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Abstract

This study addresses the interpretability of
word representations through an investigation
of a count-based co-occurrence matrix. Em-
ploying the mathematical methodology of For-
mal Concept Analysis, we reveal an underlying
structure that is amenable to human interpreta-
tion. Furthermore, we unveil the emergence of
hierarchical and geometrical structures within
word vectors as consequences of word usage.
Our experiments on the PPMI matrix demon-
strate that the formal concepts that we identified
align with interpretable categories, as shown in
the category completion task.

1 Introduction

Word vector representations are central to natural
language processing, as they capture semantic and
syntactic features (Lenci, 2018). Their significance
has been amplified in recent times, as they are used
as input for Transformer-based language models
(Vaswani et al., 2017), where static embeddings
are contextualized. Their effectiveness has been
explained by the distributional hypothesis (Harris,
1954) linking similar semantics and similar dis-
tribution (Jurafsky and Martin, 2009). However,
the interpretability of their dimensions remains an
active research topic (Şenel et al., 2018). Levy
and Goldberg (2014a) found neural word embed-
dings to be uninterpretable while acknowledging
that sparse vectors capture some latent topics. Geva
et al. (2022), among others, pioneered efforts to in-
terpret dynamic embeddings in GPT-2 (Radford
et al., 2019) by projecting them into the vocabulary
space, though a systematic approach to interpret
dimensions of embeddings remains an open issue.

Many preceding studies have investigated the
semantic properties of word embeddings and re-
vealed that word vectors in a vector space capture
relational meanings. The most well-known exam-
ple is the parallelogram formed in the vector space

by the embeddings of words in analogical relations
(e.g. king:queen::man:woman) (Mikolov et al.,
2013c). Other semantic relationships also exhibit
geometrical counterparts, such as semantic compo-
sition with vector addition (Mikolov et al., 2013b;
Mitchell and Lapata, 2008), hypernymy captured
by linear projection (Fu et al., 2014), and polysemy
as a linear combination of vectors (Arora et al.,
2018). Regarding the theoretical analysis of em-
beddings, Levy and Goldberg (2014b) suggested
that word2vec (Mikolov et al., 2013a) is equivalent
to the factorization of a word co-occurrence matrix.
Arora et al. (2016) proposed a generative model in
which PMI-based word embeddings exhibit linear
structures. These related studies collectively hint
that the latent structure in the co-occurrence ma-
trix reflects linguistic regularities and is inherently
embedded within vector representations. There-
fore, understanding the word co-occurrence matrix
represents a cornerstone in elucidating the inter-
pretability of word representations.

In this study, we directly address the mathemat-
ical structure of a word co-occurrence matrix to
uncover underlying linguistic patterns and to inter-
pret the dimensions of word embeddings. We claim
that a formal concept, as mathematically defined
in the matrix, corresponds to human-interpretable
categories. We substantiate our claim through the
category completion task. Specifically, we used
Formal Concept Analysis (FCA), a field of applied
mathematics (Ganter and Wille, 2012), to formally
characterize the internal structure of a matrix. We
define a group of words as interpretable if it can
be descriptively labeled. Furthermore, we demon-
strate that a hierarchical structure of formal con-
cepts emerges as a geometric formation in the vec-
tor space, which explains why relational meanings
are captured by word embeddings.

Our contributions are threefold. First, we pro-
pose two methods that apply FCA to real-valued
data: binarization by varying thresholds and fuzzi-
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fication of FCA. Second, we empirically show that
the formal concepts in the co-occurrence matrix
coincide with interpretable categories. Third, we
present a novel algorithm to detect formal concepts,
which is capable of disambiguating polysemous
words. To our knowledge, this is the first study to
apply FCA to a word-word co-occurrence matrix.
Our study offers a new approach to uncover latent
linguistic structures in co-occurrence matrices.

2 Formal concept analysis of word
co-occurrence matrix

2.1 Basics of FCA
FCA is related to order theory and abstract algebra.
It mathematizes concepts and conceptual hierarchy
(Ganter and Wille, 2012). A concept comprises
a pair of its extents (objects) and its intents (at-
tributes). Concepts can form a hierarchy known
as a lattice. FCA has been empirically applied for
data mining and ontology (Poelmans et al., 2013),
especially in bioinformatics (Roscoe et al., 2022).

A formal context K := (G,M, I) consists of
two sets G,M and a binary relation I ⊆ G ×M .
The elements of G and M are called objects and
attributes, respectively. For g ∈ G and m ∈M , a
relation (g,m) ∈ I means that the object g has the
attribute m. We define two derivation operators;
↑ : 2G → 2M maps a subset of objects to a subset
of attributes, and its reverse ↓ : 2M → 2G maps
attributes to objects. For A ⊆ G,B ⊆M ,

A↑ := {m ∈M | (g,m) ∈ I (∀g ∈ A)} (1)

B↓ := {g ∈ G | (g,m) ∈ I (∀m ∈ B)} (2)

A↑ ⊆ M is the set of attributes common to all
objects in A, whereas B↓ ⊆ G is the set of ob-
jects that possess all the attributes in B. It can
be shown that A ⊆ B↓ ⇔ B ⊆ A↑, which
is a structure-preserving (order-reversing) corre-
spondence between ordered sets known as a Galois
connection (Davey and Priestley, 2002).

A formal concept of the context (G,M, I) is
defined as a pair (A,B) ∈ 2G × 2M where both
A↑ = B and B↓ = A hold. A and B are
considered the extent and intent, respectively, of
the formal concept (A,B). The compositions
of two derivation operators ↑↓ : 2G → 2G and
↓↑ : 2M → 2M are closure operators (Davey and
Priestley, 2002), with a formal concept defined as
the fixed point of these operations. If a formal
context is represented as a binary matrix, it corre-
sponds to a maximal rectangular (submatrix) with

all ones in its entries when the rows and columns
are appropriately reordered.

A formal concept can also be equated with a
maximal biclique, i.e., a complete subgraph of
a bipartite graph (Chiaselotti et al., 2015). All
elements of A and B are completely connected
within that subgraph.

2.2 Rational and benefit of using FCA

A word co-occurrence matrix, used as input data to
learn word embeddings, is constructed by counting
the frequency of a target-context word pair that co-
occurs in the neighborhood. By regarding target
words as objects and context words as attributes, we
can express this co-occurrence as a binary relation.
Thus, we can treat a co-occurrence matrix as a
formal context.

FCA is effective in analyzing co-occurrence ma-
trices for three reasons. First, it can characterize
a local structure within the matrix. Second, for-
mal concepts can capture relations between more
than three words, which cannot be represented by
individual pairwise relationships, yielding a richer
analysis of the structure. Third, we can define (par-
tial) order relation between formal concepts. A
semantic relationship such as hypernymy can be
formalized by such an order relation. We further
demonstrate the function of FCA in Section 3.

To apply the crisp (binary) FCA to a real-valued
co-occurrence matrix, we tested two approaches.
First, we simply binarized the matrix values by
thresholds, with a varying threshold method de-
ployed to flexibly locate formal concepts (Section
4). Second, we extended the crisp FCA to an FCA
built on fuzzy logic (Section 5).

3 Demonstration using synthetic data

3.1 Artificial toy corpus

We examined how FCA handles a word co-
occurrence matrix using a toy corpus. We demon-
strated that formal concepts capture semantic cate-
gories emerging from word usage in the corpus and
introduced a concept lattice of FCA to illustrate
the hierarchical structure of concepts.

The demonstration contains 1) a corpus of 24
synthetic sentences with 17 words (Appendix A),
2) a co-occurrence matrix obtained from the cor-
pus, and 3) word vectors acquired from the matrix
(Fig. 1). The corpus is designed to replicate a geo-
metric formation of the analogy relation. Specifi-
cally, we targeted eight words—king, queen, man,
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woman, and their plurals—so that their vectors
formed a parallelepiped. The sentences were ex-
pressed analogously: E.g., ‘king (queen) live in
palace”, whereas “man (woman) live in house”.
The co-occurrence matrix X ∈ {0, 1}17×17 is bi-

Figure 1: Binary co-occurrence (sub)matrix: Each entry
is 1 if shaded and 0 otherwise. Each row is a word
vector. Three submatrices with shade patterns indicate
different formal concepts f, e, v.

nary, where Xij = 1 if two words co-occur in a
sentence and Xij = 0 otherwise. Each row of this
matrix represents a word vector. Projected on the
3-dimensional space, the eight word vectors form
a parallelepiped (Fig. 2).
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Figure 2: A parallelepiped emerges when eight word
vectors (rows) are projected onto 3-dimensional space.

3.2 Detecting formal concepts
We now apply FCA to the matrix X . Although
formal concepts can be determined by applying
the closure operator ↑↓, a simplified method is to
find a rectangular in the matrix. For example, the
submatrix of rows i ∈ {1, 3, 4, 7} and columns
j ∈ {1} represents a formal concept, as all its
entries are 1s and no other rectangular matrix con-
tains it. This concept represents a pair of the ex-
tent {king, queen, kings, queens} and the intent
{palace}, interpreted as "royal."

There are a total of 28 formal concepts in this
matrix (see Appendix B for the list and notation).
They are classified into five types, including two
trivial ones wherein one element is empty. Ex-
amples of the three non-trivial types include the
following:

f1 := ({king,man, kings,men}, {tie}) (3)

e1 := ({king,man}, {tie, alone}) (4)

v1 := ({king}, {tie, palace, alone}) (5)

To see hierarchical relations between formal
concepts, we first define the order relation. Let
B(G,M, I) be the set of all concepts of (G,M, I).
Given (A1, B1), (A2, B2) ∈ B(G,M, I),

(A1, B1) ≤ (A2, B2)
def⇐=⇒ A1 ⊆ A2 ⇔ B1 ⊇ B2

(6)
Thus, if the extent A1 is contained by the extent
A2, then the formal concept (A1, B1) is less than or
equal to (A2, B2). Owing to the Galois connection,
A1 ⊆ A2 holds if and only if B1 ⊇ B2. Then,
⟨B(G,M, I) : ≤⟩ is a complete lattice known as
a concept lattice, a nonempty ordered set where a
join and a meet exist for all elements and subsets.
Fig. 3 visualizes all ordered relations between the
formal concepts identified in the matrix X . We

f1 f2 f3 f4 f5 f6

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

v1 v2 v3 v4 v5 v6 v7 v8

T

B

Figure 3: Concept lattice. Each node represents a formal
concept. They correspond to geometric simplices of the
parallelepiped: 8 vertices, 12 edges, 6 faces.

observe that the lattice of formal concepts (Fig. 3)
corresponds to the parallelepiped (Fig. 2). This
suggests that geometric relations between word
vectors reflect the hierarchical structure latent in
the word co-occurrence matrix.

3.3 Three implications of FCA

First, FCA allows us to easily interpret the identi-
fied formal concepts. For example, f1 should be
labeled as masculine from its extent {king, kings,
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man, men}, whereas f6, with the extent {queen,
queens, woman, women}, must be labeled as fem-
inine. The other f -type concepts can be labeled
as royal, common, singular and plural. Thus,
formal concepts coincide with semantic categories.

Second, v1 (king) can be seen as the intersection
of three others—f1, f3, f5— analogous to a vertex
included in three faces. Semantically, king is some-
thing royal, masculine, and singular. This relation
can be algebraically formulated as v1 = f1∧f3∧f5
where ∧ is a meet operation.

Third, pairs of opposing faces in the paral-
lelepiped form complementary concepts such as
masculine vs. feminine. Mathematically, we can
construct a formal concept algebra by defining ad-
ditional operations as axioms (Wille, 2004). Us-
ing this algebra, the formal concept of masculine
can be demonstrated to complement that of fem-
inine; ¬f1 = f6 where ¬ is a negation. The ob-
servation that king v1 = f1 ∧ f3 ∧ f5 and queen
v5 = f6 ∧ f3 ∧ f5 share f3 and f5 explains the phe-
nomenon that both synonyms and antonyms appear
close to each other in the vector space (Turney and
Pantel, 2010).

In summary, the co-occurrence matrix exhibits
the geometrical and algebraic structures formed by
interpretable formal concepts.

4 Experiment 1: FCA by binarization

We now demonstrate that formal concepts can be
defined on actual word co-occurrence data and cor-
respond to both semantic and syntactic categories.

4.1 Algorithm to identify formal concepts

We designed a novel algorithm to locate formal
concepts through the conversion of two derivation
operators (Eq. 1 and 2). The corresponding pseudo-
algorithm is shown in Algorithm 1. Given a co-
occurrence matrix X and set of target words S
as a seed, the algorithm returns a formal concept
(S↑↓, S↑), which is a pair of two subsets of the
vocabulary. Here, S↑↓ is the closed set of S.

The first derivation operator ↑ must identify con-
text words that co-occur with all target words in
S. In other words, a context word is selected when
it has all entry values exceeding the threshold t
for the target words in S. Equivalently, any en-
try value that the seed words have with the con-
text word should not be less than t, meaning that
their minimum must be greater than or equal to
t. As indicated in Line 3, the algorithm finds

Algorithm 1 Varying Threshold Method

Input: X ∈ RN×N , S := {wi}i∈IS , k ∈ N
Output: FC := (S↑↓, S↑), t ∈ R

1: function FINDFORMALCONCEPT(S, k)
2: for j ← 1 to N do
3: mj ← mini∈IS Xij

4: end for
5: Sort [mj ] in descending order← [mp(j)]
6: JS↑ ← {p(j)}j≤k

7: S↑ ← {wj}j∈JS↑
8: t← mp(k)

9: IS↑↓ ← ∅
10: for i← 1 to N do
11: µi ← minj∈JS↑ Xij

12: if µi ≥ t then
13: IS↑↓ ← IS↑↓ ∪ {i}
14: end if
15: end for
16: S↑↓ ← {wi}i∈IS↑↓
17: return (S↑↓, S↑), t
18: end function

the minimum value that the seed words (in rows
∀i ∈ IS) have against a certain context word (in
a column j ∈ {1, . . . , N}), sorts them in descend-
ing order (Line 5), and selects the first k context
words (columns) S↑ (Line 6). The threshold is au-
tomatically determined as the kth largest minimum
value (Line 8). Next, an inverse operation executes.
Given S↑, the algorithm finds a minimum value
over the context words S↑ (JS↑ in the column in-
dex) against a target word in a row i (Line 11) and
selects the target words (rows IS↑↓) with minimum
values exceeding the threshold (Line 13), which
form S↑↓.
IS↑↓ and JS↑ are subsets of rows and columns

corresponding to S↑↓ and S↑, respectively. t is the
determined threshold. The algorithm ensures that a
submatrix (Xij)i∈IS↑↓, j∈JS↑ satisfies:

Xij ≥ t (i ∈ IS↑↓, j ∈ JS↑) (7)

Xij < t (∀j /∈ JS↑, ∃i ∈ IS↑↓) (8)

Xij < t (∀i /∈ IS↑↓,∃j ∈ JS↑) (9)

Note that the submatrix of IS↑↓ × JS↑ is discrimi-
nated from its neighbouring area. Its inner region
has higher values than t (Eq. 7), whereas each of
its exterior rows and columns horizontally (Eq. 8)
and vertically (Eq. 9) adjacent to the submatrix
contains at least one cell below the threshold. In
other words, the higher entry values discriminate
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the submatrix of a formal concept from its neigh-
bors, forming a local plateau-like structure that is
not necessarily captured by the cosine similarity.

4.2 Category completion test
The experiment was conducted to verify that the
formal concepts identified from the co-occurrence
matrix coincide with interpretable categories.

Test set We adopted two existing test sets from
Lindh-Knuutila and Honkela (2015) containing se-
mantic categories: the Battig set (Bullinaria and
Levy, 2012), comprising 53 categories with 10
words for each, and BLESS (Baroni and Lenci,
2011), which contains 17 categories with 5-17
words for each. We also compiled two additional
sets: Series and Syntactic. The tested categories
are listed in Appendix C.

Procedure For each category, we systematically
furnished the algorithm with all possible word pairs
as seeds derived from the category’s word set. Next,
we identified the optimal seed that yields the most
extensive set of accurately classified words. We
then assessed how effectively the algorithm re-
trieves the correct words from the optimal seed for
the given category (Precision, Recall). Because
the word sets are not necessarily exhaustive, we
also regarded those missed words as correct, based
on our human judgement (Extended precision)1.

Baseline We used a similarity-based approach as
a baseline. Specifically, we applied the k-nearest
neighbor algorithm with cosine similarity. To en-
sure a fair comparison, we utilized the identical op-
timal seeds derived by the FCA method and found
the nearest vectors to their mean vectors.

Data The co-occurrence matrix was constructed
from the English Wikipedia dump (20171001)2

(2.9B tokens), counted with a window of 10. We
adopted PPMI (positive point-wise mutual informa-
tion) as it yields the best results in the semantic task
(Bullinaria and Levy, 2012). To keep the matrix
size manageable, we limited the vocabulary to the
10K most frequent words.

4.3 Results
Qualitative results Table 1 presents the output
samples produced by the algorithm. When given
{large, huge} as a seed, the algorithm returned

1The annotation was done by one of the authors, who is
non-native but has educational experience in the U.S.

2CC BY-SA 3.0; https://dumps.wikimedia.org/legal.html

{large, huge, enormous, vast} as the extent and
{sums, amounts, quantities} as the intent, which
constitutes a formal concept. All PPMI values
within this concept exceeded 3.95. This formal
concept can be labeled as "largeness" or Adjective
of size, which implies that it is indeed interpretable.
Interestingly, another formal concept consisting of
{large, small} arises from the different seed instead.
Similar results held for other seeds.

Quantitative results Table 2 shows that 61.5–
84.3% of the identified extent words matched the
category labels in the test sets (Extended preci-
sion). Furthermore, 56.3–76.8% of the words in the
test sets were retrieved by the algorithm (Recall).
Semantic categories in Battig, BLESS, and Series
were more effectively captured by formal concepts
than syntactic categories. We also observed that
homogeneous categories (e.g., Country) frequently
formed formal concepts. With the exception of the
Extended Precision metric for the Syntactic test set,
our proposed method consistently achieved higher
scores compared to the baseline.

The use of optimal seeds in the evaluation is
justified because the objective is to measure the
extent to which a mathematically identified formal
concept best matches categories provided in the
test set. Other non-optimal seeds return different
formal concepts, which indicate the heterogene-
ity of human-made categories in the test set. See
Appendix E for performance spread and a further
discussion on the roles of seed words.

4.4 Analysis

The results suggest that formal concepts overlap
with interpretable categories, which are defined
as a set of words that human can descriptively
label. Furthermore, the FCA method exhibited
a notable advantage over the cosine similarity-
based approach in concept retrieval. This is be-
cause the latter broadly identifies related words,
whereas the former delves into specifying the un-
derlying context. For example, given the seed
words {church, chapel}, FCA additionally retrieves
{cathedral, shrine}, emphasizing the context of "re-
ligious buildings." In contrast, the cosine method
returns {cathedral, catholic} as output, failing to
extract the feature of "buildings."

This advantage of FCA stems from its ability to
locate mathematical structures within the matrix.
Higher PPMI values discriminate the submatrix
of a formal concept from its neighbors, forming a
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Seed Formal Concept (upper:extents; lower:intents) Th. Category

large, huge
large, huge, enormous, vast

3.95
Adjectives

sums, amounts, quantities of size

large, small
large, small

3.47
Adjectives

amounts, quantities, intestine of scale

church, temple, mosque
chapel, church, mosque, synagogue, temple

2.85
Religious

worship, jpg,ruined buildings

quicker, bigger, warmer
bigger, brighter, colder, cooler, heavier, hotter, louder,...

2.45 Comparatives
than, considerably, deeper

Table 1: Examples of formal concepts identified from a binarized PPMI matrix. Given seed words, the algorithm
returns an extent-intent pair representing a formal concept. The parameter k was set to 3. Th. means threshold.

Testset Mtd Pr Ext.P Re LKH
Battig FCA 51.0 81.7 64.4 (37.0)

BL 36.9 67.8 50.5 -
BLESS FCA 57.8 84.3 67.0 (64.7)

BL 50.5 74.5 57.5 -
Series FCA 62.8 82.7 76.8 -

BL 53.5 75.6 67.5 -
Syntactic FCA 57.1 61.5 56.3 -

BL 53.6 61.8 54.6 -

Table 2: Average precision (Pr), extended precision
(Ext.P), and recall (Re) over the categories (k = 3),
expressed as percentages. LKH lists % of the cate-
gories identified by Lindh-Knuutila and Honkela (2015).
BL=baseline

local plateau-like structure that is not necessarily
captured by the cosine similarity (Eq. 7–9). This
insight offers a use case for the proposed algorithm.

Disambiguating polysemy A target word can
participate in multiple formal concepts. By in-
putting seed words with different associations, we
found that polysemous words such as tie and spring
have multiple formal concepts, as shown in Table
3. We observed that separate formal concepts (e.g.,
clothing, match, fasten) may contain the same word
(e.g., tie) in their extents. Three separate plateaus
may share the same row as visualized in Fig. 4.

Arora et al. (2018) discovered that the embed-
dings of polysemous words can be decomposed as
linear combinations of sense vectors. Our finding
suggests that these vectors reflect separate formal
concepts, and that the embeddings inherit the inner
structure of the co-occurrence matrix.

Measuring a similarity in subspace The pro-
posed algorithm generates a byproduct that can be
used to investigate the relationship between multi-
ple vectors (the rows of the matrix) in a subspace.

Intent for tie1 Intent for tie2 Intent for tie3

jacket
shirt

dress
pants

tie

winning
tie

teams
championship

loosing

rope
tie

cable
neck

0

1

2

3

4

5

6

7

Figure 4: PPMI submatrix of three formal concepts
containing the same polysemous word tie. For ease of
visibility, the row for tie is presented multiple times.

Reusing Lines 3–5 in Algorithm 1, we can deter-
mine whether target words in a seed share certain
context words in limited dimensions and are seman-
tically related in the shared context.

Specifically, we propose the subspace similarity
ϕ(S) defined as

ϕ(S) :=
1

k

k∑

i=1

mp(i) (10)

for a group of words S = {wi}i∈IS , where mj :=
mini∈IS Xij , p(i) is a permuted index in descend-
ing order and k is a hyperparameter for the scope
of subspace. The notation is the same as in Al-
gorithm 1. The subspace similarity is the mean
of the thresholds t determined over different pa-
rameters values up to k. Fig. 5 shows the com-
puted values of the subspace similarity for sev-
eral word groups. Semantically related groups
show significantly higher values than the randomly
chosen word group. These results indicate that
semantically related groups share certain context
words locally, even if their cosine similarities are
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Word (sense) Seed Extent of Formal concept
tie1 (clothing) tie, pants, shirt collar, jacket, pants, shirt, tie, wears
tie2 (match) tie, teams, winning championship, playoffs, teams, tie, winning
tie3 (fasten) tie, cable, rope cable, loose, neck, rope, tie
spring1 (season) spring, autumn, month autumn, cold, coldest, cooler, dry, month, rainfall,...
spring2 (metal) spring, wheel, suspension fitted, mounted, rear, spring, suspension, wheel, wheels
spring3 (water) spring, creek, river basin, brook, creek, reservoir, river, spring, stream

Table 3: The extent of multiple formal concepts comprises polysemous words. The proposed algorithm is able to
disambiguate these contexts in response to the seeds associated with them. The parameter k was set to 5 except for
the case of spring1 (k = 10).

low. Generally, randomly chosen vectors in high-
dimensional space tend to be orthogonal, which
implies a low chance of detecting correlations in
any dimension. In contrast, a higher subspace simi-
larity should suggest that a certain structure can be
defined more than incidentally.

0 20 40 60 80 100
The parameter k
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4

5

6
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 si
m
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y

music instruments (drum, bass, guitar, piano, violin)
colors (blue, green, orange, pink, purple)
science (science, geology, chemistry, mathematics, physics)
usstate-midwest (illinois, minnesota, michigan, wisconsin, indiana)
random (desert, debug, playing, discovering, garnered)

Figure 5: Subspace similarity for groups of five words.
Semantically related groups exhibit significantly higher
values than the randomly selected set.

5 Experiment 2: Applying Fuzzy FCA

5.1 Fuzzification of FCA
Our second application of FCA to a real-valued ma-
trix involves the fuzzification of the crisp FCA by
incorporating fuzzy set theory (Belohlavek, 2007).
A fuzzy set formalizes an ambiguous set, such as "a
set of tall people," by assigning a degree of mem-
bership to each element. In Appendix D, we give
the definition of a fuzzy formal concept and show
that it is equivalent to a rank-one submatrix under
our proposed specification. Thus, the problem of
finding fuzzy formal concepts can be regarded as
that of identifying nonnegative rank-one submatri-
ces in a PPMI matrix.

Because it is NP-hard to exactly decompose a
matrix into nonnegative factors (Vavasis, 2010), we

obtained an approximation by deploying nonneg-
ative matrix factorization (NMF; Lee and Seung,
1999), as its L1 regularization is considered effec-
tive in making them as sparse as possible. We
controlled the sparseness so that the decomposed
submatrices became disjoint. NMF decomposes
X ∈ Rm×n

+ into two matrices W ∈ Rm×r
+ and

H ∈ Rn×r
+ so that X = WHT =

∑r
k=1wkh

T
k ,

where wk and hk are the kth columns of W and
H , respectively. The outer product wkh

T
k is of

rank one and preferably sparse, thereby approxi-
mating a fuzzy formal concept. The loss function
is Lα(W,H) = 1

2∥X −WHT ∥2F + α
(
n∥W∥1 +

m∥H∥1
)
. We recursively applied NMF 3 over

three rounds—first to the PPMI matrix as in Sec-
tion 4, then twice to the positive residual matri-
ces resulting from decomposition—factorizing into
r = 300 components each round. Parameters for
the L1 norms were set to α = 5, 3, 1 × 10−4 for
each round.

5.2 Results
We manually labeled 900 rank-one submatrices by
reviewing the words corresponding to the largest
entries in wk and hk (see Appendix F.1 for details).
We then classified the submatrices among four cat-
egories to assess how well the labels describe the
words in each formal concept4 (Table 4). Out of
900 acquired formal concepts, 95.7% were labeled
descriptively or partially descriptively, or at least
consisted of meaningfully related words.

5.3 Analysis
We found that Fuzzy FCA reveals the same formal
concepts as the crisp FCA. For example, all cat-
egories listed in Table 2 also appear as rank-one
submatrices. Of the 108 formal concepts identi-
fied in Experiment 1, 89 formal concepts (82.4%)

3NMF from Scikit-learn library: BSD license.
4The same as the footnote 1.
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Class R1 R2 R3 LKH
Descriptive 182 75 73 27

Partial 56 63 48 72
Meaningful 56 150 158 2
Nonsense 6 12 21 11

Total 300 300 300 112

Table 4: Decomposed rank-one submatrices in four
classes for each round, indicating how the submatrices
coincide with labeled categories. Definitions are pro-
vided in Appendix F.2 and the numbers under LKH are
cited from Lindh-Knuutila and Honkela (2015).

were included by those found by the fuzzy method
(Supplemental statistics in Appendix F.3). In fact,
Fuzzy FCA detected more eligible words (e.g. im-
mense, massive for Largeness, shrine for Religious
Buildings). This observation demonstrates the ro-
bustness of FCA, as well as the correlation between
the two methods.

Another interesting finding is that two types of
rank-one submatrices were discovered: a clique
type with identical rows and columns, and a bi-
clique type with different rows and columns. An
example of the latter is ({explain, describe, discuss,
...}, {beliefs, concepts, ideas,...}), which represents
a verb phrase for an act of communication.

6 Discussion

6.1 Why do formal concepts correspond to
interpretable categories ?

As noted in Section 2, a formal concept is equiva-
lent to a biclique, which means that the words in it
are densely connected. A group of words forms a
dense community if the words are used repeatedly
together. Furthermore, if the same latent state al-
ways emits the same set of words, then those words
are repeatedly counted as co-occurrence, thereby
forming a formal concept. The random walk model
of Arora et al. (2016) captures the same mechanism
to generate linearly structured embeddings.

However, a latent state is not necessarily limited
to a topic, i.e., a state based on thematic proxim-
ity. As revealed in Section 4, formal concepts may
reflect functional proximity, e.g. the comparative.
Furthermore, we observed phrasal proximity, as in
a verb phrase. Thus, a broad range of semantic and
syntactic patterns of word usage can be captured as
a formal concept.

These results open questions about the potential
relationship between formal concepts and human

cognition (e.g., Wu et al., 2022 showed that fMRI
patterns contain information to solve analogical rea-
soning), which may be the subject of future studies
of semantic cognition. Our approach may provide
a quantitative method to address these questions.

6.2 How can formal concepts be fully
captured ?

We designed two methods that apply FCA to a
real-valued matrix to detect interpretable formal
concepts, although we do not yet have a theory to
assess and relate the two methods.

In general, the challenge of FCA in applied stud-
ies is scalability stemming from computational
complexity, which must be addressed when increas-
ing the size of a co-occurrence matrix. Another
challenge is posed by heterogeneous data from
large corpora. Specifically, we observed that inter-
pretable formal concepts are detected at different
threshold levels (Section 4) and by layered factor-
ization (Section 5). The latent structures at different
scales indicate that multiple formal contexts co-
exist in the matrix as if they were superposed, and
they were probably generated separately. Thus, the
rank-one submatrices may be disjoint, superposed,
or overlapping. To extract such latent structures
more precisely, the algorithm must depend upon
the modeling of generative processes, which is also
a topic for a future study.

6.3 What do embeddings represent after all?

Recall that formal concepts defined as rank-one
submatrices appear as components of matrix factor-
ization X = WHT (Section 5). While a column
of W corresponds to a fuzzy set that constitutes
each formal concept, a row of W is used as a word
embedding. Thus, a value in each dimension of the
embedding can be seen as the "coordinate" of the
corresponding formal concept. The other matrix
H is considered to encode attributes. The embed-
dings, acquired by matrix factorization or implicit
factorization (Levy and Goldberg, 2014b), must in-
herit the structures of formal concepts, as the factor
matrices can be mutually transformed.

6.4 Are FCA methods beneficial in practice?

The FCA method exhibited an advantage over the
cosine similarity-based approach in the category
completion task (Section 4). Although both meth-
ods can capture a similarity between words, a fun-
damental distinction lies in the subspace where
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these similarities are assessed. While cosine sim-
ilarity utilizes the entire vector space and treats
vectors as static entities, the FCA method dynam-
ically narrows the subspace based on a given set
of words. It identifies subvectors with significantly
high occurrences, a task that cosine-based methods
cannot perform. This merit makes FCA beneficial
in various tasks such as polysemy disambiguation
and concept completion (e.g., Shani et al., 2023).

Another potential benefit of FCA is its use as an
analytical tool for contextualized embeddings. Dar
et al., 2023 reveals that the inner representations of
GPT-2 can be interpreted by projecting vectors into
the vocabulary space. They report actual pairs of
words processed in layers of GPT-2, some of which
seem to be similar to the formal concepts identified
in Experiment 2. Thus, there is a possibility that
the contextualization process can be interpreted as
certain algebraic operations on formal concepts,
though this is still speculative.

7 Related studies

Several studies demonstrated that sparse embed-
dings are interpretable. Murphy et al. (2012) and
Biggs et al. (2008) applied nonnegative matrix
factorization with a sparsity constraint to word-
document co-occurrence data and discovered top-
ics. Other studies (Faruqui et al., 2015; Park et al.,
2017; Jang and Myaeng, 2017) investigated word
embeddings to restore interpretability by using spar-
sity. We mathematically formalized the latent struc-
ture in the word co-occurrence matrix, which prior
studies might have empirically detected.

FCA has been applied in linguistics (Priss, 2005),
primarily for ontology. Cimiano et al. (2005) ap-
plied FCA for the automatic acquisition of tax-
onomies from a corpus. Moraes and Lima (2012)
built a semantic structure by setting the S-V-C tu-
ples of the annotated corpora as a formal context.
Berend et al. (2018) used FCA by binarizing sparse
word embedding for hypernymy discovery. In con-
trast to these studies, we deployed FCA to explore
the structure of the matrix itself, which revealed the
underlying structure of word-word co-occurrence
matrices.

Gastaldi (2021) delved into the underlying mech-
anism of word embeddings from a linguistic-
philosophical perspective and pointed out simulta-
neous codetermination or bi-duality between terms
and contexts as a significant feature of language,
which we believe to have successfully formalized

via FCA. Our mathematical approach to interpret-
ing co-occurrence data may shed light on the struc-
ture of language, as Bradley et al. (2023) frames
language in category theory.

8 Summary

This study establishes a mathematical character-
ization of semantic relations represented as geo-
metrical formations in a vector space, employing
FCA to investigate a word co-occurrence matrix.
Our experiments demonstrate that identified formal
concepts align with interpretable categories. Using
synthetic data, we also illustrated the emergence
of hierarchical structures from word usage. Subse-
quent challenges include theoretical sophistication
in applying FCA, exploring generative modeling,
and delving into cognitive inquiries.

9 Limitations and risks

Our study is inherently exploratory, with the aim of
communicating critical insights in a timely manner
before exhaustively diving into a comprehensive
analysis. Consequently, a more thorough investi-
gation and nuanced analysis are deferred to future
work, acknowledging that the current study serves
as a preliminary exploration that lays the founda-
tion for deeper scrutiny. One direction is to identify
the entire formal concepts and construct a concept
lattice to identify all the possible semantic relations
within a vocabulary. Another direction is to inves-
tigate more thoroughly the relationship between
formal concepts and linguistic concepts to quantify
how far the distributional hypothesis holds.

Another limitation of this work stems from the
reliance on a singular dataset for our analysis. Al-
though our findings reveal compelling patterns
within the chosen dataset, generalizability across
diverse data sets remains an unexplored avenue.
We anticipate similar trends in other data sets, but
a comprehensive cross-validation across various
sources is pending. Future research efforts should
extend our methodology to encompass a wider
spectrum of data sets, ensuring the robustness and
applicability of our observed trends across different
contexts.

The study constitutes a fundamental analy-
sis aimed at identifying mathematical properties
within linguistic statistical data, thus enhancing in-
terpretability. Notably, no significant material risks
were identified throughout the investigation and
will not be seen due to the nature of the analytical
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approach employed.
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A Toy corpus

The corpus contains 24 synthetic sentences shown
in Table 5. The target words—king, queen, man,
woman and their plurals—are subjects of the sen-
tences. Each of the eight words appears with three
verbs—live-in, wear, eat—once for each. The
remaining six words—palace, house, tie, dress,
alone, together—discriminate the subject words
so that they are in the analogical relations of three
dimensions.

king live-in palace kings live-in palace
queen live-in palace queens live-in palace
man live-in house men live-in house
woman live-in house women live-in house
king wear tie kings wear tie
queen wear dress queens wear dress
man wear tie men wear tie
woman wear dress women wear dress
king eat alone kings eat together
queen eat alone queens eat together
man eat alone men eat together
woman eat alone women eat together

Table 5: 24 sentences in the toy corpus
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B List of formal concepts

There are 28 formal concepts in the co-occurrence
matrix derived from the toy corpus.

Suppose that the set of objects (target words)
and the set of attributes (context words) be G,M
respectively, defined as:

G = {king,man, queen, queens,

kings,men, queens, women}
M = {tie, dress,

palace, house,

alone, together}

Then, all the formal concepts are identified as
below:

T = (G, ∅)
f1 = ({king,man, kings,men}, {tie})
f2 = ({man,woman,men,women}, {house})
f3 = ({king, queen,man,woman}, {alone})
f4 = ({kings, queens,men,women}, {together})
f5 = ({king, queen, kings, queens}, {palace})
f6 = ({queen,woman, queens, women}, {dress})
e1 = ({king,man}, {tie, alone})
e2 = ({king, kings}, {tie, palace})
e3 = ({man,men}, {tie, house})
e4 = ({kings,men}, {tie, together})
e5 = ({king, queen}, {palace, alone})
e6 = ({man,woman}, {house, alone})
e7 = ({kings, queens}, {palace, together})
e8 = ({men,women}, {house, together})
e9 = ({queen,woman}, {dress, alone})
e10 = ({queen, queens}, {palace, dress})
e11 = ({woman,women}, {house, dress})
e12 = ({queens, women}, {dress, togther})
v1 = ({king}, {tie, palace, alone})
v2 = ({man}, {tie, house, alone})
v3 = ({kings}, {tie, palace, together})
v4 = ({men}, {tie, house, together})
v5 = ({queen}, {dress, palace, alone})
v6 = ({woman}, {dress, house, alone})
v7 = ({queens}, {dress, palace, together})
v8 = ({women}, {dress, house, together})
B = (∅,M)

C Category completion test

We used the four test sets for the category comple-
tion test: Battig, BLESS, Series and Syntactic.

Battig test (Bullinaria and Levy, 2012), origi-
nated from Battig and Montague (1969), contains
53 categories with 10 words for each category, of
which we used 44 categories in the experiments,
since the others have less than two words in our
vocabulary of the co-occurrence matrix.

BLESS (Baroni and Lenci, 2011) contains 17
categories with 5-17, of which we used 12 cate-
gories for the same reason.

Both of Series and Syntactic are developed
by the authors to supplement Battig and BLESS,
which contain only common nouns. Series is hinted
by Hashimoto et al. (2016) that proposed the series
completion task (penny:nickel:dime:?) for word
embeddings. Syntactic is motivated by our early
finding that comparative adjectives such as quicker,
faster, ... emerge as a salient formal concept with
a high threshold in the binary FCA experiment.
In both test sets, each category consists of 4 to 5
words, which are manually selected by one of the
authors. In the development process, we partly use
AI assistance5 to generate a list of candidates for
a category and its word set, by prompting with an
example "Direction: north, east, south, west".

Examples of a category in each test set are shown
below (Table 6)

Test set Category Word set
Battig Metal gold, iron, lead, steel,...

BLESS Fruit apple, banana, pear,...
Series Direction north, east, south, west

Syntactic Verb (go) go, goes, went, gone

Table 6: Examples of test sets

We used only the categories that contain more
than or equal to three words in our vocabulary,
which are listed in Table 7.

D Fuzzification of FCA

Formally, a fuzzy set A is a function A : X → L
where X is a ground set and L = [0, 1], which
assigns the value to each member of X . A sub-
sumption relation A ⊆ B holds if and only if
A(x) ≤ B(x) for all x ∈ X . In Fuzzy FCA, a
formal concept is K := (G,M, I, L). We consider
two fuzzy sets A ∈ LG, B ∈ LM as objects and

5https://chat.openai.com/
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Battig BLESS Series Syntactic
Disease Ground mammal Emotion Demonstrative adverb
Metal Furniture Season Comparative adjective
Carpenter’s tool Tool Sea Preposition
Crime Container Great lakes Verb conjugation
Substance for flavoring food Fruit Direction Manner adverb
Elective Office Vehicle Art form Adverb of frequency
Toy Appliance Part of a tree Personal pronoun
Weapon Weapon Book part Linking verb
Member of clergy Musical instrument Continent Demonstrative determiner
Four-footed animal Building Movie genre Coordinating conjunction
Nonalcoholic beverages Clothing Number Adjective of taste
Building for religious services Bird US president Possessive pronoun
Precious stone Stage of life Frequency adverb
Part of human body Planet Quantitative determiner
Fruit Weekday Subordinating conjunction
Sport Music genre Action verb
Part of a building Natural disaster Modal auxiliary
Male’s first name Decathlon Total pronoun
Relative Family Adjective of size
Human dwelling Ocean Interrogative pronoun
Insect Adverb of time Article
Type of fuel Month Totality adverb
Music instrument Communication act Verb conjugation
Furniture Match
Ship Religion
Kind of money Time of day
Color Writing
Kind of cloth Style of architecture
Unit of distance Midwest U.S. state
Type of music
City
Country
Reading material
Military title
Natural earth formation
Unit of time
Part of speech
Kitchen utensil
Vehicle
Science
Weather phenomenon
Occupation or profession
Bird

Table 7: Used categories of the test sets
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attributes and a fuzzy relation I ∈ LG×M . Mathe-
matically, L can be generalized to a residuated lat-
tice that includes [0, 1] as its special case. Similar
to the crisp setting, two fuzzy derivation operators
↑ : LG → LM and ↓ : LM → LG are defined as
follows: For all m ∈M and g ∈ G,

A ↑ (m) :=
∧

g∈G

(
A(g)→ I(g,m)

)
∈ L (11)

B ↓ (g) :=
∧

m∈M

(
B(m)→ I(g,m)

)
∈ L (12)

Note that A↑ ∈ LM , B↓ ∈ LG and (→) : L ×
L→ L , which is a binary operation defined on L.
In plain English, the degree to which an object g
belongs to the fuzzy set A should imply the level
of co-occurrence between g and an attribute m,
which retrospectively should determine the degree
to which the attribute m belongs to another fuzzy
set A↑. Then, fuzzy formal concepts are defined
as a pair of fuzzy sets (A,B) where A↑ = B and
B↓ = A hold as in the crisp FCA.

We need to specify operations such as (→) to
numerically compute them. Three specifications,
named as Lukasiewicz, Gödel and Goguen, have
already been proposed (Belohlavek and Vychodil,
2012), but instead we propose our own specifica-
tion tailored to the analysis of a word co-occurrence
matrix.

a→ b :=

{
b/a if a > 0

⊤ if a = 0
(13)

where ⊤ is the greatest element in L. This specifi-
cation is a slight modification of the one proposed
by Goguen. The meet ∧ is numerically calculated
as a minimum.

Our specification is equivalent to defining
(A,A↑) and (B↓, B) as a rank-one submatrix. Re-
call that the fuzzy set A ∈ LG assigns a value
x ∈ L to the element g. Similarly, the fuzzy set
A↑ ∈ LM assigns a value y ∈ L to the element
m. Thus, the specification in Eq. (13) ensures that
y = xy/x for x > 0. This means that nonnega-
tive entries in both fuzzy sets A,A↑ constitute a
rank-one submatrix.

E Role of seed words and performance
spread

In Algorithm 1 (Section 4), seed words are required
as input to the algorithm since a formal concept
is detected as a closed set containing those seed
words. A closed set is the fixed point of a closure
operator. In this algorithm, any set of words can be
a seed. If seed words are randomly chosen, then the
algorithm will find and return a formal concept in
an unsupervised way. Different sets of words return
the same formal concept if all of the used words
belong to the same closed set, and derive different
formal concepts otherwise due to the mathematical
property of a closure operator and closure system.

In the category completion test in Experiment
1, all possible pairs from the word list of the same
category are used as seeds (2 words) to derive a for-
mal concept. Therefore, different formal concepts
can be identified by a chosen pair of words from
the test set.

Table 8 shows the statistics of the distribution
of recalls calculated for all combinations of two
words, reflecting the degree to which the FCA re-
trieved elements from the test set based on seed
choices. To verify, cross-reference the numbers
in the Max column with the corresponding recalls
reported in Table 2 where the optimal seed pairs
were selected. In cases where a word set within a
specific category in the test set comprises 10 words,
there exist 10C2 = 45 possible pairs. We com-
puted the minimum, maximum, and median values
for each category, subsequently averaging them be-
tween categories for each test set and the entire
dataset.

These statistics suggest that employing a "right
seed" (optimal pair) results in the formal concept
covering 56.3% (Syntactic) to 76.8% (Series). On
the contrary, the use of a different seed may yield
a distinct formal concept. This divergence can
be attributed to the non-cohesive nature of word
groups within the test set.

For instance, the "Occupation or profession"
category of Battig comprises words such as doc-
tor, lawyer, teacher, engineer, professor, carpen-
ter, salesman, nurse, psychologist (with one word
omitted due to limited vocabularies in the matrix).
Notably, the FCA found that the maximum formal
concept within this category is only four words:
lawyer, nurse, psychologist, teacher, which seem
to represent the "profession" part of the category.
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Test set Min Max Median
Battig 33.8 64.4 37.3

BLESS 36.5 67.0 43.9
Series 49.2 76.8 53.6

Syntactic 46.1 56.3 48.6

Table 8: Spread % of Recall over different choice of
seeds

F Decomposition by NMF

F.1 Decomposed submatrices by NMF

We applied NMF recursively in three rounds. In the
first round, we decomposed the PPMI matrix as in
X0 ≈W1H

T
1 into 300 components (α = 0.0005).

In the second round, we applied NMF to the pos-
itive residual matrix after the first decomposition:
X1 := max(X0−W1H

T
1 , 0) as decomposed as in

X1 ≈ W2H
T
2 (α = 0.0003). In the third round,

the residual matrix X2 := max(X1 −W2H
T
2 , 0)

was decomposed into X2 ≈W3H
T
3 (α = 0.0001).

Note that each component (rank-one matrix) wkh
T
k

was forced to be sparse by L1 regularization. Thus,
their nonnegative rows and columns make a non-
negative rank-one submatrix, which we regard as a
fuzzy formal concept.

The components derived in the first round were
indexed from 1 to 300. Similarly, those in the
second round were indexed from 301 to 600, and
ones in the third round were indexed from 601 to
900. We ordered each component according to the
Frobenius norm within each round. Therefore, the
smaller ID number implies that the submatrix has
a greater norm in each round.

Samples of the components are presented in Ta-
ble 12. The class was evaluated by one of the au-
thors according to the definition given in Appendix
F.2. The author also labeled a category from the
words that comprise the submatrix wkh

T
k . More

specifically, for each vector wk and hk, we picked
20 words that correspond to the largest elements in
the vectors, respectively. In Table 12, the only four
top words are presented for both wk as extents and
hk as intents. For ease of visibility, categories were
labeled with more general expressions, although
they could be labeled with more focused category
names.

Table 9 shows a supplemental analysis of the
type of relatedness between words participating in
each submatrix.

Proximity R1 R2 R3
Categorical 74 64 53
Contextual 171 147 148

Combinatorial 41 59 62
Syntactic 9 18 19

None 5 12 18
Total 300 300 300

Table 9: Proximity types of word relations in each NMF-
decomposed component. Categorical: words are in the
same category, Contextual: words are related in a shared
context, Combinatorial: words are a part of possible
phrases, i.e., paradigmatic, Syntactic: words are in the
same syntactic category.

F.2 Types of qualitative classes
The set of words corresponding to the largest di-
mensions within each component is classified into
four qualitative classes, as in the below definition
(Table 11), following Lindh-Knuutila and Honkela
(2015) . These classes indicate how well an iden-
tified formal concept (a rank-one matrix) is inter-
pretable as a category.

F.3 Overlap of two FCA methods
In addition, we performed an analysis of set over-
lap at the word level. For each of the 89 groups, we
calculated the set overlap using the Jaccard index,
which is defined as the number of words in the in-
tersection divided by the number in the union. The
results are presented in Table 10 as percentages.

Min Max Mean Median
1.4 64.5 23.7 20.0

Table 10: Jaccard index between the corresponding for-
mal concepts of Binarization method and Fuzzy method
over 89 categories

4698



Class Description

Descriptive
Words are related in some way, and the majority of the labels given are as
descriptive as possible of the words in the set.

Partial
Words are related in some way, and the majority label
is somewhat descriptive, but a more descriptive account can be easily given.

Meaningful Words are related, but no majority label describes the words.

Nonsense
There is no majority label, nor is there any perceived relation between the words
in the set.

Table 11: Definition of qualitative classes assessing how well the labels describe the words in each formal concept.
(Lindh-Knuutila and Honkela, 2015)
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ID Class Category Extents (top 4 words) Intent (top 4 words)
2 D Geography iran, kerman, khorasan, province iran, kerman, khorasan, province

5 N None pineapples, tasteful, lilongwe, unimpressive dawn, windsor, batting, relegation

8 D Music chart, charts, billboard, singles chart, charts, billboard, singles

14 D Sports discus, javelin, jump, hurdles discus, javelin, jump, hurdles

22 D Education degree, bachelor, doctorate, laude degree, bachelor, doctorate, laude

35 D Diplomacy embassy, ambassador, diplomatic, relations turkmenistan, tajikistan, kyrgyzstan, uzbekistan

46 D Sports baseman, pitcher, outfielder, shortstop baseman, pitcher, outfielder, shortstop

89 D Religion rabbi, yeshiva, synagogue, hebrew rabbi, yeshiva, synagogue, hebrew

90 D US states idaho, montana, dakota, wyoming idaho, montana, dakota, wyoming

95 D Climates cyclone, hurricane, storm, typhoon cyclone, hurricane, storm, typhoon

98 D Politics polling, votes, voters, vote polling, votes, voters, vote

102 D Phrases increases, decreases, decrease, increase temperature, concentrations, accuracy, velocity

104 D Politics incumbent, reelection, democrat, republican incumbent, reelection, democrat, republican

116 P Medical ligament, knee, ankle, injury ligament, knee, ankle, injury

125 P Career postdoctoral, professor, adjunct, emeritus postdoctoral, professor, adjunct, emeritus

137 P TV show starring, roommate, daughters, actress jennifer, laura, jessica, nicole

146 P Legal convicted, guilty, sentenced, imprisonment convicted, guilty, sentenced, imprisonment

147 P History nazi, nazis, deported, camps nazi, nazis, deported, camps

159 P Geography mountain, peaks, summit, mountains mountain, peaks, summit, mountains

160 M Expression acclaim, garnered, reviews critical garnered, acclaim, reviews, critical

165 P Expression regain, recover, conquer, attract trying, attempting, attempt, attempts

181 M Expression tasked, thereby, prevented, intention securing, obtaining, capturing, creating

184 M Expression lied, intentions, poisoned, whereabouts reveals, realizes, believing, realises

192 D Music punk, hop, hip, folk punk, hop, hip, folk

210 D Religion christianity, catholicism, islam, beliefs christianity, catholicism, islam, beliefs

212 M Expression you, think, really, know you, think, really, know

214 M Adjective various, numerous, several, these genera, disciplines, locations, dialects

237 D Comparative faster, stronger, heavier, than faster, stronger, heavier, than

239 D Politics obama, barack, reagan, clinton obama, barack, reagan, clinton

313 D Unit quantities, amounts, sums, amassed enormous, huge, immense, considerable

329 P Time spends, spend, spent, spending summers, much, time, remainder

341 P Geography maui, oahu, hawaii, honolulu maui, oahu, hawaii, honolulu

370 D Unit millions, billions, million, billion millions, billions, million, dollars

405 M Linguistics vowel, vowels, stressed, accent vowel, vowels, stressed, accent

408 P Travel immigration, nationals, emigration, citizen immigration, nationals, emigration, citizen

419 D Expression proposal, offer, invitation, plea rejected, accepted, rejects, accepting

431 M Adverb poorly, properly, carefully, fully handled, treated, understood, trained

435 D Buildings housed, built, constructed, build synagogue, mosque, mansion, convent

484 D Auxiliary did, does, doesn, didn speak, exist, suffer, appear

507 D Movement down, forth, out, into fell, put, falling, fallen

514 D Weapon pistol, revolver, magnum, rifle pistol, revolver, magnum, rifle

517 M Plants botanical, zoological, garden, gardens botanical, zoological, garden, gardens

577 P Adverb totally, completely, virtually, almost totally, virtually, completely, vanished

605 D Number vii, ix, viii, xiii fantasy, corps, intensity, chapter

626 P Accounting collect, collecting, exception, collected taxes, debt, debts, fees

645 D Month june, july, august, september premiered, consecrated, baptised, inaugurated

667 D Expression taking, take, taken, takes hostage, advantage, seriously, refuge

669 D Geography gaza, palestinians, palestinian, israeli strip, gaza, rockets, barrier

679 D Geography colombian, venezuelan, peruvian, chilean peso, divisi, primera, aut

774 P IT java, server, windows, software java, server, windows, software

781 D Expression bought, purchased, buying, buy shares, stake, tickets, tracts

784 M Marketing advertising, commercials, campaigns, marketing advertising, commercials, campaigns, marketing

804 M Expression about, detail, matters, topics discuss, discussed, discussing, discusses

855 M Expression heavily, originally, by, recently influenced, inspired, invented, borrowed

864 D Expression currently, presently, still, today currently, resides, owns, produces

874 P Expression launching, pursued, launched, developed ventures, venture, scheme, initiative

Table 12: Samples of decomposed submatrices labeled with a category name. Classes are abbreviated; D:Descriptive,
P:Partial, M:Meaningful, N:Nonsense
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