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Abstract

Knowledge Graph Embedding (KGE) is a pow-
erful technique for predicting missing links
in Knowledge Graphs (KGs) by learning the
entities and relations. Hyperbolic space has
emerged as a promising embedding space for
KGs due to its ability to represent hierarchical
data. Nevertheless, most existing hyperbolic
KGE methods rely on tangent approximation
and are not fully hyperbolic, resulting in distor-
tions and inaccuracies. To overcome this limita-
tion, we propose LorentzKG, a fully hyperbolic
KGE method that represents entities as points
in the Lorentz model and represents relations as
the intrinsic transformation—the Lorentz trans-
formations between entities. We demonstrate
that the Lorentz transformation, which can be
decomposed into Lorentz rotation/reflection
and Lorentz boost, captures various types of
relations including hierarchical structures. Ex-
perimental results show that our LorentzKG
achieves state-of-the-art performance1.

1 Introduction

Knowledge graphs (KGs) (Dong et al., 2014),
which comprise factual triples of the form (head
entity, relation, tail entity), are essential in question-
answering (Huang et al., 2019), information extrac-
tion (Xiong et al., 2017), and recommendations
(Wang et al., 2014; Chen et al., 2022a). Recent ad-
vancements related to KGs centered around knowl-
edge graph embedding (KGE), which involves map-
ping entities and relations to some dedicated rep-
resentation spaces, providing an effective tool for
interpreting semantic meaning within KGs.

While many existing models utilize Euclidean
space for modeling relation patterns in KGs (Bor-
des et al., 2013; Chen and Li, 2019; Yang et al.,
2015; Sun et al., 2019), they face challenges in
effectively modeling semantic hierarchies due to
the limited expressive power of low-dimensional

1https://github.com/LorentzKG/LorentzKG

Euclidean space. Increasing the dimensions incurs
high computational costs, especially given the large
number of entities in KGs. Recent work has ex-
plored hyperbolic space, a non-Euclidean space
with constant negative curvature, as a more effec-
tive and efficient embedding space for data with
hierarchical structures (Nickel and Kiela, 2017;
Chen and Li, 2020b; Sala et al., 2018; Wang et al.,
2023; Zhao et al., 2024). Several hyperbolic KGE
models have been proposed to represent KGs (Bal-
azevic et al., 2019; Chami et al., 2020; Kolyvakis
et al., 2020; Pan and Wang, 2021; Bai et al., 2021),
demonstrating the advantages of hyperbolic space,
particularly in the low-dimensional settings.

Most existing hyperbolic KGE models (Balaze-
vic et al., 2019; Chami et al., 2020; Pan and Wang,
2021; Bai et al., 2021) rely on tangent space ap-
proximations to perform vector space operations,
such as matrix-vector multiplication and vector ad-
dition. Tangent space is a vector space that approxi-
mates the manifold at a given base point. However,
this approach is not fully hyperbolic since it in-
volves lifting the data from hyperbolic space to
tangent space for feature transformation and sub-
sequently projecting it back to hyperbolic space.
This projection introduces additional complexities
and numerical instability, as it requires the calcula-
tion of a series of hyperbolic functions. Moreover,
the tangent approximation of data that is located
away from the base point is distorted and inaccu-
rate, compromising the expressibility of hyperbolic
space (Chen et al., 2022b; Fan et al., 2023).

To address above issues, it is essential to ex-
plore fully hyperbolic approaches that bypass the
reliance on tangent space approximations and in-
stead work directly within hyperbolic space. In
this paper, we address this challenge by utilizing
the Lorentz model (Ratcliffe, 2006) of hyperbolic
space, and its isometry group, the positive Lorentz
group (Gallier and Quaintance, 2012), to develop
a fully hyperbolic KGE model, called LorentzKG.
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The property of the positive Lorentz group acting
transitively on the Lorentz model enables the def-
inition of matrix multiplication on the hyperbolic
space as a linear operation—multiplying a group
element of the Lorentz group, the Lorentz trans-
formation, to a point on the Lorentz model. This
linear approach avoids tangent approximation, and
furthermore, benefits from the numerical stability
exhibited by the Lorentz model (Nickel and Kiela,
2018; Fan et al., 2022), ensuring reliable and accu-
rate calculations.

Our LorentzKG model follows a translation-
based KGE methodology, where relation-specific
transformations using Lorentz transformation are
applied to the head and tail entities embedded in
the Lorentz model. The plausibility of a given
fact is measured by the hyperbolic distance be-
tween the transformed entities. The highlights
of our LorentzKG are: (i) The transitive nature
of Lorentz transformation on the Lorentz model
ensures that the transformation is an intrinsic lin-
ear operation and guarantees that the transformed
entity embedding remains a point in the Lorentz
model; (ii) The nature of the Lorentz transforma-
tion, allowing for decomposition into various types
of transformations, enables us to effectively cap-
ture diverse relational patterns observed in KGs, in-
cluding symmetry/anti-symmetry, inversion, com-
position, and hierarchy (Sec 3.3); (iii) Different
relational transformations on head and tail entities
enable modeling of relation cardinalities (such as 1-
to-1, 1-to-N, N-to-1, and N-to-N (Bordes et al.,
2013; Sun et al., 2019)) (Sec 3.3); (iv) Experi-
mental results demonstrate the superiority of our
LorentzKG compared to several Euclidean and
hyperbolic KGE models. In addition, we point
out connections with prior translation-based Eu-
clidean KGE models (Sec 3.4) and contrasts our
LorentzKG with prevalent hyperbolic KGE models
(Sec 3.2), underscoring our work’s novelty.

Notations and Problem Setup. A KG is defined
as a collection of factual triples G = {(h, r, t)},
where head and tail entities h, t ∈ E and relation
r ∈ R are taken from an entity set E and a re-
lation set R, respectively. The primary relation
patterns in KGs include symmetry/antisymmetry,
inversion, composition and hierarchy. The relation-
ships can be categorized based on the cardinalities
(of their heads or tails) as 1-to-1, 1-to-N, N-to-1,
and N-to-N (Bordes et al., 2013). In KGE models,
the objective is to map entities h, t ∈ E to low-

dimensional embeddings h, t ∈ UdE and relations
r ∈ R to their embeddings r ∈ UdR , where U is a
chosen representation space, e.g, Euclidean space
R, and dE and dR are the dimensionalities of entity
and relation embeddings, respectively. The learn-
ing of embeddings in KGE involves optimizing a
score function fr(h, t) : UdE × UdR × UdE → R,
which evaluates the validity of each triple. The
embeddings of entities and relations are trained by
optimizing the score function, with the objective of
maximizing the scores of valid triples.

2 Preliminaries

Hyperbolic space is a Riemannian manifold with
constant negative curvature. There are five iso-
metric models of hyperbolic space (Cannon et al.,
1997; Ratcliffe, 2006), including the Lorentz model
L and the Poincaré ball model B (see Appendix B).
We select the Lorentz model as the representation
space in LorentzKG due to its nature as a homoge-
neous space and its intrinsic characteristic of the
positive Lorentz group being its isometry group. In
this section, we provide a brief overview of these
concepts and important geometric notions in hyper-
bolic space that are relevant to our work.

2.1 Lorentz Model and Lorentz
Transformation

Lorentzian Space. The (n + 1)-dimensional
Lorentzian space R1,n is the Euclidean space Rn+1

equipped with a non-positive-definite bilinear form:

⟨x,y⟩L = −x0y0 + x1y1 + · · ·+ xnyn, (1)

where x = [x0, x1, . . . , xn]
T ,y =

[y0, y1, . . . , yn]
T ∈ Rn+1. The bilinear form

⟨·, ·⟩L is called Lorentzian inner product.

Lorentz Model. The n-dimensional Lorentz
model Ln is a submanifold in R1,n defined as:

Ln := {x ∈ Rn+1 : ⟨x,x⟩L = −1, x0 > 0}.
(2)

The Lorentz model is the upper sheet of the two-
sheeted n-dimensional hyperboloid in R1,n.

Squared Lorentzian Distance. The squared
Lorentzian distance is a modified distance metric
used in the hyperbolic space (Ratcliffe, 2006). For
x,y ∈ Ln, the squared Lorentzian distance is:

d2L = ⟨x− y,x− y⟩L = −2− 2⟨x,y⟩L. (3)
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(a) Lorentz rotation (b) Lorentz reflection (c) Lorentz boost

Figure 1: Illustration (in the Poincaré ball model B2) of: (a) Lorentz rotation with rotation matrix Λrot and the
inverse rotation matrix Λ−1

rot; (b) Lorentz reflection with reflection matrix Λref (the inverse reflection matrix is
Λref itself); (c) Lorentz boost with boost matrix Λb and the inverse boost matrix Λ−1

b .

Lorentz Transformation. Linear isometries that
preserve the Lorentzian inner product between
every pair of points in the Lorentzian space are
called Lorentz transformations. Specifically, a map
ϕ : R1,n → R1,n is a Lorentz transformation if
⟨ϕ(x), ϕ(y)⟩L = ⟨x,y⟩L, ∀x,y ∈ Ln.

Lorentz Group. All Lorentz transformations
form a group under composition. This group is
called the Lorentz group, denoted by O(1, n). Let
Jn = diag(−1,1n) where 1n is n-dimensional
vector with all entries being 1 and diag(·) denotes
a diagonal matrix, the Lorentz group is defined as:

O(1, n) := {A ∈GL(n+ 1,R) :
AJnA

T = ATJnA = Jn},
(4)

where GL(n+ 1,R) is the general linear group of
(n+ 1)× (n+ 1)-invertible matrices over R.

Positive Lorentz Group. The positive Lorentz
group is a subgroup of O(1, n) defined as
O+(1, n) := {A ∈ O(1, n) : a11 > 0}. The
group acts transitively on Ln through the group ac-
tion x 7→ Ax, where x ∈ Ln and A ∈ O+(1, n).
Specifically, Ax ∈ Ln, ∀x ∈ Ln and ∀A ∈
O+(1, n). As a result, O+(1, n) is the isometry
group of the Lorentz model Ln.

Lorentz Rotation/Reflection and Lorentz Boost.
A Lorentz transformation A ∈ O+(1, n) can be
decomposed using a polar decomposition (Moretti,
2002) and expressed as:

A =

[
1 0
0 R

] [
c vT

v
√
In + vvT

]
, (5)

where In is the identity matrix, R ∈ O(n), the
orthogonal group (i.e., RTR = In), v ∈ Rn,
and c =

√
∥v∥2 + 1. The first component is

called a Lorentz rotation Fig. 1(a) if det(R) = 1,
or a Lorentz reflection Fig. 1(b) if det(R) =
−1. Lorentz rotation/reflection is space rota-
tion/reflection as it does not change the time axis.
The second component is a Lorentz boost Fig. 1(c),
where v is the velocity vector that describes the
magnitude and direction of the boost.

3 Methodology

Here we present our proposed LorentzKG which
uses the Lorentz model for entity embeddings and
Lorentz transformation for relation embeddings in
KGs. The score function measures triple plausibil-
ity using the squared Lorentzian distance between
transformed entity embeddings, along with a bias
term. We also discuss LorentzKG’s capability to
model KG relations, highlighting its potential in
capturing diverse relational patterns.

3.1 LorentzKG

In our approach, entities are represented as points
in the Lorentz model, i.e., h, t ∈ Lk, while rela-
tions are represented as geometric transformations
applied to entity embeddings. Specifically, rela-
tions are represented as Lorentz transformations
embedded in the positive Lorentz group O+(1, k).
Our approach brings forth the following significant
benefits: (i) We can ensure that the transformed en-
tities remain within hyperbolic space since Lorentz
transformations are linear isometries of the Lorentz
model. (ii) The linear operation is simple and stable
to compute. (iii) The use of the Lorentz transforma-
tions allows for multiple transformations, including
rotation, reflection, inversion, and translation as it
is the isometry group of the Lorentz model, which
will be discussed later. Next, we present our simple
yet effective score function of LorentzKG.
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Score Function. The score function in hyper-
bolic KGE models is typically defined as the
squared hyperbolic distance between transformed
entities in the hyperbolic space, followed by scalar
biases for entities and a margin (Balažević et al.,
2019; Chami et al., 2019; Chen et al., 2022b).
Building upon this framework, we design the score
function in our LorentzKG as follows:

fr(h, t) = −d2L(Λr,1h,Λr,2t)+bh+bt+δ, (6)

where h, t ∈ Lk are entity embeddings in
Lorentz model, Λr,1,Λr,2 ∈ O+(1, k) are relation
matrices, bh, bt ∈ R are scalar biases of head entity
h and tail entity t, respectively, δ ∈ R is a mar-
gin hyperparameter and d2L is the squared Lorentz
distance function given in Eq. 3. The terms Λr,1h
and Λr,2t are referred to as the transformed (by
relation) head and tail entities, respectively.

The geometric interpretation of the score func-
tion given in Eq. 6 is straightforward. The head
entity h and the tail entity t are embedded in
the Lorentz model, and a Lorentz transformation,
which is the intrinsic operation on the Lorentz
model, is used to model the relation r. This trans-
formation determines the projected position of the
entity embeddings adjusted by the relation. In a
valid fact (h, r, t), the transformed h and t (by re-
lation) should be brought closer to each other, as
measured by the hyperbolic distance. Additionally,
the entity-specific biases bh and bt can be inter-
preted as the sphere of influence of each entity,
as suggested by (Balazevic et al., 2019). In prac-
tice, we enforce the constraints on the bias term
bh, bt ∈ (−1, 1) following (Lin et al., 2015).

3.2 Comparison with Existing Hyperbolic
KGE Models

In the context of entity transformation, a compari-
son between LorentzKG and other hyperbolic KGE
models reveals distinct approaches. For a given
head entity h, we call the relation-specified head
entity transformed-h and analyze its distinctions
across various hyperbolic KGE models.

In LorentzKG, the process involves applying a
Lorentz transformation directly to entities repre-
sented in the Lorentz model (h ∈ Lk):

transformed-h = Λrh (7)

where Λr ∈ O+(1, k) a Lorentz transformation.
Consequently, transformed-h naturally exists as a
point in the hyperbolic space Lk.

In contrast, HyboNet (Chen et al., 2022b) pro-
posed a general hyperbolic linear layer for entiry
transformation (h ∈ Lk):

transformed-h =

[ √
∥ϕ(W rh)∥+ 1
ϕ(W rh)

]

k+1×k+1
(8)

where W r ∈ Rk×k is an arbitrary matrix and ϕ(·)
is an operation function, which includes a com-
position of operations such as dropout, normal-
ization, and non-linear activation. To ensure the
maintenance of transformed-h within the hyper-
bolic space, an additional scalar element is com-
puted according to Eq. 2 and appended to the output
ϕ(W rh). While Chen et al. (2022b) purports to
present a fully hyperbolic method, it is noteworthy
that the general hyperbolic linear layer employed
in their implementation does not conform to the
hyperbolic nature (Chen et al., 2022b, §3.1). Their
implementation involves moving embeddings out
of the manifold and then projecting them back,
making it non-intrinsic. In contrast, we introduce
simple and scalable entity transformations that con-
sistently keep the learning trajectory on the mani-
fold.

Moreover, AttH (Chami et al., 2020) employs a
block-wise rotation/reflection matrix to transform
entities in the Poincaré ball model (h ∈ Bk):

transformed-h =




G1
r 0 0

0
. . . 0

0 0 G
k/2
r



k×k

h

(9)

where Gi
r =

[
cos θi ∓ sin θi
sin θi ± cos θi

]
represents a

2 × 2 rotation/reflection matrix. Our LorentzKG
distinguishes itself by its capacity to execute a k×k
rotation/reflection within the k-dimensional hyper-
bolic space. This capability contrasts AttH’s limita-
tion to a diagonal 2 × 2 rotation/reflection, thereby
constraining its expressive power.

3.3 Capability in Modeling Relation Patterns
The Lorentz transformations offer a powerful ap-
proach for modeling various relational patterns.
Our model captures symmetric/anti-symmetric re-
lations through Lorentz rotations/reflections, as
these transformations correspond to Euclidean ro-
tations/reflections. Also, our model captures com-
position and inversion since all Lorentz transfor-
mations form the Lorentz group. Please refer to
Appendix D for proofs.
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Moreover, our method enables the modeling of
hierarchical relations using Lorentz boosts. The
idea in modeling hierarchical relations in KGs is
to embed the entities at the same hierarchical level
with similar radii (in the Poincaré ball model). In
contrast to existing hierarchy-aware KGE models
such as HAKE (Zhang et al., 2020) (Euclidean) and
HBE (Pan and Wang, 2021) (hyperbolic), where
the score function is a weighted average of mod-
ulus distance and phase distance in polar coordi-
nates, our method provides a more streamlined
solution that avoids the need to introduce separate
distance measures for radii and angles. By applying
a Lorentz boost, the transformed entity embedding
experiences a change in radii (in the Poincaré ball
model), thereby effectively capturing hierarchy.

Furthermore, LorentzKG effectively models re-
lation cardinalities by applying different Lorentz
transformations to both the head and tail entities.
This implementation allows LorentzKG to capture
and represent relation cardinalities, facilitating a
comprehensive understanding of the underlying re-
lationships between entities.

3.4 Connection to Euclidean
Translation-based KGE Models

Our LorentzKG can be regarded as a natural gen-
eralization of Euclidean translation-based models
to hyperbolic space. For example, the score func-
tion in STransE (Nguyen et al., 2016) is fr(h, t) =
∥M r,1h + r −M r,2t∥2 where h, t, r ∈ Rk and
M r,i ∈ Rk×k. If we reformulate the score func-
tion by writing entity embeddings in homogeneous
coordinates, the score is:

fr(h, t) = ∥M̂ r,1ĥ−M̂ r,2t̂∥2,

M̂ r,1 =

[
M r,1 0
0 r

]
, ĥ =

[
h
1

]
,

M̂ r,2 =

[
M r,1 0
0 0

]
, t̂ =

[
t
1

]
.

(10)

The score function in Eq. 6 of LorentzKG has the
same form as that in STransE, making our method
a generalization of STransE to hyperbolic space.
Note that in STransE, the matrix embeddings of
relations are arbitrary, implying that the representa-
tion space for relations forms the affine group. This
arbitrariness frequently results in suboptimal per-
formance due to over-parametrization, a limitation
also observed in RESCAL (Nickel et al., 2011).
In contrast, our approach in LorentzKG involves
employing the Lorentz group to curtail the degree

of freedom in embedding relations while ensuring
that the transformed entities remain points within
the hyperbolic space.

3.5 Training and Optimization

Loss function. We follow the setup in (Balazevic
et al., 2019; Chen et al., 2022b) to train our pro-
posed LorentzKG model. We construct K negative
samples for each triple (h, r, t) by corrupting either
the tail entity (h, r, t′) or the head entity (h′, r, t)
with a randomly chosen new entity from the entity
set E . Let y ∈ {0, 1} denote the true label indicat-
ing the validity of a triplet. We apply the sigmoid
function σ(·) to the scores fr(h, t) to calculate
probabilities for triples and minimize the binary
cross entropy loss:

L(y, p) = − 1

N

N∑

i=1

[log(pi) +
K∑

k=1

log(1− p′(i,k))]

(11)
where pi and p′(i,k) are the probabilities for correct
and corrupted triples, respectively. N is the number
of training samples and K is the number of negative
samples for a positive sample.

Optimization. Instead of directly updating the
relation embeddings Λr,i, a Lorentz transforma-
tion is decomposed using Eq. 5 into a composi-
tion of a Lorentz rotation/reflection and a Lorentz
boost, which are then sequentially updated dur-
ing optimization. Specifically, the Lorentz rota-
tion/reflection is learned by learning a rotation (or-
thogonal) matrix R, while the Lorentz boost is
learned by learning a real vector v. We imple-
mented R as the Householder matrix (Uhlig, 2001)
to enforce its orthogonality. We use Riemannian
Adam (rAdam) (Becigneul and Ganea, 2019) to
optimize the proposed model.

4 Experiments

Dataset. We evaluate our proposed model on two
widely used knowledge graph datasets - WN18RR
(Dettmers et al., 2018) and FB15k-237 (Toutanova
et al., 2015). Some statistics of these two knowl-
edge graph datasets are summarized in Table. 1.
ξG is the global graph curvature that measures the
level of hierarchy in graphs. The lower ξG indicates
the more tree-like the KG is (Chami et al., 2020).
More experiments are included in Sec G.

Evaluations. We evaluate the performance of
link prediction in the filtered setting by ranking
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Dataset #entities #relations #training #valid #test ξG
WN18RR (Dettmers et al., 2018) 40,943 11 86,835 3,034 3,134 -2.54
FB15k-237 (Toutanova et al., 2015) 14,451 237 272,115 17,535 20,466 -0.65

Table 1: Statistics of knowledge graph datasets. ξG measures the hierarchy in graphs (Chami et al., 2020).

WN18RR FB15k-237

Model #Dim MRR H@10 H@3 H@1 #Dim MRR H@10 H@3 H@1

TansE 180 22.7 50.6 38.6 3.5 200 28.0 48.0 32.1 17.7
DistMult 270 41.5 48.5 43.0 38.1 200 19.3 35.3 20.8 11.5
ComplEx 230 43.2 50.0 45.2 39.6 200 25.7 44.3 29.3 16.5
ConvE 120 43.5 50.0 44.6 40.1 200 30.4 49.0 33.5 21.3
RotatE 1000 47.3 55.3 48.8 43.2 1024 30.1 48.5 33.1 21.0
QuatE 100 48.1 56.4 50.0 43.6 100 31.1 49.5 34.2 22.1
TuckER 200 47.0 52.6 48.2 44.3 200 35.8 54.4 39.4 25.6
HAKE 1000 49.7 58.2 51.6 45.2 1000 34.6 54.2 38.1 25.0

GIE 300 49.1 57.5 50.5 45.2 800 36.2 55.2 40.1 27.1
M2GNN 200 48.5 57.2 49.8 44.4 200 36.2 56.5 39.8 27.5
HyperKG 100 41.1 50.0 - - 100 28.0 45.2 - -

UltraE 32 48.8 55.8 50.3 44.0 32 33.8 51.4 36.3 24.7
MuRP 32 46.5 54.4 48.4 42.0 32 32.3 50.1 25.3 23.5
RotH 32 47.3 55.3 49.0 42.8 32 31.4 49.7 34.6 22.3
AttH 32 46.6 55.1 48.4 41.9 32 32.4 50.1 35.4 23.6
ConE 32 47.1 53.7 48.6 43.6 32 27.6 46.0 30.6 18.6
HyboNet 32 48.9 55.3 50.2 45.5 32 33.4 51.6 36.5 24.4

LorentzKG 32 50.2 58.9 52.3 45.6 32 38.4 57.9 42.2 28.7

Table 2: Embedding dimensions and performances of various KGE models on WN18RR and FB15k-237 datasets,
with most results obtained from (Chen et al., 2022b) and original papers (QuatE (Zhang et al., 2019), TuckER
(Balažević et al., 2019), HAKE (Zhang et al., 2020), GIE (Cao et al., 2022), HyperKG (Kolyvakis et al., 2020),
UltraE (Xiong et al., 2022) and ConE (Bai et al., 2021)). Results of ConE on FB15k-237 are obtained from our own
implementation. The best results are boldfaced, and the second best ones are underlined.

test triples against all other candidate triples that
do not appear in the training, validation, or test
sets. To generate these candidates, we corrupt ei-
ther the subject or object of the original triple to
form (h′, r, t) or (h, r, t′). Evaluation is conducted
using standard measures for these datasets, includ-
ing Mean Reciprocal Rank (MRR) and Hits at N
(H@N ), where N = 1, 3 or 10.

Baselines. We compare our LorentzKG with sev-
eral baseline methods. For Euclidean KGE mod-
els, we include TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016) ConvE (Dettmers et al., 2018), RotatE (Sun
et al., 2019), QuatE (Zhang et al., 2019), TuckER
(Balažević et al., 2019) and HAKE (Zhang et al.,
2020). Regarding hyperbolic KGE models , we
consider GIE (Cao et al., 2022), M2GNN (Wang
et al., 2021), UltraE (Xiong et al., 2022), HyperKG
(Kolyvakis et al., 2020), MuRP (Balazevic et al.,
2019), RotH and AttH (Chami et al., 2020), ConE
(Bai et al., 2021) and HyboNet (Chen et al., 2022b).
For the hyperbolic KGE model, we mainly present

the results in the lower dimensions (dim = 32).

Implementation Details. The implementation of
our LorentzKG is based on PyTorch, with the cor-
responding PyTorch-based pseudocode presented
in Section E. All experiments are conducted on a
NVIDIA Tesla Nvidia GPU A100 40GB machine.
We employ random initialization on a manifold us-
ing the Python package Geoopt (Kochurov et al.,
2020). To determine the optimal hyperparameters
for our method, we conduct a grid search for learn-
ing rate, negative sample size, batch size, and mar-
gin. The best hyperparameters for each dataset are
reported as follows: {WN18RR: 0.05, 200, 512,
1.08}, {FB15k-237:0.05,100,512,1.15}.

Overall Performance. We evaluate our approach
in the low-dimensional setting for d = 32. The
experimental results presented in Table 2 clearly
illustrate the superior performance of our proposed
LorentzKG model compared to existing methods
in both Euclidean and hyperbolic spaces. On
WN18RR, HAKE shows comparable results but
with a 1000-dimensional representation space. The
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WN18RR FB15k-237

Model MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

LorentzKG-h 49.8 58.5 52.1 45.3 36.6 54.0 39.6 28.0
LorentzKG-t 50.0 58.6 52.2 45.4 36.7 54.1 39.7 28.0

LorentzKG-r 49.7 58.0 51.9 40.2 37.5 57.1 41.6 28.6
LorentzKG-b 36.1 55.9 42.8 25.3 24.3 44.8 26.8 14.5

LorentzKG 50.2 58.9 52.3 45.6 38.4 57.9 42.2 28.7

Table 3: Ablations on (i) head (-h) and tail (-t) transformation; and (ii) rotation/reflection (-r) and boost (-b) for our
LorentzKG.

WN18RR FB15k-237

RotatE 40.95M 20.32M
MuRP 32.76M 5.82M
GIE 17.65M 3.41M

LorentzKG 1.39M 1.42M

Table 4: Comparison of the number of parameters.

reason may lie in the fact that hierarchy is one
of the main relation patterns in WN18RR, as also
evidenced by the lower ξG . Furthermore, consid-
ering the low-dimensional embedding space, the
overall performance of hyperbolic KGE models is
comparable, aligning with the understanding that
hyperbolic space is efficient in representing hierar-
chical structures. Thus, our standout performance
establishes the superiority of our approach in mod-
eling various relation patterns, including hierarchy.
FB15k-237 exhibits a larger number of relations
but fewer entities compared to WN18RR, result-
ing in a more complex graph structure. The uti-
lization of different geometric structures in GIE
and M2GNN enhances their capability to effec-
tively handle such intricate structures, leading to
improved performance. However, LorentzKG out-
performs M2GNN (the second-best model across
most metrics) with a (relative improvement) 6.1%
higher MRR, a 2.5% higher H@10, a 6.0% higher
H@3, and a 4.4% higher H@1, respectively. This
improvement is mainly attributed to the expressiv-
ity offered by the various types of Lorentz trans-
formations utilized in our approach. As a result,
our approach demonstrates wide applicability in
handling complex knowledge graph structures.

Model Capacity. We compare the number of pa-
rameters of several KGE models: RotatE, MuRP,
and GIE (values are sourced from (Cao et al.,
2022)), and our proposed LorentzKG. As illus-
trated in Table. 4, it is evident that our LorentzKG
achieves superior performance with a significantly

reduced parameter count, attributed to our explo-
ration of low-dimensional hyperbolic space. Please
refer to Sec H for more analysis on model capacity.

Ablation Studies. We conducted two types of
ablation studies on our model. First, to assess the
effects of applying the transformation exclusively
to either the head entity (LorentzKG-h) or to the tail
entity (LorentzKG-t). As demonstrated in Table 3,
both variants of LorentzKG exhibited comparable
results. However, through the synergistic utiliza-
tion of both transformations, LorentzKG achieved
superior performance by affording enhanced flexi-
bility in capturing relational patterns. Second, to ex-
amine the impact of different types of Lorentz trans-
formations (Lorentz rotation/reflection and Lorentz
boost) in relational modeling, we compared our
LorentzKG with its two variants: LorentzKG-r,
which applies only Lorentz rotation/reflection to
transform entities, and LorentzKG-b, which applies
only Lorentz boost. The experimental results, pre-
sented in Table. 3, indicate that LorentzKG-r per-
forms comparably to LorentzKG, as the majority
of relation information is encoded by Lorentz ro-
tation/reflection, which possesses a higher number
of parameters compared to Lorentz boost. How-
ever, by leveraging the benefits of both types of
transformations, LorentzKG achieves a more com-
prehensive representation of relational patterns and
captures a wider range of semantic relationships, as
evidenced by its superior performance in the table.

Embedding Dimension. To investigate the in-
fluence of embedding dimension, we perform ex-
periments on WN18RR and FB15k-237 datasets
using various settings {32, 64, 100, 200}, as shown
in Table. 5. Our observations reveal improved per-
formance (in most metrics) with increasing embed-
ding dimensions, demonstrating that LorentzKG
excels in both low and high dimensions.
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WN18RR FB15k-237

Model #Dim MRR H@10 H@3 H@1 #Dim MRR H@10 H@3 H@1

LorentzKG 32 50.2 58.9 52.3 45.6 32 38.4 57.9 42.2 28.7
LorentzKG 64 51.4 59.2 52.7 44.6 64 38.7 58.1 42.6 29.1
LorentzKG 100 52.1 60.2 53.0 45.2 100 38.9 58.6 43.3 29.5
LorentzKG 200 52.4 61.3 54.2 46.0 200 39.2 59.0 43.8 29.3

Table 5: Embedding dimensions and performances of LorentzKG on WN18RR and FB15k-237 datasets.

5 Related Work

We review some KGE models, highlighting their
differences in two aspects: the selection of the em-
bedding space and the score function (Table. A2).

5.1 Euclidean Embeddings

Bilinear models, such as RESCAL (Nickel et al.,
2011), represent relations as linear transformations
acting on entity vectors. DistMult (Yang et al.,
2015) is a special case of RESCAL that reduces the
number of parameters per relation, while ComplEx
(Trouillon et al., 2016) extends DistMult into the
complex domain to model antisymmetry.

Translation-based models including TransE
(Bordes et al., 2013) and its variants, treat relations
as translations from head to tail entity embeddings,
e.g., h + r ≈ t. However, they cannot capture
specific logical properties such as symmetry and
cannot model relations with higher cardinalities if
the translation is only applied to the head entity,
e.g., TransE. Rotation-based models define rela-
tions as rotations in complex space, RotatE (Sun
et al., 2019), or hypercomplex space, QuatE (Zhang
et al., 2019) to enable expressive semantic match-
ing between head and tail entities. While these
models can capture important relation patterns in
KGs, they are limited in modeling hierarchy and
usually suffer from high complexity (Bordes et al.,
2013; Chen and Li, 2020a; Sun et al., 2019; Lai
et al., 2023; Jin et al., 2024; Moosaei et al., 2022).

5.2 Hyperbolic Embeddings

As HAKE (Zhang et al., 2020) demonstrates, rela-
tions in KGs often exhibit semantic hierarchies. For
instance, within the triplets (Alice, _is_friend_of,
Bob) and (Bob, _is_supervisor_of, Chris) (Cai
et al., 2018), entities Alice and Bob share the same
hierarchical level, whereas Chris is considered at
a different hierarchical level. HAKE employes
the polar coordinate system in Euclidean space to
model these hierarchies, by assuming that entities
at different hierarchical levels have distinct mag-

nitudes in polar coordinates. Recently, hyperbolic
space has been increasingly used for KGs due to its
effectiveness in capturing hierarchical structures.

In hyperbolic KGE models, the likelihood of
a fact is assessed by measuring the hyperbolic
distance between the translated embeddings of
its entities in the hyperbolic space. MuRP (Bal-
azevic et al., 2019) and HyperKG (Kolyvakis
et al., 2020) are two early attempts in the devel-
opment of translation-based hyperbolic KGE meth-
ods on the Poincaré ball model. MuRP employs
Möbius matrix-vector multiplication and Möbius
addition (Ungar, 2005), which are generalizations
of Euclidean operations in tangent space, to trans-
late entity embeddings. HyperKG utilizes Eu-
clidean addition and circular permutation. How-
ever, these operations do not completely reflect
hyperbolic geometry. AttH (Chami et al., 2019)
uses a combination of block-wise hyperbolic re-
flections/rotations, Eq. 9, and attention modules to
model symmetric/antisymmetric relational patterns.
UltraE (Xiong et al., 2022) adopts the same ap-
proach but uses ultrahyperbolic manifold as embed-
ding space. HBE (Pan and Wang, 2021) adopts the
idea of using a polar coordinate system to capture
hierarchical structures to the extended Poincaré
ball model. ConE (Bai et al., 2021) uses hyperbolic
cones to represent entities and models relations
as transformations between the cones. However,
Möbius operations are applied in both HBE and
ConE. HyboNet (Chen et al., 2022b) operates on
the Lorentz model, where the head entity is trans-
formed using a Lorentz linear transformation layer
as described in Eq. 8. However, none of the exist-
ing hyperbolic KGE models apply transformations
to both the head and tail entities, i.e., the hyperbolic
distance is measured for the transformed head en-
tity and the tail entity, which prevents these models
from capture relation cardinalities, similar to the
case of STransE (Nguyen et al., 2016).

Several recent studies have investigated combin-
ing other topological structures (e.g., hypersphere)
with hyperbolic space in KGE. Notable examples
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include M2GNN (Wang et al., 2021) and GIE (Cao
et al., 2022) where tangent space operations are
applied in these models.

6 Conclusions

Here we introduce LorentzKG, a fully translation-
based hyperbolic KGE model that utilizes Lorentz
transformations. LorentzKG enables linear transla-
tion of entity embeddings and facilitates the mod-
eling of various relation patterns in KGs. By apply-
ing different transformations to the head and tail
entities, LorentzKG is able to capture relation cardi-
nalities. Experimental results show the superiority
of LorentzKG over existing models, highlighting
its enhanced expressivity and modeling capabilities,
particularly in low-dimensional settings.

7 Limitations

This study primarily concentrates on leveraging
hyperbolic geometry to improve hyperbolic knowl-
edge graph embeddings, with a particular emphasis
on low-dimensional embeddings. Our comparative
analysis was confined to translation-based KGE
models and hyperbolic models. This particular fo-
cus might potentially narrow the breadth of our
findings. Future research endeavors should con-
sider diversifying the scope to include more diverse
settings and larger-scale data to further validate and
extend the applicability of our proposed method-
ologies.
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A Notations

Notation Description
G A knowledge graph
E A set of entities
R A set of relations
h Head entity
t Tail entity
r Relation

(h, r, t) Fact in KG
(h, r, t) Embedding of a fact
M · Mapping matrix

fr(h, t) Score function
d·(·, ·) Distance metric in specific space
Rk k-dimensional Euclidean space
Ck k-dimensional complex space
Bk k-dimensional Poincaré ball model
Lk k-dimensional Lorentz model
◦ Element-wise product
⊗ Möbius matrix-vector multiplication
⊕ Möbius addition

O(n) Orthogonal group
O(1, n) Lorentz group
O+(1, n) Positive Lorentz group

Λ Lorentz transformations

Table A1: Notations

B More on Hyperbolic Geometry

(a) (b)

Figure A1: (a) Isometric transformation between the
Poincaré ball model B2 (grey disk) and the Lorentz
model L2 (blue surface); (b) Points on B2.

The Poincaré ball model. The k-dimensional
Poincaré ball model of hperbolic space Bk is the
interior of a unit ball in Rk, i.e.,

Bk = {x = [x1, . . . , xk] ∈ Rk : ∥x∥ < 1} (A1)

where ∥·∥ is the Euclidean norm.

The correspondence between the Poincaré ball
model Bk and the Lorentz model Lk is given by

[x0, x1, . . . , xk] ∈ Lk ⇔
[

x1
1 + x0

, . . .
xk

1 + x0

]
∈ Bk,

(A2)
the stereographic projection of hyperbolic space

(Cannon et al., 1997), as illustrated in Fig. A1 for
the 2-dimensional case.

Geodesic distance. Recall that the geodesic
distance in hyperbolic space is given by:

dL(x,y) = cosh−1(−⟨x,y⟩L) ≜ θ (A3)

where x,y ∈ Lk and ⟨·, ·⟩L is the Lorentzian inner
product.

Tangent space. Given x ∈ Lk, the tangent
space centered at x is

TxLk := {v ∈ Rk+1 : ⟨v,x⟩L = 0}. (A4)

TxLk is a local approximation of the Lorentz
model at x and a Euclidean subspace of Rk+1.
v ∈ TxLk is known as the tangent vector.

Exponential and logarithmic maps. The map-
ping between tangent space and hyperbolic space
is conducted by exponential and logarithmic maps.
For any x ∈ Ln and v ∈ TxLn, the exponential
map at x is given by

Expx(v) = cosh(∥v∥L)x+ sinh(∥v∥L)v/∥v∥L.
(A5)

the inverse of the exponential map, the logarithmic
map, is given by

Logx(y) =
θ

sinh(θ)
(y − cosh(θ)x) (A6)

where x,y ∈ Ln and θ is the geodesic distance
between x and y.

C Definitions

The definitions of relation patterns are presented
in this section. With a slight abuse of notation, we
denote a fact in the knowledge graph as r(x, y),
where r ∈ R is relation and x, y ∈ E are entities.

Definition 1. A relation r is symmetric if ∀x, y

r(x, y) ⇒ r(y, x) (A7)

A clause with such form is a symmetric pattern.

Definition 2. A relation r is antisymmetric if ∀x, y

r(x, y) ⇒ ¬r(y, x) (A8)

A clause with such form is a antisymmetric pattern.
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Model Score Function fr(h, t) Embedding Spaces
SE (Bordes et al., 2011) −∥Mr,1h−Mr,2t∥21 h, t ∈ Rk,Mr,i ∈ Rk×k

TransE (Bordes et al., 2013) −∥h+ r − t∥1/2 h, r, t ∈ Rk

StransE (Nguyen et al., 2016) −∥Mr,1h+ r −Mr,2t∥1/2 h, r, t ∈ Rk,Mr,i ∈ Rk×k

RotatE (Sun et al., 2019) −∥h ◦ r − t∥2 h, r, t ∈ Ck, |ri| = 1

RESCAL (Nickel et al., 2011) ⟨hTM rt⟩ h, t ∈ Rk,M r ∈ Rk×k

DistMult (Yang et al., 2015) ⟨hT diag(r)t⟩ h, r, t ∈ Rk

ComplEx (Trouillon et al., 2016) Re(⟨hT diag(r)t̄⟩) h, r, t ∈ Ck

HAKE (Zhang et al., 2020)
−∥hm ◦ rm − tm∥2
− λ∥sin(hp + rp − tp)/2∥1

hm, tm ∈ Rk, rm ∈ Rk
+

hp, rp, tp ∈ [0, 2π)k, λ ∈ R
MuRP (Balazevic et al., 2019) −dB(Mr ⊗ h, t⊕ r))2 + bh + bt h, r, t ∈ Bk,Mr ∈ Rk×k

AttH (Chami et al., 2019) −dB(Q(h, r), t)2 + bh + bt h, r, t ∈ Bk

HyboNet (Chen et al., 2022b) −d2L(gr(h), t) + bh + bt + δ h, t ∈ Lk

LorentzKG −d2L(Λr,1h,Λr,2t) + bh + bt + δ h, t ∈ Lk,Λr,i ∈ O+(1, n)

Table A2: The score functions fr(h, t) and embedding spaces of several knowledge graph embedding models,
where ◦ denotes the Hadamard product, ⟨·⟩ denotes the dot product, ⊕ and ⊗ denotes the Möbius addition and the
Möbius matrix multiplication, respectively. Also, dM(·, ·) is the distance metric in manifold M and bh, bt ∈ R are
scalar biases. δ ∈ R is a margin hyper-parameter. Q(h, r) in AttH is a hyperbolic attention module, and gr(h) in
HyboNet is Euclidean linear transformation followed by normalization.

Definition 3. Relation r1 is inverse to relation r2
if ∀x, y

r2(x, y) ⇒ r1(y, x) (A9)

A clause with such form is a inversion pattern.

Definition 4. Relation r1 is composed of relation
r2 and relation r3 if ∀x, y, z

r2(x, y) ∧ r3(y, z) ⇒ r1(x, z) (A10)

A clause with such form is a composition pattern.

D Proofs of Capability of LorentzKG in
Modeling Relation Patterns

If a triple (h, r, t) is a valid fact, we would expect
that in our embedding Λr,1h = Λr,2t, or equiv-
alently Λ−1

r,2Λr,1h = t. Note that Λ−1
r,2Λr,1 ∈

O+(1, n) since O+(1, n) is a group. In the follow-
ing proofs of relation patterns, we denote Λ−1

r,tΛr,1

as Λr and check if Λrh = t in a valid fact (h, r, t).

Proof. (symmetry pattern) If r(x, y) and r(y, x)
hold, we have

(Λrx = y) ∧ (Λry = x) ⇒ ΛrΛr = I (A11)

Proof. (antisymmetry pattern) If r(x, y) and
¬r(y, x) hold, we have

(Λrx = y) ∧ (Λry ̸= x) ⇒ ΛrΛr ̸= I (A12)

Proof. (inversion pattern) If r1(x, y) and r2(y, x)
hold, we have

(Λr1x = y) ∧ (Λr2y = x) ⇒ Λr1 = Λ−1
r2
(A13)

Proof. (compositon pattern) If r2(x, y), r3(y, z)
and r1(x, z) hold, we have

(Λr2x = y)∧(Λr3y = z) ∧ (Λr1x = z)

⇒Λr3Λr2 = Λr1

(A14)

E Pseudocode for LorentzKG

We illustrate the implementation of our proposed
LorentzKG with pseudocode in Algorithm 1.

F Analysis on Hierarchy Pattern

In order to assess the hierarchy patterns captured
by our LorentzKG model, we gather the embed-
dings of head and tail entities for some relations
in WN18RR. Subsequently, we compute the hy-
perbolic distance from these embeddings to the
origin point o = [1, 0, . . . , 0] ∈ Lk, and plot the
resulting distribution histograms, as illustrated in
Fig. A2. We expect that entities at the same hierar-
chical level would exhibit similar distances from
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Algorithm 1: Pytorch-style Pseudocode for LorentzKG
# LorentzRotation: Lorentz rotation/reflection neural network module
# LorentzBoost: Lorentz boost neural network module
# LorentzDistance: squared Lorentzian distance function
#
# Train LorentzKG for N epochs
for epoch in range(N):

for (h,r,t) in training data and negative samples:
trans_h = LorentzRotation(h, r)
trans_h = LorentzBoost(trans_h, r)
trans_t = LorentzRotation(t, r)
trans_t = LorentzBoost(trans_t, r)
d = LorentzDistance(trans_h, trans_t) + bias_h + bias_t + margin
loss = nn.BCEWithLogitsLoss(d, y) # y = ± 1
loss.backward()
optimizer_radam.step()

(a) _hypernym (b) _instance_hypernym

(c) _derivationally_related_form (d) _similar_to

Figure A2: Distribution histograms of entity embeddings in some relations in WN18RR. For a specific relation, the
distribution of distances from the head entity embeddings to the origin point o = [1, 0, . . . , 0] ∈ Lk is shown in
orange. And the distribution of distances from the tail entity embeddings to the origin point is shown in blue.

the origin point, while entities with higher-level
hierarchies would be closer to the origin point.

In the WN18RR dataset, the relations _hypernym
and _instance_hypernym are hierarchical relations
where tail entities are at higher levels than head

entities of the hierarchy. As depicted in Fig. 2(a)
and Fig. 2(b), we observe that the tail embeddings
tend to be situated at higher levels compared to the
head embeddings, aligning with our expectations.

On the other hand, the relations _derivation-
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CoDEx-s CoDEx-m CoDEx-l

Model MRR Hit@1 MRR Hit@1 MRR Hit@1

TransE 35.4 21.9 30.3 22.3 18.7 11.6
ComplEx 46.5 37.2 33.7 26.2 29.4 23.7
ConvE 44.4 34.3 31.8 23.9 30.3 24.0
TuckE 44.4 33.9 32.8 23.9 30.9 24.4

AttH 40.2 28.6 31.5 23.7 - -
MuRP 42.0 31.1 30.6 22.6 - -
CoPE 44.6 35.0 32.6 25.1 - -

LorentzKG 52.1 37.9 36.8 24.5 33.4 22.6

Table A3: Performances of various KGE models on CoDEx datasets.

ally_related_form and _similar_to are symmetric
relations. As shown in Fig. 2(c) and Fig. 2(d), the
tail embeddings exhibit similar levels to the head
embeddings, as anticipated.

G Additional Experimental Results

We validate our results on a new dataset, CoDEx
(Safavi and Koutra, 2020). CoDEx, which com-
prises three diverse knowledge graphs of varying
sizes (CoDEx-s, CoDEx-m, CoDEx-l), is a re-
cently developed benchmark for KG completion
tasks. The performance of our model, along with
several competing models, is presented in the Ta-
ble. A3 Most results are sourced from the origi-
nal work(Safavi and Koutra, 2020), while the re-
sults from some hyperbolic KGE018 models (AttH
and MuRP) are taken from a recent work, CoPE
(Zeb et al., 2024). As evidenced in the table, our
LorentzKG demonstrates a competitive to superior
performance on the new benchmark.

H More on Model Capacity

Note that the number of parameters taken from the
original GIE (Cao et al., 2022) paper for MuRP
(Balazevic et al., 2019) is for an embedding di-
mension other than 32. For d=32, the number of
parameters in MuRP is 5.41M (WN18RR) and
1.94M (FB15k-237), which is more than that in
LorentzKG (1.39M and 1.42M). In LorentzKG,
the number of parameters increases linearly with
the number of entities and quadratically with the
number of relations — the same complexity as in
HyboNet (Chen et al., 2022b). However, since
transformations are applied to both head and tail,
whereas only the head is transformed in HyboNet,
we have a few more parameters compared to Hy-
boNet.
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J Use of AI Assistants

AI assistants are used in this paper for spelling and
grammar check.
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