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Abstract

Prior research endeavors of the ensemble Large
Language Models (LLMs) achieved great suc-
cess by employing an individual language
model (LM) rank before the text generation.
However, the use of an individual LM ranker
faces two primary challenges: (1) The time-
intensive nature of the ranking process, stem-
ming from the comparisons between models;
(2) The issue of error propagation arising from
the separate ranking and generation models
within the framework. In order to overcome
these challenges, we propose a novel ensem-
ble framework, namely Unified Ranking and
Generation (URG). URG represents an end-to-
end framework that jointly ranks the outputs of
LLMs and generates fine-grained fusion results,
via utilizing a dedicated cross-attention-based
module and noise mitigation training against
irrelevant information stemming from bad rank-
ing results. Through extensive experimentation
and evaluation, we demonstrate the efficiency
and effectiveness of our framework in both the
ranking and generation tasks. With the close co-
ordination of the ranking and generation mod-
ules, our end-to-end framework achieves the
state-of-the-art (SOTA) performance on these
tasks, and exhibits substantial enhancements to
any of the ensembled models.

1 Introduction

Large language models (LLMs) have shown a su-
perior performance in storing factual knowledge
in their parameters (Chowdhery et al., 2022; Lv
et al., 2023; Tang et al., 2023b, 2024; Zhao et al.,
2024). These off-the-shelf LLMs exhibit diverse
strengths and weaknesses due to variations in data,
architectures, and hyperparameters, making them
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Figure 1: The illustration depicts the proposed frame-
work, URG, alongside a representative prior work in the
ensemble LLM models domain, LLM-Blender.“Pos.”
represents positive, and “Neg.” represents negative.
y∗ symbolizes the generated text output of the genera-
tor. “Cross Attn.” denotes the cross attention networks,
which share parameters with the decoder cross-attention
modules.

complementary to each other. Therefore, by com-
bining their unique contributions, the ensemble of
LLMs can alleviate biases, and errors in individ-
ual models, resulting in outputs better aligned with
human preferences.

In recent years, the Ensembling of Large Lan-
guage Models (LLMs) has demonstrated remark-
able performance through the judicious incorpora-
tion of the diverse strengths of multiple LLMs. A
simple approach (Yu et al., 2023a) is to concatenate
all candidate results as contextual inputs to a new
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generative model for fusion output, but meanwhile
this approach also introduces a too lengthy input
for the ranker, Typically, the prior ensemble ap-
proaches (Salazar et al., 2020; Liu and Liu, 2021;
Ravaut et al., 2022; Jiang et al., 2023) employed
an individual ranking model ranking response out-
comes from multiple LLMs, and then select the
top-ranked candidate output as the final ensemble
result feeding to a generator. The main difference
in the prior works relies on the design of the mech-
anism in the ranking model. We select the state-of-
the-art model, LLM-Blender (Jiang et al., 2023), as
an example. The authors propose a coarse-grained
and fine-grained mixed pipeline that firstly makes
a pair-wise comparison feature matrix of N LLMs
evaluated by a language model as the scorer, and
then a generative model fuses to generate the final
output from the top-k ranked outputs.

However, training individual ranking models and
generators faces two primary challenges. (1) The
time-intensive nature of the ranking process: Due
to the input limitations of language models, pair-
wise comparisons are implemented when compar-
ing multiple models. Consequently, when dealing
with N LLMs, the time complexity of the process
becomes O(N2). In addition, the individual rank-
ing model also incurs additional memory and time
costs. (2) The error propagation between ranking
and generation: The ranking stage and the gener-
ation stage represent two distinct tasks with dif-
ferent inputs and outputs. The textual evaluation
knowledge acquired by the ranking model cannot
be transferred to the subsequent generator, and vice
versa. The text generation objective of the genera-
tor is not directly connected to the ranking model.
Consequently, the framework may suffer from the
introduction of poor candidates (noise) during the
ranking stage, which may adversely affect the sub-
sequent generation process.

To address the aforementioned issues, we pro-
pose a novel unified ranking and generation
method, abbreviated as URG. This method real-
izes an end-to-end framework with an encoder-
decoder-based language model, encompassing both
the ranking and generation modules. As depicted
in Figure 1, our framework initially gathers the
encoded embeddings of candidate responses from
N LLMs, along with the encodings of the input x.
Subsequently, a cross-attention module is imple-
mented to list-wise form the concatenated features
composed by the pair of each N candidate and
x, which has merely O(n) time complexity. This

cross-attention module assigns the attention scores
to each LLM candidate pair, and aggregates the fea-
ture list to predict the tokens in y∗. Therefore, we
share the parameters of this cross-attention module
with that of the decoder in the generator, which
also aims to predict the next token of y∗ based
on x with the top k candidates and the history to-
kens predicted in y∗. Consequently, the decoder
learns the representations of N candidates through-
out both the ranking and generation stages. In the
subsequent generation stage, we further introduce
a Kullback-Leibler (KL) loss to contrastively learn
the features of positive and negative LLM candi-
dates. By minimizing the KL loss, the decoder
(generator) mitigates the adverse effects on the fi-
nal output y∗ from low-quality candidates (neg-
ative). This training objective serves to mitigate
the influence of noise introduced during ranking,
bridging the gap between the ranking stage and the
subsequent generation stage, resulting in a more
robust ensemble model. We conduct a series of
experiments to analyze the effectiveness and effici-
centy of our proposed framework. The experimen-
tal results demonstrate that our framework achieves
state-of-the-art (SOTA) performance in both the
ranking and generation stages. Furthermore, our
framework exhibits a substantial improvement in
running speed compared to the prior SOTA model,
LLM-Blender.

Our contributions can be summairzed as follows:
• We propose a novel framework, Unified Ranking

and Generation Method (URG), which integrates
the ranking and generation stages within an end-
to-end framework.

• We introduce a KL-loss based mechanism to con-
trastively learn the features of positive and nega-
tive LLM candidates, thereby enhancing the ro-
bustness of the ensemble framework against the
adverse impact of low-quality LLM candidates
introduced during the ranking stage.

• We conduct a series of experiments demon-
strating that URG significantly reduces running
time and achieves state-of-the-art (SOTA) per-
formance according to various automatic metrics
and human evaluations.

2 Related Work

Ensemble learning is a widely employed technique
that enhances accuracy and resilience in forecasting
by merging predictions from multiple models (Sagi
and Rokach, 2018; Aniol and Pietron, 2019; Wei
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et al., 2023). With the rapid increase in the applica-
tion of large language models (LLMs) (Liu et al.,
2020), the ensemble of LLMs has emerged as a
significant topic (Yu et al., 2023b). In light of the
prior works. There are two primary approaches for
ensembling LLMs: selection-based and generation-
based methods.
Selection-Based Methods Selection-based meth-
ods develop ranking models (Salazar et al., 2020;
Liu and Liu, 2021; Ravaut et al., 2022) to compare
candidate results generated by the multiple LLMs,
selecting the top-1 candidate as the ensemble out-
put. However, these methods are coarse-grained
ensembles due to the inherent nature of selection
and the limited solution space. As a result, they
may limit the ability to harness the advantages of
each candidate, potentially hindering the genera-
tion of superior outputs.
Generation-Based Methods Generation-based
methods employ generative models (Yu et al.,
2023a) to fuse the candidate results and generate
improved output as the final response. However,
these methods face challenges in dealing with the
surge in computational complexity and inference
time with the increase of input text length (Liu et al.,
2022; Sun et al., 2024; Tang et al., 2022; Loak-
man et al., 2023; Goldsack et al., 2023; Tang et al.,
2023a; Yang et al., 2024). To address this issue,
Jiang et al. (2023) proposes a rank-then-generate
pipeline that first adopts a pairwise ranking model
to sort outputs from N LLMs and then utilizes a
generative model to generate the final output from
the K top-ranked outputs. Despite shortening the
length of the input text, this model still faces the
problems of slow sorting speed caused by pairwise
comparisons and the issue of error propagation aris-
ing from separate ranking and generation models.

3 Method

Figure 2 illustrate the overall architecture of our
proposed URG framwork, which is an end-to-end
model.

3.1 Problem Definition

The base task is instruction-following, and we for-
mulate the task as follows: the input text is x, and
the output of this task is to generate a response
y. The ground-truths in the data are denoted as
ŷ. In this paper, we focus on post-hoc ensemble
learning, wherein given an input x and N LLMs,
{M1, ...,MN}, the task is to combine the candidate

results, Y = {y1, ..., yN}, generated by processing
x with N LLMs to produce the integrated final out-
put result y∗. Our goal is to develop a novel unified
ranking and generation framework that applies a
single language model throughout both the rank-
ing and generation stages, to fine-grained fuse the
candidate results outputted by the N LLMs.

3.2 Encoding Text
We separately concatenate the input x with each
candidate result yi, forming a unified input se-
quence with special tokens as separators: <s>
<Question> x </s> <response> yi, which is de-
noted as pi. Subsequently, each input sequence pi
is fed into encoder layers to obtain the encoder’s
last layer hidden state H i

e:

H i
e = EncoderLurg

2

(pi) ∈ RTp×h (1)

where h is the hidden dimension, Lurg is the total
number of encoder layers and decoder layers, and
Tp is the sequence length of pi. By processing can-
didates independently in the encoder, the computa-
tional complexity of the model grows linearly with
the number of candidates, as opposed to quadratic
growth when concatenating all candidates.

3.3 Ranking and Filtering Candidates
The objective of the ranking stage is to assess the
qualities and rank the generated N candidates from
LLMs. Only the top k candidates are retained for
the subsequent generation stage, mitigating poten-
tial issues associated with increased time complex-
ity and noise resulting from inputting an excessive
number of candidates into the subsequent genera-
tor. The remaining N candidates are regarded as
relatively lower-quality instances answering x, par-
ticularly the one ranked last, which is also utilized
in the following steps for contrastive learning.
Why Choose Cross-Attention The standard
cross-attention computation for a single head in
a transformer is:

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where Q = HdWq is the product of the decoder
states Hd and the query weight matrix Wq; the keys
K = HeWk are the product of the last encoder
hidden states He with the key weight matrix Wk;
and V = HeWv is similarly the product of He with
the value weight matrix Wv.

We denote the attention score between the query
Qi at position i, and the key Kj at position j as
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Figure 2: The architecture of our method. On the left side, textual data in text format are converted into vector-format
embeddings, so the symbols on the right represent the corresponding embeddings.

αi,j = QiK
T
j /

√
dk. After normalized over the

dimension, the attention score is rewritten as:

α̃i,j = softmax(αi,j) =
exp(αi,j)

exp(
∑

m(αi,m))
(3)

where 1√
dk

is the scaling factor and the dk is the
dimension of each transformer head. According to
Equation 2 and Equation 3, the new representation
can be expressed as a sum of the values, weighted
by the attention probabilities, before going through
a final linear transformation Wo:

Oi = Wo

∑

j

α̃i,jVj (4)

It is evident that the attention score α̃i,j quantifies
the significance of Vj in the computation of the
new representation Oi. A lower attention score
associated with Vj suggests its diminished impor-
tance for Oi. Consequently, by utilizing the afore-
mentioned steps to compute attention scores , the
ranking module is trained to discern the qualities
of N candidates.
How to Utilize Cross-Attention In our paper,
the query Q of the cross-attention mechanism is
the prediction y∗. K and V are established based
on the Ncandidates. Initially, the hidden state of
all candidate results output from the last layer of
the encoder are concatenated and forwarded to the
decoder to generate the first token A:

A = Decoder([H1
e ;H

2
e ; . . . ;H

N
e ]) (5)

where A represents the initial representations of y∗.
In this process, we can obtain attention scores α̃l

1,j

at each decoder layer l, and then aggregate these
scores across all layers and heads to derive α̃mean

1,j .
Subsequently, we can compute the ranking score
sk for each candidate result yk by averaging all the
attention scores α̃mean

1,j corresponding to the Hk
e :

sk =

∑b+Tp

j=b α̃mean
1,j

Tp
(6)

where b is the start token position of Hk
e within the

concatenated sequence, and Tp is the length of Hk
e .

Consequently, the predicted rank list of candidate
results Y is obtained.

The following loss function is used to optimize
this rank result:

Lrank =

N∑

i=1

N∑

j=1

max(0, si − sj)ri<rj (7)

where ri,rj are the ground-truth scores of yi,yj .
The ground-truth score r can be obtained from
either the reward model output or human ratings.
In this paper, the ranking labels are provided by
the MixInstruct dataset, which uses BART scores
to rank the candidates. These scores are generated
by a BART model that compares candidate outputs
with answer responses.

3.4 Enhancing The Model Robustness
Although in an ideal scenario, the top k candidates
retained are presumed to exhibit good qualities,
practical situations may still entail the presence
of low-quality candidates after the ranking stage.
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Such low-quality candidates have the potential to
exert adverse effects on the final output y∗ gen-
erated by the generator. In order to enhance the
model’s resilience against irrelevant information
stemming from low-quality candidates within the
input, we introduce an additional noise mitiga-
tion training approach. Here, the worst candidate
(ranked last) is incorporated alongside the top k
candidates as part of the input, forcing the model
to generate outputs that are consistent with those
derived from the top-k candidates.

The encoded embeddings of the top-k candidate
results, denoted as [H1st

e ; . . . ;Hk−th
e ], are concate-

nated to form Etk. Furthermore, the encoded em-
beddings of the lowest-ranked result are appended
to Etk, yielding a new concatenated embedding
Etk−l = [H1st

e ; . . . ;Hk−th
e ;H last

e ]. Given the
ground-truth ŷ consisting of L tokens, represented
as T = t1, t2, ..., tL, the model generates the out-
put logits using ET

tk as the condition. Subsequently,
the probabilities of the top-m candidate tokens at
each decoder step are normalized using the temper-
ature parameter τ to obtain the probability distribu-
tion p:

p(t∗j = Vn|t<j , Etk) =
exp(z(Vn)/τ)∑
mexp(z(Vi)/τ)

(8)

where the z(Vn) and z(Vi) are the probabilities for
the n-th and i-th candidate tokens in the vocabulary,
respectively. Inspired by knowledge distillation in
neural machine translation tasks, we use top-m can-
didate tokens at each decoding step, instead of the
full distribution, in order to focus on important to-
kens when calculating the distribution divergence.
Inspired by knowledge distillation (Tan et al., 2019;
Wei et al., 2021; Lv et al., 2024) in neural machine
translation tasks, we use the top-m candidate to-
kens at each decoding step, instead of the full token
distribution. This enables the model to focus on
capturing important token information, enhancing
its learning capacity. Similarly to the steps pro-
ducing p, Etk−l is fed into the model to obtain
the normalized probability, q(t∗j = Vn|t<j , Etk−l),
of the top-m candidate tokens in the new output
probability distribution. Finally, we employ the KL
(Kullback-Leibler) loss to minimize the divergence
between the aforementioned distributions:

Lkl =

L∑

j

m∑

n=1

p(t∗j = Vn|t<j , Etk)×

log
p(t∗j = Vn|t<j , Etk)

q(t∗j = Vn|t<j , Etk−l)

(9)

Additionally, we employ cross-entropy loss to min-
imize the disparity between the model’s predicted
probabilities and the ground-truth ŷ:

Lce = −(
L∑

j=1

log p(tj |T<j , Etk)

+
L∑

j=1

log p(tj |T<j , Etk−l))

(10)

The overall loss function of our approach com-
prises the rank loss, the KL divergence loss, and
the cross-entropy loss:

Ltotal = γLrank + βLkl + Lce (11)

where γ and β represent the weights assigned to
the rank loss and KL loss, respectively.

3.5 Analyzing Computational Complexity

We analyze the theoretical time complexity of our
proposed method compared to the vanilla method.
The more practical computational cost comparison
is shown in Table 4.

Suppose the length of the ensembled result is de-
noted as Ta, and the average length of the candidate
result (concatenated with question) is Tp. The time
complexity of the pairwise ranking model (Jiang
et al., 2023) with L layers is O(N2 · T 2

p · d · L),
where N, d denote the number of candidate results
and the embedding dimensions. For list-wise mod-
els (Liu and Liu, 2021), the time complexity is
O(N · T 2

p · d · L), as each candidate’s score is
evaluated only once instead of through pairwise
comparisons.

The ranking stage of our URG method firstly
utilizes the encoder to encode all the candidate re-
sults separately, with a time complexity of O(N ·
T 2
p · d · Lurg

2 ), where Lurg is the total number of
layers in URG. Both the encoder and decoder have
Lurg

2 layers. Then, we concatenate all the embed-
dings and input them into the decoder to perform a
decoder step. The time complexity of this part is
O(

Lurg

2 · d · (N · Tp · Ta + T 2
a )), where N · Tp · Ta

comes from the cross-attention mechanism, and
Ta is the number of decoder step. Since we only
executed a single decoder step, Ta = 1, the com-
putation of the decoding phase can be considered
negligible compared to the encoding phase. As a
result, the overall complexity of the URG ranking
stage can be approximated as O(N · T 2

p · d · Lurg

2 ).
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Instruction Sources #Examples Output Sources
Alpaca-GPT4 22,862 GPT-4

Dolly-15K 7,584 Human
GPT4All-LAION 76,552 ChatGPT

ShareGPT 3,002 ChatGPT
Total 110K Mix

Table 1: Data statistics of MixInstruct. The output
sources refer the sources that provide the responses to
the executed instruction.

4 Experiments

4.1 Datasets and Evaluation

MixInstruct MixInstruct was curated by (Jiang
et al., 2023) to serve as a benchmark for ensem-
ble models in instruction-following tasks utilizing
Large Language Models (LLMs). Table 1 illus-
trates that this benchmark encompasses a substan-
tial collection of instructional examples sourced
primarily from four distinct origins. Specifically,
100k examples are randomly allocated for training,
with 5k each designated for validation and test-
ing purposes. To generate candidate results, each
instruction is fed into a set of N = 12 popular
open-source language models (LLMs), such as Vi-
cuna1, Open Assistant2, Llama3, and others (refer
to Table 2).
Evaluation To evaluate the efficacy of our frame-
work, a range of automatic metrics are selected
for the following experiments. BLEU (Post, 2018)
and ROUGE (R-n) (Lin, 2004) evaluate the quality
of a generated response in comparison to a refer-
ence by measuring n-gram overlap.4 We addition-
ally adopt some neural network based metrics as a
supplement, i.e. BERTScore (Zhang et al., 2019),
BARTScore (Yuan et al., 2021) and BLEURT (Sel-
lam et al., 2020) to measure the semantic similarity
between the generated results and the references.
These metrics leverage pre-trained language mod-
els to predict if the model response is semantically
equivalent to the gold answer.
Model Sizes We use two configurations for our
URG method: (i) Flan-T5-large configuration con-
sisting of 24 layers, 16 attention heads, and 1024
embedding dimensions, leading to 770M param-
eters, and (ii) a larger Flan-T5-xl configuration

1https://huggingface.co/lmsys/vicuna-13b-v1.5
2https://huggingface.co/OpenAssistant/

oasst-sft-4-pythia-12b-epoch-3.5
3https://huggingface.co/mosesjun0h/

llama-7b-hf-baize-lora-bf16
4R-L refers to the longest common subsequence.

consisting of 3B parameters.
Compute Hardware We perform training on in-
stances containing 8 A100 GPUs, each containing
80 GB RAM.
Training Details When training with Flan-T5-
xl (3B), we perform training for 10 epochs using
Adam with a batch size of 4, dropout value of 0.1,
and peak learning rate of 8×10−5 with warmup and
linear scheduling. Due to the smaller size of Flan-
T5-large, we train for 20 epochs with a batch size
of 16. We save the model checkpoint every 1000
steps and perform model selection by evaluating
it on the development set. To save memory, we
use stage 2 and bfloat16 mixed precision in the
deepspeed5 training framework to train the model.
In the training phase, we select the top k ranked
candidates, where k is set to 3 for the generation
phase. When calculating the KL loss, we choose
the top 32 scores for the computation, implying that
m is set to 32. We set the value of the temperature
hyperparameter (τ = 2) and weight coefficient
(γ = 5, β = 2) using cross-validation.

4.2 Baselines

In this section, we introduce several baseline meth-
ods for ensembling LLMs.
• SummaReranker (Ravaut et al., 2022): A

selection-based method concatenates the input
and each candidate to learn ranking and utilizes
binary cross-entropy (BCE) loss to differentiate
the best candidate from the others.

• SimCLS (Liu and Liu, 2021): A popular con-
trastive learning-based method encodes the input
and each candidate, then computes their cosine
similarity as the ranking score.

• PAIRRANKER (Jiang et al., 2023): A pairwise
comparison method focuses on learning to cap-
ture the differences between two candidates and
prefers the ones of higher quality.

• LLM-Blender (Jiang et al., 2023): A generation-
based ensembling framework consisting of a Pair-
Ranker and a generation model.

• SimCLS-Gen: A generation-based ensembling
method first takes the top-3 ranked results from
SimCLS and then inputs them into a generative
model to generate a new fused result.

• SummaReranker-Gen: A method similar to
SimCLS-Gen, wherein the rank model is Sum-
maReranker.
The backbone of the ranking models in the base-

5https://github.com/microsoft/DeepSpeed
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line is DeBERTa-large (418M) (He et al., 2020),
and the generation models are all Flan-T5-XL
(3B) (Chung et al., 2022b). We train the afore-
mentioned baselines using the code and parame-
ters provided by Jiang et al. (2023). All selection-
based methods involve sorting all candidates and
outputting the top-1 candidate based on the scores
as the ensemble output.

5 Experiments Results

5.1 Main Results

Table 2 shows the performance of N=12 open-
source LLMs as well as other baseline mod-
els on the MixInstruct test set. The results of
both the selection-based ensemble method and the
generation-based method are obtained by integrat-
ing the outputs of these 12 open-source LLMs. Our
proposed URG method demonstrates substantial
performance improvements over the previous state-
of-the-art (SOTA) model, LLM-Blender, across
all evaluation metrics. Notably, even our smaller-
sized URG (770M) model exhibits superior perfor-
mance compared to the LLM-Blender approach,
comprising a ranking model with 418M parame-
ters and a generation model with 3B parameters,
across most metrics. When compared to ChatGPT,
which boasts 175 billion parameters, our URG (3B)
model still achieves superior scores on several met-
rics. These results underscore the effectiveness
and efficiency of our method through fine-grained
ensembling. Additionally, we compare our rank-
ing results with selection-based methods. Both the
smaller and full versions of the URG-rank model
outperform the previous SOTA method, PairRanker,
across all metrics. This highlights the superior-
ity of our method, which leverages cross-attention
scores to simultaneously compare the superiority
of all candidates, over previous pair-rank methods
that compare candidates pairwise. Moreover, our
method exhibits faster inference speeds, as we will
analyze in §5.3.

5.2 Ablation Study

Since our proposed URG method works with two
novel techniques introduced in ranking mecha-
nism (§3.3) and enhancing robustness mechanism
(ERM) (§3.4), we conduct an ablation study to vali-
date the effectiveness of both. As Table 3 illustrates,
the performance of URG substantially drops when
either of the two mechanisms is removed, demon-
strating the effectiveness of both mechanisms.

5.3 Analysis of Inference Speed

We conducted experiments to compare the infer-
ence speed of the ranking stage in the URG method
with previous ranking models. The results of the
experiments are presented in Table 4. Considering
both the model size and speed, Our URG method
models achieve the fastest inference speed. Fur-
thermore, even though our URG (3B) model has
a large number of parameters, it still has advan-
tages over the previous SOTA method, PairRanker,
in terms of both performance and inference speed.
Aligning with the theoretical analysis in §3.5, even
though the URG models have much larger model
size (around 1.7 times and 6.7 times than the base-
lines), the URG models have less computational
cost due to the optimized encoding and decoding
strategy. Table 7 shows a comparison of the per-
formance and inference speed of our model and
the previous model under different batch sizes.
We also calculated the corresponding inference
speed size(M)×speed

1B after normalizing the param-
eters to 1B, in order to explore the comparison
between our method and other methods under the
same parameter size. The results show that our
method is faster than the previous method under
different batch sizes, while also achieving higher
BERTscore and Bartscore. This indicates that, com-
pared to the state-of-the-art (SOTA) method Pair-
Rank, which previously compared candidates pair-
wise, our method achieves better performance by
comparing all candidates together with a single de-
coder step, and it also has a faster inference speed.

5.4 Analysis of Model Robustness

To compare the ability of our method with other
methods in resisting noise introduced in the rank-
ing stage, we conduct a model robustness testing
experiment. In this experiment, lower-ranked can-
didates, regarded as noise candidates, results are
fed into the model for decoding. As shown in Ta-
ble 5, the adverse effects of noise candidates have
a significantly lesser impact (almost half) on the
performance of the URG generator than that of the
LLM-Blender generator. This suggests that our
mechanism for enhancing model robustness (see
§3.4) effectively bolsters the model’s resilience to
noisy inputs.

5.5 Analysis of The Top k value

To assess the impact of different values of k on the
fusion results, we conducted experiments to exam-
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Type Model bertscore↑ bartscore↑ bleurt↑ rouge1↑ rouge2↑ bleu↑ rougeLsum↑

Open-
Source
LLMs

Alpaca-native (Taori et al., 2023) 0.7146 -3.5696 -0.5307 0.3276 0.1362 7.6478 0.2915
ChatGLM-6b (Du et al., 2021) 0.7038 -3.5193 -0.6167 0.3063 0.1192 6.0493 0.2734
Dolly-v2 (Conover et al., 2023) 0.6226 -3.8331 -0.8654 0.1811 0.0495 2.0620 0.1606

Flan-T5-xxl (Chung et al., 2022b) 0.6492 -4.5717 -1.2288 0.1444 0.0432 1.6066 0.1296
Koala-7B (Geng et al., 2023) 0.6396 -3.8496 -0.8354 0.2131 0.0662 3.0983 0.1871

llama-7b (Touvron et al., 2023) 0.6557 -3.5260 -0.6630 0.2253 0.0781 3.4005 0.2022
MOSS-sft (Sun et al., 2023) 0.6485 -3.6461 -0.7261 0.2062 0.0686 2.9561 0.1863

MPT (Team et al., 2023) 0.6165 -3.9419 -0.9636 0.1663 0.0439 1.7392 0.1498
MPT-instruct (Team et al., 2023) 0.6321 -3.7208 -0.8232 0.1837 0.0524 2.0692 0.1647
Oasst-12b (Chung et al., 2022a) 0.7468 -3.4486 -0.3908 0.3813 0.1738 10.5046 0.3410
StableLM (Stability-AI, 2023) 0.6247 -4.1208 -0.9832 0.1904 0.0524 2.5044 0.1672

vicuna-13b (Chiang et al., 2023) 0.6960 -3.4368 -0.6146 0.3012 0.1223 6.3584 0.2677

Closed-Source LLMs ChatGPT6 0.7798 -2.8645 -0.2783 0.3776 0.1739 10.4586 0.2732

selection-
based

random 0.6640 -3.7499 -0.7632 0.2452 0.1025 4.3433 0.1740
SummaReranker 0.7157 -3.3757 -0.3933 0.3893 0.1908 11.5300 0.3543

SimCLS 0.7257 -3.384 -0.3787 0.3873 0.1771 10.7100 0.3440
PairRanker 0.7313 -3.2612 -0.3623 0.4054 0.1956 12.1170 0.3650

URG-rank (770M) 0.7385 -3.2120 -0.3614 0.4099 0.2009 12.1282 0.3661
URG-rank (3B) 0.7510 -3.2057 -0.3485 0.4217 0.2166 13.4494 0.3728

generation-
based

SummaReranker-Gen 0.7827 -3.1353 -0.2575 0.4442 0.2381 14.7582 0.3568
SimCLS-Gen 0.7854 -3.1467 -0.2583 0.4471 0.2436 15.3094 0.3628
LLM-Blender 0.7879 -2.9800 -0.1831 0.4527 0.2477 15.8212 0.3631

URG (770M) 0.7895 -3.0531 -0.2064 0.4611 0.2489 15.8076 0.3750
URG (3B) 0.8045 -2.8901 -0.1755 0.4632 0.2538 16.5900 0.3727

Table 2: Empirical results on MixInstruct, with the best result for each type highlighted in bold.

Model bertscore↑ bartscore↑ bleu↑ rougeLsum↑
LLM-BLENDER 0.7879 -2.9800 15.8212 0.3631

URG 0.8045 -2.8901 16.5900 0.3750
w/o ranking 0.7868 -3.0433 15.2191 0.3604

w/o ERM 0.7961 -2.9212 16.1860 0.3697

Table 3: Ablation study of our URG method in two
mechanisms.

Model
Model berts bart speed Norm(size)

Size score↑ score↑ (samp./s)↑ (samp./s) ↑
SummaReranker 465M 0.7157 -3.3757 3.7037 1.7222

SimCLS 434M 0.7257 -3.3840 6.1538 2.6707
PairRanker 436M 0.7313 -3.2612 1.5385 0.6707

URG 770M 0.7385 -3.2120 8.8889 6.8445
URG 3B 0.7510 -3.2057 3.9216 11.7648

Table 4: Inference speed (samples/s) of different mod-
els on the MixInstruct benchmark test data, with batch
sizes set to 8. Norm(size) represents the corresponding
inference speed when the model size is normalized to
1B. Each sample contains N=12 candidate results from
LLMs.

ine the variation of BERTScore as the number of
candidate inputs k increases during the fusion stage.
The BERTScore for each k value was obtained by
training the model using that specific k value and
selecting the best score on the development set.

As depicted in Figure 3, the BERTScores of
the three models initially exhibit an upward trend
with the increase of the k value. However, beyond
k = 3, the growth rate notably decreases, and in

Model
Cands bertscore bartscore rougeLsum bleu

Ranking △% △% △ % △%

URG
12 -1.0956% -0.2236% -1.1430% -4.6947%

11,12 -4.4115% -1.0557% -3.8338% -10.2857%

LLM-Blender 12 -2.9201% -0.4873% -2.0388% -9.6560%
(Generator) 11,12 -7.3104% -1.6994% -7.3999% -22.2686%

Table 5: Results of our method’s robustness analy-
sis. The scores indicate the percentage decrease in met-
rics when additional candidates with lower ranks are
included in the input, compared to input only the top
2 ranked candidates into the model. ‘Cands Ranking’
refers to the ground-truth ranking of the additional can-
didates.

some cases, the scores cease to increase altogether.
Consequently, to optimize model training and in-
ference speed by minimizing input text, we fixed
the settings of k = 3 for both training and testing
in our model.

5.6 Human Evaluation

Three evaluators are invited to annotate 200 sam-
ples, which are randomly sampled on the test
set of the MixInstruct dataset. Table 6 shows
that compared with the LLM-Blender method, our
URG method has a substantial increase in perfor-
mance on both the appropriateness and informa-
tiveness metrics. This is in line with the evaluation
conducted using machine learning and automated
metrics, which consistently demonstrates that our
method outperforms the previous SOTA methods,
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Figure 3: The trend of bertscore on the development set
as the number of selected top k candidates increases.

regardless of the evaluation method employed. In
addition, by integrating the outputs of 12 open-
source large models, the results of our model’s
output demonstrate competitive performance com-
parable to ChatGPT. This indicates that the inte-
gration method can partially compensate for the
performance gap caused by the size of individual
models.

Choices (%) LLM-Blender vs. URG
LLM-Blender URG Kappa

Appropriateness 41.00 59.00* 0.537
Informativeness 33.50 66.50** 0.600
Overall Quality 27.00 73.00** 0.432

Choices (%) ChatGPT vs. URG
ChatGPT URG Kappa

Appropriateness 42.00 58.00 0.480
Informativeness 68.50** 31.50 0.641
Overall Quality 47.00 53.00 0.570

Table 6: Pairwise comparisons of human preference per-
centages. Scores are marked on a scale of 1-5. Kappa
denotes Fleiss’ Kappa (Fleiss, 1971), indicating the
agreement level across evaluators. All human anno-
tations show Moderate or Substantial agreement. We
also conduct a sign test for performance comparison. ∗
refers to significance at p<.05, whilst ∗∗ refers to signif-
icance at p<.01.

5.7 Case Study
Table 8 illustrates an example showcasing the var-
ied responses from our URG model, open-source
LLMs, LLM-Blender, ChatGPT, and the reference
human response, indicating that our responses are
most similar to those of humans. More details are
introduced in Appendix A.1.

6 Conclusion

In conclusion, we propose a novel framework,
Unified Ranking and Generation Method (URG),
which integrates the ranking and generation stages

within an end-to-end framework. To enhance the ro-
bustness of the URG framework against the adverse
impact of low-quality LLM candidates, we intro-
duce a KL-loss based mechanism to contrastively
learn the features of positive and negative LLM
candidates. Experiments on MixInstruct show
that URG significantly reduces running time and
achieves SOTA performance according to a variety
of automatic metrics and human evaluations.

7 Limitations

The requirement for multiple high-performing mod-
els and a significant amount of accurately labeled
data to train an ensemble model poses challenges
in constructing datasets for other tasks. Despite the
good performance of our approach in ensembling
the outputs of LLMs in the instruction-following
task, we haven’t explored whether our method is
also effective in different tasks due to the difficulty
of constructing other task datasets. Furthermore,
considering that the computational complexity of
model inference increases quadratically with the
input length, even after narrowing down the candi-
date inputs from N to k through quality filtering,
this stage remains sluggish. Therefore, the prob-
lem of extracting only a limited number of snippets
from each candidate instead of the entire text re-
quires resolution in the future.
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A Appendix

A.1 Case Study
Table 8 shows that to become a teacher, a bache-
lor’s degree and a teaching qualification are prereq-
uisites, according to human responses. Addition-
ally, they provide insights into different job-finding
methods. The integration of LLM-Blender was
influenced by the output of ChatGLM-6b. The
answer emphasized methods of being an elemen-
tary school teacher, but the input question did not
specify which stage of the teacher. Furthermore, it
overlooked the important information of having a
bachelor’s degree and a teaching qualification cer-
tificate. Our URG method filters out low-relevance
candidates during the filtering stage and is able to
better overcome the influence of noisy input during
the fusion stage, ultimately producing outputs that
are close to human responses.
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Model
Model bert- bart- B=8 B=16 B=32 Norm(size) B=8 Norm(size) B=16 Norm(size) B=32
score↑ size score↑ (samp./s)↑ (samp./s)↑ (samp./s)↑ (samp./s)↑ (samp./s)↑ (samp./s)↑

SummaReranker 465M 0.7157 -3.3757 3.7037 3.8462 3.9950 1.7222 1.7885 1.8576
SimCLS 434M 0.7257 -3.3840 6.1538 8.2902 9.9688 2.6707 3.5979 4.3265

PairRanker 436M 0.7313 -3.2612 1.5385 1.6391 1.7440 0.6707 0.7146 0.7604

URG (770M) 770M 0.7385 -3.2120 8.8889 10.6667 12.8000 6.8445 8.2134 9.8560
URG (3B) 3B 0.7510 -3.2057 3.9216 3.9900 4.1026 11.7648 11.9700 12.3078

Table 7: Inference speed (samples/s) of different models on the MixInstruct benchmark test data, with batch
sizes set to 8, 16, and 32. Each sample contains N=12 candidate results from LLMs. Norm(size) represents the
corresponding inference speed when the model size is normalized to 1B.

Question: How can I get a job as a teacher?

Oasst-12b: To become a teacher, you will typically need to earn your bachelor’s degree in education and obtain your teaching certification. Additionally,
you need to gain experience through teaching substitutes or internships, as well as strong communication and interpersonal skills. You should also be
prepared to work long hours, stay up to date on trends in education, and use innovative teaching methods.
Flan-T5-xxl: Get a degree in education.
Vicuna-13b: There are a few ways to land a job as a teacher: 1. Earn a bachelor’s degree: To become a teacher, you will need to have a bachelor’s degree.
Some states require that you have a degree in education, while others allow you to teach in a subject area, such as math or science. 2. Obtain a teaching
license: In order to teach in a public school, you will need to have a teaching license. Licensure requirements vary by state, but typically involve passing a
certification exam and completing a teacher preparation program.
MOSS-sft: If you’re interested in becoming a teacher, there are a few steps you should take: 1. Get a degree: Most states require a bachelor’s degree in a
subject area such as education, teaching, or a related field. Some may also require certification or licensure. 2. Obtain a teaching certification: Most states
offer a teaching certification that allows you to teach at the high school level. You’ll need to pass an exam and complete a teacher training program to
obtain this certification. 3. Apply for jobs: Once you’ve completed your education and certification, you can search for job openings in your area. Many
schools and districts offer positions for teachers through their websites or by visiting their websites directly.
ChatGLM-7b: Here’s what you can do if you want to get a job as an elementary school teacher. You can start by looking at teacher job listings on websites
like Indeed, Monster and network with other teachers. You can also look at job listings on the job boards or through school district websites.
llama-6b: Becoming a teacher is a great opportunity for personal and professional growth, and it can also be a fulfilling career. You should have at least a
high school education and a degree in the field you want to teach. You may want to consider taking courses in teaching principles, classroom management,
and classroom technology.
MPT-instruct: How to become a teacher? The first step for becoming a teacher is to get your education. You can get a teacher education in various ways.
There are teacher education programs at universities and teacher training centers and you can also get a job as a teacher on an apprenticeship program. If
you want to get a job as a teacher in the primary school, you should have a teacher education for the primary school. If you want to teach in the secondary
school, you should have a teacher education for the secondary school.
ChatGPT: To become a teacher, start by obtaining a bachelor’s degree in education or a specific subject. Some states may require a teaching certification or
a master’s degree, depending on the level you plan to teach. Gain experience by doing internships or participating in student teaching programs. Network
with professionals in the education field, attend career fairs or job fairs, and apply for teaching positions at schools or educational institutions. Prepare a
resume that highlights your relevant skills and experiences, and be prepared for interviews and potential teaching demonstrations.
LLM-Blender: There are several ways to get a job as an elementary school teacher. You can start by looking for job openings on websites like Indeed,
Monster, and Teachers-Teachers. Additionally, you can attend job fairs or networking events that may be held by schools you are interested in. Once you
have identified the position you would like to apply for, submit your resume and cover letter to potential employers.
URG: To become a teacher, you will typically need to earn your bachelor’s degree in education, obtain your teaching certification, and gain experience
through teaching substitutes or internships. You can also look for job openings on job boards or through school district websites. It can be helpful to
network with other teachers and attend job fairs to increase your chances of being hired.
Human Response: To become a teacher, you will typically need at least a bachelor’s degree in education or a related field, as well as a teaching certification
or license for the state in which you wish to teach. Additionally, gaining classroom experience through internships or student teaching programs can be
beneficial when applying for teaching positions. Finally, you can visit job websites as well as the official websites of schools to contact schools recruiting
teachers.

Table 8: Case study on the test set of MixInstruct. The table shows the responses from open-source LLMs and
LLM-Blender, alongside ChatGPT, and the golden response from humans.

4434


