310.16450.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023b. Extending context window
of large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and
Alexander Rudnicky. 2022. Kerple: Kernelized rela-
tive positional embedding for length extrapolation. In
Advances in Neural Information Processing Systems,
volume 35, pages 8386–8399. Curran Associates,
Inc.

Ta-Chung Chi, Ting-Han Fan, Alexander Rudnicky, and
Peter Ramadge. 2023. Dissecting transformer length
extrapolation via the lens of receptive field analysis.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 13522–13537, Toronto, Canada.
Association for Computational Linguistics.

Together Computer. 2023. Redpajama: An open source
recipe to reproduce llama training dataset.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin,
Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. 2023. Enhancing chat language mod-
els by scaling high-quality instructional conversa-
tions. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 3029–3051, Singapore. Association for Com-
putational Linguistics.

emozilla. 2023. Dynamically scaled rope further in-
creases performance of long context llama with zero
fine-tuning.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng
Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen,
and Xia Hu. 2024. Llm maybe longlm: Self-extend
llm context window without tuning. arXiv preprint
arXiv:2401.01325.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-
min Zheng, Joseph Gonzalez, Ion Stoica, Xuezhe Ma,
and Hao Zhang. 2023. How long can context length
of open-source LLMs truly promise? In NeurIPS
2023 Workshop on Instruction Tuning and Instruction
Following.

Xiaoran Liu, Hang Yan, Shuo Zhang, Chen An,
Xipeng Qiu, and Dahua Lin. 2023. Scaling
laws of rope-based extrapolation. arXiv preprint
arXiv:2310.05209.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Amirkeivan Mohtashami and Martin Jaggi. 2024.
Random-access infinite context length for transform-
ers. Advances in Neural Information Processing Sys-
tems, 36.

Arka Pal, Deep Karkhanis, Manley Roberts, Samuel
Dooley, Arvind Sundararajan, and Siddartha Naidu.
2023. Giraffe: Adventures in expanding context
lengths in llms. arXiv preprint arXiv:2308.10882.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models. arXiv preprint
arXiv:2309.00071.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16. IEEE.

4216

https://github.com/zhangir-azerbayev/proof-pile
https://github.com/zhangir-azerbayev/proof-pile
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://proceedings.neurips.cc/paper_files/paper/2022/file/37a413841a614b5414b333585e7613b8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/37a413841a614b5414b333585e7613b8-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.acl-long.756
https://doi.org/10.18653/v1/2023.acl-long.756
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://doi.org/10.18653/v1/2023.emnlp-main.183
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://openreview.net/forum?id=LywifFNXV5
https://openreview.net/forum?id=LywifFNXV5
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH


Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi
Grau-Moya, Róbert Csordás, Mehdi Bennani, Shane
Legg, and Joel Veness. 2023. Randomized positional
encodings boost length generalization of transform-
ers. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 1889–1903, Toronto, Canada.
Association for Computational Linguistics.

Jianlin Su. 2023. Rectified rotary position embeddings.
https://github.com/bojone/rerope.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di-
rect distillation of lm alignment. arXiv preprint
arXiv:2310.16944.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-judge with MT-bench and chatbot arena.
In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wen-
hao Wu, Furu Wei, and Sujian Li. 2024. PoSE: Ef-
ficient context window extension of LLMs via po-
sitional skip-wise training. In The Twelfth Interna-
tional Conference on Learning Representations.

A Additional Results

4217

https://doi.org/10.18653/v1/2023.acl-short.161
https://doi.org/10.18653/v1/2023.acl-short.161
https://doi.org/10.18653/v1/2023.acl-short.161
https://github.com/bojone/rerope
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=3Z1gxuAQrA
https://openreview.net/forum?id=3Z1gxuAQrA
https://openreview.net/forum?id=3Z1gxuAQrA


Table 3: Evaluation average scores on LongBench. The best performance and suboptimal performance are bolded
and underlined respectively.

Model Single-Doc QA Multi-Doc QA Sum. Few-shot Synthetic Code
Llama2-7b-chat-4k 22.28 18.35 18.45 51.45 6.56 55.15
CodeLlama-7b-Instruct-16k 33.79 13.94 21.66 57.27 7.00 60.37
vicuna-7b-v1.5-16k 32.32 18.87 23.57 56.37 5.00 45.14
longchat-v1.5-7b-32k 28.53 19.95 22.02 50 11.77 52.73
GeNE-llama2-7b-4k 27.98 16.81 23.33 58.05 2.82 56.43
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Figure 3: Visualization of the difference in trainable extrapolation functions and initialization in GENE-Param.
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Figure 4: Training loss curves of various baselines.
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