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Abstract

Training Large Language Models (LLMs) to
process extensive context lengths incurs pro-
hibitive computational costs. Prevailing tech-
niques for extending context capabilities in
LLMs typically require not only additional
training procedures but also access to datasets
with long context (e.g., sequences of 32K to-
kens), presupposing substantial GPU expendi-
tures. To address the aforementioned issues, we
introduce a novel solution named Efficient and
Extreme length extension for Large Language
Models (E2-LLM). E2-LLM entails a singu-
lar training process over considerably short se-
quences (e.g., 4K tokens), which greatly miti-
gates the cost of continual-pretraining or fine-
tuning. Within the training phase, we incorpo-
rate a dual augmentation strategy with Rotary
Position Embeddings (RoPE) that adjusts the
scale and position indices across distinct train-
ing samples. E2-LLM is meticulously designed
to enhance the model’s robustness to diverse
relative positions. The experimental results on
multiple benchmark datasets demonstrate the
superior performance of E2-LLM on demand-
ing tasks of processing long contexts.

1 Introduction

Large language models are inherently constrained
by a predetermined context window length. For
instance, in the case of the Llama architecture (Tou-
vron et al., 2023a,b), input sequences are restricted
to a maximum of either 2,048 or 4,096 tokens. This
preset context window limit could be readily sur-
passed in applications such as multi-turn dialogues,
summarizations of long documents, or intricate
reasoning chains (Zheng et al., 2023; Chen et al.,
2023a). Thus, LLMs capable of accommodating
extensive context windows are thereby highly de-
manding. Nevertheless, the process of training
an LLM with long context windows from scratch
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Figure 1: Comparison of existing long-context ex-
tension methods (e.g., PI) and E2-LLM. “LLM (4K)”
means the LLM with default context window (e.g.,
Llama2 with 4K). “LLM∗ (16K/32K/64K)” means the
LLM with extended context windows (16K/32K/64K)
after fine-tuning. (a) Existing methods require individ-
ual training over the corresponding long-context data
for different target context windows; (b) E2-LLM only
needs a singular training phase with acceptable GPU
memory usage and supports different evaluation context
windows in inference.

incurs considerable computational overhead and
resource expenditure. As a result, prevailing strate-
gies (Peng et al., 2023; Chen et al., 2023b) tend to
enhance the context window capacity of an existing
LLM as a more resource-efficient alternative.

A commonly employed technique, termed di-
rect extrapolation, fine-tunes an existing pretrained
LLM with a more expansive context window.
However, the authors of Position Interpolation
(PI) (Chen et al., 2023a) observe that this method
often leads to slow convergence and can fail when
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adapting the model to substantially larger context
windows. Existing long-context extension methods
necessitate the predefinition of an enlarged con-
text length to perform continual-pretraining or fine-
tuning (Wang et al., 2024), so that the model could
process the extended context through interpolation
rather than extrapolation. It is imperative to curate
a large collection of data with the designated con-
text length. The expansion of training sequence
lengths can precipitate GPU memory to become
the main bottleneck for executing the long-context
post-training (as exemplified by LLM1∼3 in Fig. 1
(a)). Certain approaches resort to sliding-skip tech-
niques (Xiao et al., 2023) or quantization (Yang,
2023) to alleviate the GPU memory demands, yet
they trade off precision during training, which may
be unacceptable for particular tasks demanding pre-
cise long-context interpretation.

To address the aforementioned issues, we in-
troduce E2-LLM which enhances the ability of
LLMs to process almost arbitrary sequence lengths
through a singular and lossless training phase,
thereby obviating the need for pre-specifying a tar-
get context length. As demonstrated in Fig. 1(b),
E2-LLM remains the training on the commonly-
used data with short lengths (e.g., 4K tokens). The
model would be exposed to a wide range of relative
positions due to the strategic design of our training
paradigm. We also employ positional offsets to
prevent LLMs from focusing on a narrow range
of absolute positional indices within a prefix span.
Thanks to the off-the-shelf inference acceleration
technologies (Hong et al., 2023), we can harness
the superior performance of our lossless training.

The contributions are summarized as follows:
• Our investigation delves into the limitations of ex-

isting long-context extension methods of LLMs,
i.e., the heavy fine-tuning costs and the necessity
of a large collection of curated long sequences.
We then propose E2-LLM to undertake a singular
training procedure on the general short-context
data, which minimizes GPU memory occupation
without compromising numerical precision.

• E2-LLM applies a dual augmentation strategy
upon RoPE on the scale and position indices
across distinct training samples, so that the model
accommodates almost arbitrary context length
and enhances the long-context capabilities.

• Evaluation on multiple challenging long-context
benchmark datasets highlights the effectiveness
of the E2-LLM in processing long contexts. Fur-

ther analysis verifies the model’s robust perfor-
mance on contexts encompassing up to 120K
tokens, despite being trained on sequences re-
stricted to 4K tokens.

2 Related Works

Long-context transformers. Transformers have
been used in many tasks (Liu et al., 2022; Guo
et al., 2022, 2023b, 2024a). Augmenting the ca-
pability of transformer models to process longer
text sequences has emerged as a prevalent topic
for LLMs. Methodologies such as retrieval-based
models have been engaged (Karpukhin et al., 2020;
Izacard et al., 2022). Other methods (Wang et al.,
2020; Beltagy et al., 2020; Kitaev et al., 2020; Bu-
latov et al., 2022; Ding et al., 2023) craft approx-
imate alternatives to the attention mechanisms to
mitigate the self-attention’s intrinsic computational
intensity. Wu et al. (2022) further resorts to the
memory-based systems to condense previous in-
puts and recall pertinent components. However,
these approaches tend to fall short of the effect of
full attention, thereby impeding the refinement of
the pretrained LLMs. Our approach diverges by a
solution that preserves a close correspondence with
the conventional form of attention, evidencing only
marginal deviation in performance.

Extension via position encodings. LLMs (Guo
et al., 2024b; Bai et al., 2024; Wu et al., 2024;
Zhang et al., 2024; Du et al., 2024; Guo et al.,
2023a; Sun et al., 2024; Wang et al., 2023; Zhou
et al., 2023, 2024) are originally trained with pre-
defined context sizes. Contemporary research has
pivoted towards exploring to enhance the context
window of LLMs during fine-tuning, due to the pro-
hibitive cost of post-training LLMs on longer se-
quences. One notable suite of techniques, including
Position Interpolation (Chen et al., 2023a), NTK-
aware position embeddings (ntk, 2023), PoSE (Zhu
et al., 2023), ABF (Xiong et al., 2023), and
Yarn (Peng et al., 2023), would alter RoPE (Su
et al., 2021) to facilitate Llama’s processing of in-
puts of 32K tokens. These methods still require
long-context training data (thereby significant train-
ing costs), yet they may perform poorly on the
out-of-distribution (OOD) context length. Some
other approaches observe that relative positional
encodings become almost the same when token
distances become substantial, as the result of nu-
merical precision limitations. Such approaches
strategically trade some degree of accuracy for en-
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hanced efficiency, such as Landmark attention (Mo-
htashami and Jaggi, 2023) that compasses ex-
tended contexts into a set of retrieved tokens, and
StreamingLLM (Xiao et al., 2023) that curtails
computational demands on intermediate tokens. In
contrast, E2-LLM is trained via a mechanism that
exposes the model to diverse relative positions, so
that the context can be extended to nearly arbitrary
length in a lossless manner.

3 Background

3.1 Rotary Position Embedding (RoPE)

Transformer models require explicit positional in-
formation to be injected, where the positional en-
codings are used to represent the order of inputs.
We take RoPE as an example, which is widely-used
in many Llama-style models. In RoPE, given a po-
sition index m ∈ [0, L) and an embedding vector
x := [x0, x1, . . . , xd−1]

⊤, where L is the context
window and d is the dimension of the attention
head, a vector-valued complex function f(x,m) is
defined as follows:

f(x,m) = [(x0+ix1)e
imθ0 , . . . , (xd−2+ixd−1)e

imθd/2−1 ]⊤,
(1)

where i :=
√
−1 is the imaginary unit and θj =

10000−2j/d. Based on RoPE, the attention score a
is computed as follows:

a(m,n) = Re⟨f(q,m), f(k, n)⟩
=: a(m− n), (2)

where q and k are the query and key vectors for a
specific attention head, respectively. In Eqn. (2),
we observe that a(m,n) is only dependent on rela-
tive position m−n through trigonometric functions.
Besides, RoPE is performed on both query and key
embeddings to obtain attention scores at each layer.

3.2 Position Interpolation

Although the attention weight in Eqn. (2) depends
only on the relative positions, the model struggles
to extrapolate. Specifically, when applying direct
extrapolation to larger context windows than the
training context window, the perplexity (PPL) will
rise significantly (i.e., > 103).

Let s denote the positional span between a query
and a key, and L denote the size of the trained
context window. Instead of direct extrapolation on
the attention score to s > L, the attention score is
defined as ã(s) = a(Ls/L′) in PI, where L′ is the

extended longer context window. Formally, RoPE
f is replaced by fPI as follows:

fPI(x,m) = f

(
x,

mL

L′

)
, (3)

where the actual position indices are mapped from
[0, L) to [0, L′). We define the scale parameter g as
L′
L . For example, g is set as 2 when L′ = 8, 192 for
Llama2 with context window of L = 4, 096. Thus,
the Eqn. (3) can be reformulated as follows:

fPI(x,m) = f

(
x,

m

g

)
. (4)

4 Dual Augmentation of E2-LLM

In this section, we introduce the details of E2-LLM
for adapting diverse sizes of context windows by
a singular training procedure on short-length data,
which significantly reduces the tuning costs.

4.1 Notations
Apart from the notations defined in Sec. 3, we also
define the following notations. First, let R denote
the trained length. In E2-LLM, R is the maximum
length of the data in fine-tuning, i.e., 4K by default.
Therefore, it is easy to collect the training data with
a length of R and the used GPU memory in fine-
tuning is also acceptable. In contrast, R should be
equal to the extension length L′ (e.g., 16K/32K)
in many long-context extension methods (e.g., PI),
which requires high GPU memory usage in training.
Second, we also introduce the position offset t in
RoPE, and we can reformulate Eqn. (4) to compute
the position embeddings as:

f ′(x,m; t, g) = f

(
x,

m+ t

g

)
. (5)

In standard RoPE, by default, t is set as 0. In E2-
LLM, t is selected from a range of indices T =
{0, ..., Tmax}, where Tmax is the maximum posi-
tion offset. Third, we also define a set of scale pa-
rameters used in E2-LLM as G = {1, 2, ..., Gmax},
where Gmax is the maximum scale parameter.

4.2 E2-LLM
We then introduce the dual augmentation strategy
of E2-LLM, which augments on the hyperparam-
eters (i.e., the scale g and the position offset t) of
Eqn. (5). Note that we take the pretrained LLM H
with the default context window L as 4,096 and the
trained length R as 4,096.
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4.2.1 Augmentation on g

The advancements of conventional interpolation
algorithms are attributed to the exposure to a var-
ied range of relative positions during post-training,
along with a sufficient number of strongly associ-
ated token pairs across these relative positions. In
this paper, we conceptualize RoPE and accompa-
nying interpolation algorithms as a series of fitting
behaviors. These interpolation algorithms often ne-
cessitate retraining to adapt to OOD context length,
partly due to the overfitting to the relative positions
observed during training (analogous to the Runge
phenomenon in numerical analysis). Consequently,
we augment the training that incorporates a broader
spectrum of relative positions, thereby generalizing
LLMs to accommodate longer context.

We illustrate the augmentation procedure on the
scale parameter g in Fig. 2. Specifically, to make
the model H cover different position densities in
training, for the i-th iteration, we sample the scale
gi from G at different iterations following a prede-
fined probability distribution P as follows:

gi = Sg(P,G), gi ∈ G, (6)

where Sg(P,G) denotes the sampling operation on
g. Therefore, different scale parameters are used
across distinct iterations in training. Note that P is
set to uniform distribution by default.

Figure 2 illustrates three different iterations in
the training phase, where we fix the position offset
t to 0. Suppose that the three randomly selected
gs are 2, 5, and 10, respectively. It is obvious that
within the singular training phase, the maximum
interpolated context windows (horizontal axis), as
well as the densities of the trained position indices
(blue dots), are different among the three iterations.
Note that, as the training context window R is less
than the interpolated maximum context windows,
only a certain proportion of the position indices
(blue dots) would be trained in this setting.

4.2.2 Augmentation on t

As we can only focus on a small range of position
indices when we start from zero index (i.e., t = 0),
to improve the robustness and generalization abil-
ity of E2-LLM, we further introduce the augmen-
tation on the position offset t by changing the ab-
solute position indices of RoPE. Inspired by recent
works (Han et al., 2023; Xiao et al., 2023) which
allocate a high proportion of attention weights to
the initial tokens (i.e., attention sinks (Xiao et al.,

Figure 2: The trained position indices (blue dots) when
using different scale parameters (i.e., g = 2, 5, 10). The
maximum length of the fine-tuning data (i.e., R) is 4,096
and the position offset t is set to 0 for illustration.

2023)), we preserve several initial tokens and set
the position offsets of these tokens as 0. Note that
the number of initial tokens is set to 4 by default.
For the remaining position indices, in the i-th train-
ing iteration, we sample the position offset ti fol-
lowing a pre-set probability distribution, denoted
as Q. Accordingly, ti is set as follows:

ti =

{
0, m ∈ [0, 3]

St(Q, T ), m ∈ (3, R)
, (7)

where St(Q, T ) denotes the sampling operation
on t. Note that Q is set as a uniform distribution
and Tmax is assigned by the difference between
the maximum interpolated context window and
the trained context window in the current iteration.
Based on Eqn. (7), for n ∈ [0, 3] and m ∈ (3, R),
the Eqn. (2) can be depicted by:

a(m,n) = Re⟨f ′(q,m; ti, gi), f
′(k, n; ti, gi)⟩

=: a(m+ St(Q, T )− n). (8)

When St(Q, T ) yields a high value, the range of rel-
ative position differences (i.e., (m+St(Q, T )−n))
between m and n would become significantly large.
Fig. 3 illustrates the trained position indices (blue
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Figure 3: The trained position indices (blue dots) when
using different position offsets and g is 5. The position
indices of the first four tokens are not changed.

Algorithm 1 Training of E2-LLM

Input: Pretrained LLM model H with default con-
text window of L (e.g., 4K); The trained con-
text window R (e.g., 4K/8K); The evaluation
context window L′ (e.g., 32K/64K);

1: for the i-th iteration in training do
2: Get the scale gi based on Eqn. (6);
3: Get the position offset ti based on Eqn. (7);
4: Modify the RoPE position embeddings

based on Eqn. (5);
5: Train model H on training window R;
6: Compute the next token prediction loss;
7: Update parameters of model H;
8: end for

Output: The optimized long context model H′.
(Note that H′ can extend to different context
windows at inference.);

dots) with the position offset t, indicating that E2-
LLM can easily make use of the position indices
with different absolute values. Hence, the argumen-
tation on t makes LLMs generalize to diverse range
of relative differences.

4.2.3 Training and Inference
Training. The training procedures of E2-LLM
method are summarized in Alg. 1. We replace g
and t with gi and ti in Eqn. (5) for the i-th iteration
in the training phase. H is fine-tuned by a short
context window R under the next token prediction
task, leveraging the modified position encodings.
Inference. E2-LLM also does not introduce extra
trainable parameters, nor modify the network archi-

tecture. This is essential in practical applications
as most infrastructure and optimization strategies
for the original model remain available after con-
text extension. During inference, we can extend
to different context windows by merely setting the
corresponding scale parameters for interpolation.
For example, we set g = 8 for extending to 32, 768
and g = 16 for extending to 65, 536, called as E2-
LLM-32K and E2-LLM-64K, respectively. Here,
the parameters of E2-LLM-32K and E2-LLM-64K
are the same, where the only difference is that the
scale parameters are set to 8 and 16, respectively.
In practice, we can thereby deploy only one LLM
on devices, and automatically change the scale pa-
rameter of RoPE based on the designated length of
input context to support different context windows.

5 Experiments

5.1 Experimental Settings

Models. We take the pretrained 7B and 13B
Llama2 (Touvron et al., 2023b) as the base models
to demonstrate the effectiveness of E2-LLM.

Training procedure. All models are fine-tuned
via the next token prediction objective based on
two 8×A100-80GB GPU machines. We use
AdamW (Loshchilov and Hutter, 2019) with β1 =
0.9 and β2 = 0.95. The learning rate is set to
1× 10−5, and the number of training iterations is
set to 30,000 with a global batch size of 16.

Datasets. The training dataset includes pretrain
dataset (i.e., Pile (Gao et al., 2020)), and fine-
tuning datasets (i.e., ShareGPT (Zheng et al.,
2023) and the long summarization datasets (Cohan
et al., 2018)). Note that the fine-tuning datasets
are used to improve the question-answer abili-
ties of long-context LLMs following Vicuna and
LongChat (Zheng et al., 2023) to generate rea-
sonable results on LongBench. We evaluate the
long-sequence language modeling performance on
the LongBench (Bai et al., 2023) and Arxiv proof-
pile (Azerbayev et al., 2022) datasets.

5.2 Results on LongBench

We evaluate several representative LLMs with
long context capability, including GPT-3.5-
Turbo-16K (OpenAI, 2022), Llama2-7B-chat-
4K (Touvron et al., 2023b), LongChat-v1.5-7B-
32K (Li et al., 2023), Vicuna-v1.5-7B-16K (Zheng
et al., 2023), Longlora-7B-16K (Chen et al.,
2023b), Llama2-13B-chat-4K (Touvron et al.,
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Table 1: Results (%) on single-doc QA, multi-doc QA and summarization tasks from LongBench dataset.

Model Single-Doc QA Multi-Doc QA Summarization

Narrative
QA Qasper MultiField

QA-en
MultiField

QA-zh
Hotpot

QA
2WikiMulti

hopQA
MuSi
Que

Du
Reader

Gov
Report QMSum

GPT-3.5-Turbo-16K 23.6 43.3 52.3 61.2 51.6 37.7 26.9 28.7 29.5 23.4

Llama2-7B-chat-4K 18.7 19.2 36.8 11.9 25.4 32.8 9.4 5.2 27.3 20.8
LongChat-v1.5-7B-32K 16.9 27.7 41.4 29.1 31.5 20.6 9.7 19.5 30.8 22.7
Vicuna-v1.5-7B-16K 19.4 26.1 38.5 43.0 25.3 20.8 9.8 19.3 27.9 22.8
LongLora-7B-16K 19.8 29.1 37.2 8.5 37.0 30.3 17.1 15.3 31.5 24.1
E2-LLM-Llama2-7B-16K 16.4 34.7 39.1 43.6 37.1 34.4 17.9 18.6 29.4 23.0
E2-LLM-Llama2-7B-32K 12.3 35.6 40.4 46.6 43.7 34.8 22.0 22.6 29.7 23.8

Llama2-13B-chat-4K 19.2 25.8 36.9 33.3 36.1 32.4 14.5 26.8 26.6 20.2
Vicuna-v1.5-13B-16K 18.9 29.9 46.2 28.4 38.1 36.0 10.7 20.9 27.9 22.1
PI-Llama2-13B-16K 19.2 33.3 42.7 47.9 44.9 34.8 19.5 17.4 27.9 23.7
E2-LLM-Llama2-13B-16K 25.4 35.3 46.5 49.1 46.4 38.3 25.2 19.3 29.9 22.7
E2-LLM-Llama2-13B-32K 24.1 36.2 49.0 52.5 49.2 37.6 23.1 20.4 29.9 23.1

Table 2: Results (%) on summarization, few-shot learning, synthetic, and code tasks from LongBench dataset.
‘Overall’ is computed by the macro-average over major task categories. This is computed on English (EN) tasks,
Chinese (ZH) tasks, and all (All) tasks, code tasks are included in both languages.

Model Summarization Few-shot Learning Code Overall

MultiNews VCSUM TREC TriviaQA SAMSum LSHT LCC RepoBench-P EN ZH All

GPT-3.5-Turbo-16K 26.7 16.0 68.0 91.4 41.7 29.2 54.7 53.6 44.60 33.78 42.19

Llama2-7B-chat-4K 25.8 0.2 61.5 77.8 40.7 19.8 52.4 43.8 35.17 15.45 20.79
LongChat-v1.5-7B-32K 26.4 9.9 63.5 82.3 34.2 23.2 53.0 55.3 36.86 20.43 33.21
Vicuna-v1.5-7B-16K 27.2 15.1 74.0 86.2 40.8 28.8 51.0 43.5 36.49 26.55 34.28
LongLora-7B-16K 27.7 0.5 63.5 85.7 41.9 26.0 57.6 54.5 39.79 14.55 34.18
E2-LLM-Llama2-7B-16K 25.9 9.6 68.5 89.2 38.2 35.0 65.8 58.1 41.26 26.70 38.03
E2-LLM-Llama2-7B-32K 25.4 11.7 70.5 88.4 32.5 40.0 64.5 60.9 41.74 30.23 39.18

Llama2-13B-chat-4K 26.1 17.2 66.0 85.2 36.5 20.3 51.9 52.8 37.87 24.38 34.87
Vicuna-v1.5-13B-16K 27.1 16.4 74.0 84.9 27.8 29.8 44.1 45.6 38.08 23.86 34.92
PI-Llama2-13B-16K 25.9 9.1 72.5 86.5 27.9 31.0 62.5 51.1 40.88 26.35 37.65
E2-LLM-Llama2-13B-16K 27.0 9.8 73.5 87.9 40.6 36.0 65.4 59.1 44.73 28.56 41.13
E2-LLM-Llama2-13B-32K 26.8 10.2 75.0 87.8 40.9 44.5 63.8 57.5 44.55 31.93 41.74

2023b), Vicuna-v1.5-13B-16K (Zheng et al.,
2023), PI-Llama2-13B-16K. LongChat-v1.5-7B-
32K, Vicuna-v1.5-7B-16K, and LongLora-7B-16K
are fine-tuned from Llama2-7B with PI. Vicuna-
v1.5-13B-16K (Zheng et al., 2023) and PI-Llama2-
13B-16K are fine-tuned with Llama2-13B with PI,
where PI-Llama2-13B-16K are fine-tuned via the
abovementioned training datasets. We follow the
settings in LongBench, i.e., either zero-shot or few-
shot for each specific subtask. When the input
length surpasses the maximum context length of
a model (indicated by the suffix of its name), we
truncate the input sequence from the middle. The
measurement score of each subtask ranges from 0
to 100, the higher the better.

Tables 1 and 2 present the performance metrics
on the LongBench dataset. The salient observa-
tions are as follows: (1) E2-LLM-Llama2-13B-32K
demonstrates comparable performance to GPT-3.5-
Turbo-16K, with our model achieving an overall

accuracy of 44.55% versus 44.60% for the latter in
English tasks. (2) Using varying context sizes (16K
and 32K tokens), we find that the model exhibits
enhanced performance with an increased context
window size. (3) To ensure a fair comparison, we
meticulously fine-tune the Llama2-13B with canon-
ical PI (denoted as PI-Llama2-13B-16K), employ-
ing identical training settings and datasets. The re-
sults reveal that E2-LLM-Llama2-13B-16K consis-
tently surpasses PI-Llama2-13B-16K by an average
margin of 9%, thereby underscoring the efficacy of
E2-LLM.

5.3 Results on Proof-Pile

In Table 3, we report the perplexity scores as an
indicator of model performance over extended con-
text using the curated ArXiv Mathematics Proof-
Pile dataset (Azerbayev et al., 2022). We randomly
select 128 documents from the dataset, each con-
taining no fewer than 64K tokens, and assess the
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perplexity of these samples. We apply the slid-
ing window method with a window size of 256
tokens to compute perplexity values. Notably, the
models Vicuna-v1.5-16K and LongChat-v1.5-32K
are fine-tuned on the Llama2 architecture, wherein
RoPE is scaled linearly. As previously highlighted,
E2-LLM can be easily adapted to the 64K context
scenarios. Moreover, the results in Table 3 reveal
a remarkable reduction in perplexity for models
augmented with E2-LLM, particularly noticeable
with larger context window sizes.
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Figure 4: Performance along with training iterations.
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Figure 5: Generalization abilities on the unseen scales.

5.4 Ablation Study
Effect of the augmentation strategies. We pro-
vide two variants of E2-LLM to verify the stan-
dalone results of the augmentation strategies as
shown in Section 4: “E2-LLM(no offset)”, in which
the positional offset is omitted (i.e., t ≡ 0), and
“E2-LLM(fixed scale)”, which represents the stan-
dard PI (target context length as 16K) with posi-
tional offset (i.e., g ≡ 4). As shown in Table 4,
these two alternatives still outperform PI (in Ta-
ble 2) on LongBench. Meanwhile, the full E2-LLM
exhibits additional improvements, indicating the ef-
fectiveness of the two augmentation strategies.
Effect of the number of initial fixed tokens. By
design, we set the number of initial fixed tokens
as four. The results in Table 5 show the accuracy

on LongBench of deviations from this predefined
number of initial tokens. The setting involving four
initial tokens seems to sufficiently bootstrap the
model’s performance, and the further increase will
not produce any improvements.
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Figure 6: Pressure Test (“Needle In A Haystack”) of
E2-LLM.

Effect of the number of fine-tuning steps. Fig. 4
illustrates the performance of E2-LLM-Llama2-
13B-32K on LongBench across varying fine-tuning
iterations. During the initial 5K iterations, there
is a remarkable rise in accuracy, suggesting that
the model swiftly acquires long-context process-
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Table 3: Evaluation of PPL on Arxiv Proof-pile based on Llama2 7B and 13B, where lower perplexity means better
performance. “PI” denotes Position Interpolation (Chen et al., 2023a). The open-sourced Vicuna-v1.5-16K and
LongChat-v1.5-32K are extended based on PI. Note that weights of E2-LLM-16K, E2-LLM-32K, and E2-LLM-64K
are the same at inference, and the only difference is that the scales are set as 4, 8 and 16, respectively.

Model Evaluation Context Window Size
Size Training Context Window Method 4,096 8,192 16,384 32,768 65,536

7B 4K None 2.92 - - - -

7B
16K Vicuna-v1.5-16K (PI) 3.48 3.17 3.95 - -
32K LongChat-v1.5-32K (PI) 3.54 3.18 2.91 2.73 -

4K
E2-LLM-16K 2.96 2.71 2.54 - -

7B E2-LLM-32K 2.99 2.74 2.56 2.46 -
E2-LLM-64K 3.06 2.81 2.62 2.51 2.56

13B 4K None 2.78 - - - -

13B 16K Vicuna-v1.5-16K (PI) 3.27 2.97 2.78 - -

E2-LLM-16K 2.82 2.59 2.43 - -
13B 4K E2-LLM-32K 2.85 2.61 2.44 2.34 -

E2-LLM-64K 2.91 2.67 2.49 2.39 2.44

Table 4: Ablation on different augmentation strategies.

Methods EN ZH All

E2-LLM 44.55 31.93 41.74
E2-LLM (no offset) 42.28 29.49 39.44

E2-LLM (fixed scale) 41.66 28.33 38.77

Table 5: Ablation on the number of initial tokens.

# Initial Tokens 0 2 4 6

EN 42.93 43.94 44.55 44.23
ZH 29.55 30.65 31.93 32.82
All 39.95 40.99 41.74 41.69

ing capabilities in E2-LLM. When proceeding with
training, the accuracy still presents a consistent up-
ward tendency, indicating possibly further gains in
the model’s ability to handle long-range dependen-
cies.

5.5 Further Analysis
Extension to unseen scales. By default, we set
Gmax as 20 to support the maximum interpolated
context window of 80K. In Fig. 5, the interpolation
scales are experimentally adjusted to 20, 30, 40,
and 50 during inference to evaluate the generaliza-
tion ability of E2-LLM. The results demonstrate
that PPL maintains a satisfactory level for contexts
comprising fewer than 120K tokens. Nonethe-
less, when we continue to increase the scale, a

discernible deterioration in performance occurs. It
suggests that E2-LLM possesses robust general-
ization ability for unseen scales within a certain
range.
Visualization on pressure test. Meanwhile, we
take the E2-LLM-32K and E2-LLM-64K based on
Llama2-13B as examples to provide the pressure
test on E2-LLM. The pressure test (i.e., “Needle In
A Haystack”) denotes to test the long-context abil-
ities under different evaluation context windows,
as shown in Fig. 6. Specifically, in the pressure
test, we first prepare the documents truncated to
32K and 64K, respectively. Then, we randomly
insert the reference information at different ratios
(e.g., 5%, 75%) of the document depth to generate
the input context. The reference information pro-
vided herein is an intentionally fabricated fact. It
is designed to ensure consistency and non-conflict
with the context, representing a minute detail. The
model requires a robust ability to resist interference
to accurately identify the correct answer. After that,
the model takes the input context as input and gen-
erates the answer. Finally, we calculate the accu-
racies of the ten documents under different ratios
of document depth and different evaluation context
lengths. From Fig. 6, we observe that E2-LLM-32K
and E2-LLM-64K achieve superior performance
for the pressure test. It indicates that despite be-
ing trained once within 4K sequences, E2-LLM
presents reliable capabilities with the appropriate
interpolation scale.
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6 Conclusion

In this study, we propose E2-LLM to extend the
context windows with a singular training phase
and minimal computational overhead. E2-LLM
harnesses RoPE-based position embeddings to
implement a novel dual augmentation strategy
that manipulates the interpolation scale and posi-
tional offset in training examples of short lengths
(e.g., 4K/8K). Comprehensive experimental results
demonstrate the superior performance of E2-LLM
on long-context processing tasks.

Ethical Issues and Limitations

E2-LLM is designed to enhance the capability of
LLMs to process long context via technical so-
lutions. There are no ethical issues for applying
E2-LLM to existing LLMs. However, the major
limitation of deploying E2-LLM comes from the in-
ference phase. Although E2-LLM introduces loss-
less training, the best performance still depends on
the highly efficient inference infrastructure.
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