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Abstract

Large Language Models (LLMs) often struggle
with hallucinations and outdated information.
To address this, Information Retrieval (IR) sys-
tems can be employed to augment LLMs with
up-to-date knowledge. However, existing IR
techniques contain deficiencies, posing a per-
formance bottleneck. Given the extensive array
of IR systems, combining diverse approaches
presents a viable strategy. Nevertheless, prior
attempts have yielded restricted efficacy. In
this work, we propose an approach that lever-
ages learning-to-rank techniques to combine
heterogeneous IR systems. We demonstrate the
method on two Retrieval Question Answering
(ReQA) tasks. Our empirical findings exhibit
a significant performance enhancement, out-
performing previous approaches and achieving
state-of-the-art results on ReQA SQuAD.

1 Introduction

Large Language Models (LLMs) have demon-
strated proficiency in comprehending human lan-
guage across diverse domains. Among these ad-
vancements, question answering (QA) systems inte-
grated with LLMs have gained significant attention.
Nonetheless, concerns persist regarding the sus-
ceptibility of LLMs to hallucinations, potentially
leading to inaccuracies in their responses.

To address the aforementioned challenge, the Re-
trieval Augmented Generation (RAG) (Lewis et al.,
2020) is proposed. The RAG system generally con-
sists of two parts: an Information Retrieval (IR)
engine which proposes the top k candidate pieces
from a document corpus for the query, and the QA
engine which is responsible for deriving the final
answer from retrieved information.

Although LLMs demonstrate exceptional profi-
ciency in QA tasks, contemporary text embedding
techniques employed in IR remain underdeveloped.
This deficiency poses a performance bottleneck for

RAG, as shown by the results in the Massive Text
Embedding Benchmark (Muennighoff et al., 2023).

To improve retrieval performance, advanced fine-
tuning techniques applied to individual retrieval
systems (Zhao et al., 2023) or the enhancement
of model components (Zhao et al., 2021) emerge
as a prominent area of investigation. While fine-
tuning approaches have demonstrated efficacy in
this domain, they commonly require substantial
resources for training, posing a challenge to real-
world adoption.

Combining results from multiple IR systems can
be quite effective, as demonstrated in the work of
Cormack et al. (2009), Reciprocal Rank Fusion
(RRF) is a technique that utilizes ranking informa-
tion to rerank the overall ranking, which has be-
come the industry standard for combining multiple
ranking systems. Although the implementation of
RRF is straightforward, a notable limitation arises
due to its failure to leverage output scores from indi-
vidual retrievers. Modern techniques have been de-
veloped to overcome this limitation; FlexNeuART
(Boytsov and Nyberg, 2020) employs the Learning
to Rank (LTR) framework to amalgamate scores
from diverse retrievers into a unified score. How-
ever, the application of LTR in the QA retrieval
setting requires a modification of the training pro-
cess to avoid irrelevant samples. Moreover, the
exploration and optimization of these techniques
within the domain of question answering retrieval
settings remain largely unaddressed.

In the work of Liang et al. (2021), a routing
method for combining multiple retrievers in the
QA setting is introduced. This model employs
a routing classifier to select between a neural re-
triever and a traditional BM25 retriever. However,
this method heavily relies on the score generated by
BM25 and disregards ranking information from the
neural model. Consequently, its performance is lim-
ited in modern question answering systems where
the neural model typically outperforms BM25.
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We propose re-ranking techniques specifically
trained to improve question answering retrieval per-
formance. Our investigations involve combining
two different types of model architecture (term
weighting and neural networks). Additionally,
we conducted experiments on two distinct styles
of ReQA datasets to demonstrate that combining
multiple models using this setup can leverage the
advantages of both models through ranking loss
objective training. Our findings show that the
proposed methodology yields enhanced retrieval
performance and ultimately improves the down-
stream QA task. Our approach outperforms the cur-
rent state-of-the-art (Zhao et al., 2023) on ReQA
SQuAD, surpassing all individual retrieval models,
RRF, and the statistical routing strategy, yielding
an average enhancement of 13.6% in the mean re-
ciprocal rank (MRR) across datasets.

2 Related Work

Massive Text Embedding Benchmark

Massive Text Embedding Benchmark (MTEB) pro-
posed by Muennighoff et al. (2023) offers com-
prehensive insights and evaluations across a wide
range of modern text embedding models. This
benchmark is particularly crucial for understanding
the out-of-the-box performance of various models.
The evaluation incorporated established text em-
bedding models available on the Hugging Face plat-
form (Wolf et al., 2020). The assessment encom-
passed retrieval tasks across 15 distinct datasets,
each representing diverse domains and dataset char-
acteristics. The evaluation of re-ranking tasks
was carried out using four specifically curated re-
ranking datasets, providing a robust assessment of
performance in real-world applications.

As shown in Table 1, GPT Sentence Embeddings
for Semantic Search (SGPT) (Muennighoff, 2022)
is one of the top performing models in retrieval
tasks. Note that sentence embeddings constructed
by simply averaging Global Vectors for Word Rep-
resentation (GloVe) (Pennington et al., 2014) out-
performs BERT (Devlin et al., 2019) and OpenAI’s
Ada Similarity. This observation underscores the
challenges inherent in retrieval tasks, where main-
stream text embedding models still exhibit a defi-
ciency in text retrieval proficiency.

In the context of re-ranking tasks, MPNET (Song
et al., 2020) has demonstrated superior perfor-
mance, highlighting the challenges in achieving
a universally best solution in the current landscape.

Notably, a model exhibiting proficiency in retrieval
tasks may not necessarily excel in re-ranking tasks.

Model Retr. Rerank.
BERT 10.59 43.44
OpenAI Ada Similarity 18.36 49.02
GloVe 21.62 43.29
MPNet 43.81 59.36
SGPT-5.8B-msmarco 50.25 56.56

Table 1: Average of the retrieval and re-ranking metric
per task per model on MTEB English subsets.

Retrieval Question Answering

Retrieval question answering (ReQA) tasks are pro-
posed in works such as Ahmad et al. (2019) and
Chen et al. (2017). They encompass a type of in-
formation retrieval system that takes a question as
input and responds with the most relevant sentence
containing the answer. This task distinguishes it-
self from traditional Question Answering (QA),
where the paragraph containing the answer is pro-
vided upfront, leading to notable achievements in
machine learning systems, some of which surpass
human performance (Rajpurkar et al., 2016). QA
retrieval systems typically rely on either neural or
term weighting methods. Recent studies, such as
SPARTA (Zhao et al., 2021), exhibit significant im-
provements in retrieval performance by adhering
to the concept of tokens-level matching from tradi-
tional IR systems. However, the exploration of QA
retrieval systems that incorporate hybrid retrieval
mechanisms remains relatively limited.

Hybrid Method for Evidence Retrieval for
Question Answering

Previous attempts to combine a term weighting
model with a neural-based model simply involve
routing between retrieval results from each model.
This is achieved by training a routing classifier
that determines whether to use the traditional IR
method (BM25) or the neural-based method (USE-
QA) based on statistics derived from the training
dataset (Liang et al., 2021). The study demon-
strates that the hybrid approach outperforms indi-
vidual retrieval strategies in ReQA SQuAD and
ReQA NQ. However, this methodology has limita-
tions in its support for combining multiple neural
models, the integration of more than two models,
and heavily relies on BM25. These limitations
may deter real-world adoption, where there are nu-
merous retrieval models specialized in their own
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areas. Notably, USE-QA (Yang et al., 2020), em-
ploys fine-tuning techniques to tackle an asymmet-
ric matching task present in QA retrieval. Combin-
ing the specialized abilities of these models could
lead to better performance.

Thus, we emphasized an approach enhancing
model retrieval performance through model-level
combination that aims to capitalize on the strengths
of multiple model types. Our objective is to present
a robust methodology that can effectively combine
state-of-the-art or fine-tuned models for better per-
formance improvement.

Figure 1: Our framework for amalgamating multiple
ranking information by using the re-ranking approach.

3 Proposed Method

To construct a cohesive framework for merging
multiple sets of ranking information, we adopt
a re-ranking approach. We have designated a
neural-based model as the primary retriever, com-
plemented by BM25 as a supporting model. This
choice is based on the observed consistency of
the neural-based model, which demonstrates su-
perior performance on R@10. This metric is par-
ticularly crucial for assessing the upper limits of
performance gain in re-ranking performance. The
rankings obtained from the main retriever serve as
the initial rankings, subsequently augmented by
incorporating scores derived from the support re-
triever. These concatenated scores are then fed into
the re-ranker model to predict the final rankings.
The overall process is illustrated in Figure 1.

The frameworks consist of two stages:
1) Retrieval Stage: off-the-shelf retrievers are

used in order to generate a candidate pool. We
select top candidate retrievers from MTEB bench-
marks within the retrieval and re-ranking category.
The performance is shown in Table 2.

2) Re-ranking Stage: a re-ranking network is
used to construct the final ranking from the candi-
date pool.

3.1 Retrieval Stage

Our approach focuses on incorporating multiple
QA retrieval models. These models have demon-
strated significant performance improvements in
question answering retrieval tasks compared to
base retrieval models. To maximize the applica-
bility of our approach, we have chosen widely rec-
ognized and publicly accessible models. In accor-
dance with Muennighoff et al. (2023) results, we
also included SGPT-5.8B-msmarco and MPNET.
These models represent the current state-of-the-art
publicly accessible models in the domains of re-
trieval and re-ranking tasks, respectively.

Model MRR R@1 R@5 R@10
ReQA SQuAD
BM25 0.670 0.591 0.759 0.814
USEqa 0.665 0.561 0.793 0.854
MPNETqa 0.549 0.399 0.748 0.847
SGPT5.8B 0.783 0.699 0.887 0.926
ReQA NQ
BM25 0.529 0.378 0.723 0.797
USEqa 0.582 0.447 0.751 0.826
MPNETqa 0.628 0.439 0.902 0.950
SGPT5.8B 0.652 0.528 0.807 0.856

Table 2: The off-the-shelf sentence-level retrieval per-
formance on the ReQA SQuAD and ReQA NQ task.

BM25 Retriever The token statistics for BM25
in the original ReQA paper were computed over
the first 10,000 questions of each dataset. This
led to significant performance losses, as shown in
Table 3. In our implementation of BM25, we have
made modifications that include the following key
distinctions:

1) The statistics are derived from all documents
within the training set, instead of solely utilizing
the first 10,000 questions.

2) Our BM25 model is constructed using the
gensim library (Rehurek and Sojka, 2011) with
default parameters.

The original ReQA paper provided the rationale
behind using only the initial 10,000 questions as to
reduce the scoring time. We found that there is no
discernable disparity in inference time when com-
paring the utilization of all question statistics versus
using only the first 10,000 statistics for constructing
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Model MRR R@1 R@5 R@10
ReQA SQuAD
BM2510k 0.600 0.523 0.683 0.741
BM25all 0.670 0.591 0.759 0.814

ReQA NQ
BM2510k 0.474 0.327 0.660 0.739
BM25all 0.529 0.378 0.723 0.797

Table 3: Performances of BM25 on sentence-level
ReQA from original paper and our implementation.

BM25. Consequently, we recommend adopting our
approach to implement the BM25 version instead,
which yields a notable increase in performance. It
is worth mentioning that the training and inference
duration of our model remains unaffected by these
variations in BM25 configurations.

3.2 Re-ranking Stage
To effectively integrate ranking information derived
from multiple retrieval systems, we opted for a
neural-based architecture with a pairwise learning-
to-rank approach. The method is motivated by two
primary factors.

1) QA retrieval models are initially pre-trained
with a specific focus on enhancing the ranking of
question-answer document pairs. Consequently, ap-
plying the pointwise method to train the re-ranker
model would lead to redundant training.

2) The unavailability of comprehensive ranking
in the question-answer retrieval dataset poses lim-
itations on our ability to fully utilize the advanta-
geous attributes of listwise methods.

Architecture The re-ranker model adopts the
RankNet (Burges et al., 2005) architecture, which
comprises of two layers of Siamese feed-forward
neural network. (Koch et al., 2015) The network
consists of 10 hidden units with leaky ReLU (Maas
et al., 2013) and a single sigmoid output node.

Training Hyperparameters We optimized the
re-ranker network using the Adam optimizer,
(Kingma and Ba, 2015) using a learning rate of
1e− 3, 1024 batch size, and 100 epochs for every
model setting.

Data Preparation The training features are de-
rived from the top 64 ranking scores of the best-
performing retrieval model during the retrieval
stage (main retriever). Subsequently, the scores
from support models are computed and concate-
nated to form a set of re-ranking features. For the
term weighting model, we utilize the scoring out-
put directly from the model. For the neural-based

model, the score is generated by calculating the
cosine similarity between the encoded query and
the candidate document vectors.

We chose a number of re-ranked documents (k)
equal to 64 to facilitate a direct comparison with
the routing method. We experimented on how the
value of k affects the performance and inference
time. The findings indicate that augmenting the
value of k beyond 16 yields only marginal improve-
ments in MRR and is not worth trading off with
prediction speed. Detailed experimental outcomes
are presented in Figure 3 and Figure 4, as outlined
in the Appendix.

Training Objective The pairwise LTR frame-
work objective involves training the model to pro-
duce a value closer to one when it determines the
ranking of a particular document to be higher than
another. Conversely, it generates a value closer
to zero for the opposite scenario. In the event of a
tied situation, the conventional RankNet framework
designates a target value of 0.5. Since the ReQA
dataset has a lot of non-target documents, selecting
random pairs will usually result in a tie. To cus-
tomize the training objective for ReQA tasks, our
approach prioritizes sentences containing the cor-
rect answer over those that do not. We have mod-
ified the conventional RankNet learning-to-rank
algorithm by excluding the training sample with
a target value of 0.5. The reduction in unneces-
sary training pairs resulted in a significant decrease
in training time while simultaneously enhancing
performance.

Inference Phase During the inference phase, the
re-ranker model generates ranking information for
each candidate document pair to determine which
document should rank higher {(Di > Dj), (Dj > Dk),
(Di > Dk)}. The final ranking is derived using a
topological sorting algorithm {Di > Dj > Dk}. In
cases where the outcome fails to yield a conclusive
ranking, the original results from the main retriever
are used as the final ranking. All operations are
performed using the networkx library (Hagberg
et al., 2008).

4 Results

We assess different retrieval models, includ-
ing BM25, USE-QA, SGPT-5.8B-msmarco and
MPNET-QA (Song et al., 2020). Our baselines
include average scoring, thresholding, and Rank
Reciprocal Fusion (RRF), a technique commonly
employed within modern multi-retriever systems.
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Figure 2: Data preparation steps include: 1) retrieving scores for each document candidate, 2) performing permuta-
tions on each pair of documents and filtering out tied pairs, and 3) creating negative and positive samples.

We compare our proposed approach mainly on
the ReQA SQuAD and ReQA NQ, aligning with
the original ReQA paper. Additionally, we conduct
experiments on seven question answering datasets
from MTEB to assess its effectiveness in contem-
porary retrieval tasks.

The Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) consists of ques-
tions on a set of Wikipedia articles, whereas Natu-
ral Questions (NQ) (Kwiatkowski et al., 2019) in-
volves user questions issued to Google search, with
corresponding answers sourced from Wikipedia by
annotators. These two datasets represent distinct
characteristics related to lexical overlap between
questions and contexts, with SQuAD represent-
ing a low-overlap scenario while NQ exhibits the
opposite. The publicly available version of both
datasets consists of two partitions: a training set
and a development set. The number of questions
and documents is shown in Table 4.

The development set was used as the evaluation
set for both datasets. We focused on the sentence-
level retrieval task, following the method outlined
in the original ReQA paper. However, our imple-
mentation of BM25 included the complete vocab-
ulary of the training documents, deviating slightly
from the original ReQA paper which only used the
first 10,000 questions. This difference resulted in
better performance for our BM25 implementation.
See "BM25 Retriever" in Section 3.1 for additional
details.

Dataset Question Document
ReQASQuAD (train) 87,599 91,707
ReQASQuAD (dev) 11,426 10,250
ReQANQ (train) 74,097 239,013
ReQANQ (dev) 1,772 7,020

Table 4: The number of questions and candidate sen-
tences on the ReQA SQuAD and ReQA NQ datasets.

We use the Mean Reciprocal Rank (MRR) and
Recall at k (R@k) as evaluation metrics. The ex-
periments were replicated five times, and the mean
value is reported. We performed significant testing
between routing and our method, which showed
significant improvements in all settings (one sam-
ple t-test, with p < 0.05). See Appendix for sum-
mary statistics of the results.

Table 5 presents the performance of both indi-
vidual and combined models. Our model demon-
strates better performance across all datasets and
evaluation metrics, particularly in ReQA SQuAD
where BM25’s performance is comparable to those
of the neural-based models. Our approach exhibits
a significant improvement compared to individual
retrieval methods, RRF and routing strategies. Our
model (SGPT+BM25) outperforms MPNET-QA
by 48.5%, USE-QA by 22.6%, BM25 by 21.6%,
SGPT-5.8B-msmarco by 4.1%, and routing tech-
niques on the same model combination by 7.0%.

On the ReQA NQ dataset, the performance of
BM25 is significantly inferior compared to the
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Model Type MRR R@1 R@5 R@10
ReQA SQuAD

BM25 Single 0.670 0.591 0.759 0.814
USEqa Single 0.665 0.561 0.793 0.854

MPNETqa Single 0.549 0.399 0.748 0.847
SGPT5.8B Single 0.783 0.699 0.887 0.926

RRFuse (USEqa+BM25) Hybrid 0.721 0.624 0.839 0.895
Routinguse (USEqa+BM25) Hybrid 0.705 0.626 0.796 0.851

Oursuse (USEqa+BM25) Hybrid 0.750 0.663 0.860 0.902
RRFmp (MPNETqa+BM25) Hybrid 0.673 0.546 0.827 0.896

Routingmp (MPNETqa+BM25) Hybrid 0.709 0.623 0.811 0.869
Oursmp (MPNETqa+BM25) Hybrid 0.748 0.658 0.856 0.909
RRFsgpt (SGPT5.8B+BM25) Hybrid 0.754 0.664 0.864 0.914

Routingsgpt (SGPT5.8B+BM25) Hybrid 0.762 0.686 0.852 0.897
Ourssgpt (SGPT5.8B+BM25) Hybrid 0.815 0.736 0.913 0.945

ReQA NQ
BM25 Single 0.529 0.378 0.723 0.797
USEqa Single 0.582 0.447 0.751 0.826

MPNETqa Single 0.628 0.439 0.902 0.950
SGPT5.8B Single 0.652 0.528 0.807 0.856

RRFuse (USEqa+BM25) Hybrid 0.603 0.450 0.802 0.874
Routinguse (USEqa+BM25) Hybrid 0.552 0.396 0.758 0.831

Oursuse (USEqa+BM25) Hybrid 0.590 0.452 0.765 0.832
RRFmp (MPNETqa+BM25) Hybrid 0.617 0.449 0.843 0.897

Routingmp (MPNETqa+BM25) Hybrid 0.638 0.467 0.873 0.931
Oursmp (MPNETqa+BM25) Hybrid 0.642 0.457 0.908 0.951
RRFsgpt (SGPT5.8B+BM25) Hybrid 0.601 0.443 0.791 0.872

Routingsgpt (SGPT5.8B+BM25) Hybrid 0.600 0.440 0.813 0.876
Ourssgpt (SGPT5.8B+BM25) Hybrid 0.655 0.529 0.816 0.862

Table 5: Model performances on the sentence-level retrieval of ReQA SQuAD and ReQA NQ task. The routing
model refers to the Hybrid (BM25) method described in the original paper.

neural-based systems. Our approach demonstrates
the capability to effectively integrate ranking infor-
mation, resulting in an average performance uplift
of 2.6% from individual neural models. This high-
lights the efficacy of our approach, even in situa-
tions where less potent models are combined with
their more superior counterparts.

Common Ensemble Techniques

We assess standard ensemble techniques including
1) Average scoring, re-rank outputs based on

normalized average scores from each retriever.
2) Thresholding with a predefined criterion set

at 0.5, routing between main and support retriever.
Our results indicate that common ensemble tech-

niques demonstrate inferior performance compared
to our approach across all settings, as shown in
Table 6.

Model MRR R@1 R@10
ReQA SQuAD

Avg (USE+BM25) 0.687 0.595 0.869
Avg (MPNET+BM25) 0.687 0.599 0.859

Avg (SGPT+BM25) 0.696 0.598 0.901
Thr (USE+BM25) 0.691 0.594 0.868

Thr (MPNET+BM25) 0.571 0.424 0.861
Thr (SGPT+BM25) 0.788 0.707 0.927

ReQA NQ
Avg (USE+BM25) 0.345 0.198 0.691

Avg (MPNET+BM25) 0.357 0.209 0.720
Avg (SGPT+BM25) 0.346 0.190 0.720

Thr (USE+BM25) 0.595 0.455 0.846
Thr (MPNET+BM25) 0.630 0.441 0.949

Thr (SGPT+BM25) 0.650 0.528 0.853

Table 6: Retrieval performances of common ensemble
techniques. Avg and Thr denote average scoring and
thresholding, respectively.
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Neural Model Combinations
Our experiments were assessed within the frame-
work of term weighting-neural combination in di-
rect comparison with the routing method. We
also included the neural-neural combination ex-
periments. The results demonstrate the efficacy of
our approach. The MPNET-QA and SGPT-5.8B-
msmarco combination demonstrated notable im-
provements, surpassing the best performer in the
main experiments on ReQA NQ. This is consistent
with our prior observations that the fusion of com-
petitive models yields greater performance gains.
The results of the model combination are shown in
Table 7.

Model MRR R@1 R@10
ReQA SQuAD

USEqa + SGPT 0.784 0.704 0.920
MPNETqa + SGPT 0.786 0.696 0.939

SGPT + USEqa 0.793 0.710 0.934
MPNETqa + USEqa 0.741 0.634 0.924
USEqa + MPNETqa 0.742 0.639 0.915
SGPT + MPNETqa 0.799 0.710 0.948
ReQA NQ

USEqa + SGPT 0.660 0.536 0.867
MPNETqa + SGPT 0.723 0.569 0.963

SGPT + USEqa 0.665 0.538 0.876
MPNETqa + USEqa 0.712 0.551 0.961
USEqa + MPNETqa 0.698 0.553 0.920
SGPT + MPNETqa 0.714 0.576 0.922

Table 7: The performances of neural-neural models.

Overall Question Answering Performance
In this experiment we investigated how enhancing
retrieval performance translates to the overall ques-
tion answering system performance. We integrated
retrieval systems with the BERT reader model and
found that an increase in retrieval performance ben-
efits the overall QA system performance in every
setting. We reported answer quality using two met-
rics, including the Exact Match score (EM), where
the answer is strictly required to match the label,
along with the less strict ROUGE-L score (Lin,
2004). The results show a strong correlation coeffi-
cient of 0.865 between R@1 and ROUGE-L scores,
confirming that enhancements in retrieval perfor-
mance positively impact overall QA performance.
However, there is a substantial gap between the best
retrieval method and the oracle retriever, showing
the potential gain for further improvements. The
results are presented in Table 8.

Model ROUGE-L EM
SQuAD

BM25 0.519 0.392
MPNET 0.370 0.264

SGPT 0.611 0.458
Ours (MPNET+BM25) 0.573 0.431

Ours (SGPT+BM25) 0.636 0.481
Ours (SGPT+MPNET) 0.618 0.466

Ours (Trio*) 0.641 0.485
Oracle Retriever 0.848 0.651

NQ
BM25 0.340 0.235

MPNET 0.392 0.259
SGPT 0.450 0.311

Ours (MPNET+BM25) 0.403 0.271
Ours (SGPT+BM25) 0.450 0.310

Ours (SGPT+MPNET) 0.488 0.339
Ours (Trio*) 0.488 0.340

Oracle Retriever 0.781 0.588

Table 8: Overall performances on SQuAD and NQ.
*Trio model comprises SGPT, MPNET, and BM25.

Effect of Sample Mining Technique

We trained the the combination model of BM25
and SGPT-5.8B-msmarco using the original pair-
wise learning-to-rank approach, and compared it to
our modified version which includes sample min-
ing. Table 9 shows that by reducing unnecessary
training pairs, there is a substantial 97.0% reduc-
tion in training samples. At the same time, it yields
an average 0.6% marginally improvement in per-
formance across datasets.

Model MRR Training Pair
ReQA SQuAD

Ourssgpt 0.8146 ±0.0004 5,212,691
-miningsgpt 0.8070 ±0.0012 176,599,584
ReQA NQ

Ourssgpt 0.6554 ±0.0007 4,609,808
-miningsgpt 0.6535 ±0.0005 149,379,552

Table 9: Differences in performance and training pair
when unnecessary samples are omitted.

Low-resource Setting

To emulate a low-resource scenario, we ran an
experiment using only 10% of the training data.
The findings demonstrate that the method can work
even in scenarios with limited data. This suggests
that our method also works on a smaller training
size, as shown in Table 10.

4756



Model Data size MRR R@1
ReQA SQuAD
Oursuse 100% 0.750 0.663
Oursuse 10% 0.749 0.661
Oursmp 100% 0.748 0.658
Oursmp 10% 0.744 0.652

Ourssgpt 100% 0.815 0.736
Ourssgpt 10% 0.815 0.737
ReQA NQ
Oursuse 100% 0.590 0.452
Oursuse 10% 0.592 0.454
Oursmp 100% 0.642 0.457
Oursmp 10% 0.641 0.456

Ourssgpt 100% 0.655 0.529
Ourssgpt 10% 0.656 0.529

Table 10: The performances of hybrid models (BM25-
neural) on low-resource datasets.

Combining More Than Two Models

Our framework also supports extensions beyond
two models. We conducted experiments to com-
bine three retrieval models. The results indicate
that combining a model with a different specializa-
tion leads to a substantial performance boost, as
demonstrated by the combination of SGPT-5.8B-
msmarco, MPNET-QA, and BM25. This combina-
tion surpasses the current state-of-the-art in ReQA
SQuAD, yielding an improvement from 0.801 to
0.823 on the MRR metric (Zhao et al., 2023). The
results are shown in Table 11.

Model MRR R@1 R@10
ReQA SQuAD

USEmp+bm25 0.784 0.697 0.926
USEsgpt+bm25 0.807 0.732 0.930

MPNETuse+bm25 0.786 0.697 0.934
MPNETsgpt+bm25 0.815 0.734 0.946

SGPTuse+bm25 0.819 0.741 0.948
SGPTmp+bm25 0.823 0.742 0.957

ReQA NQ
USEmp+bm25 0.700 0.555 0.920

USEsgpt+bm25 0.663 0.537 0.867
MPNETuse+bm25 0.715 0.556 0.961
MPNETsgpt+bm25 0.729 0.576 0.964

SGPTuse+bm25 0.670 0.545 0.876
SGPTmp+bm25 0.714 0.576 0.922

Table 11: Retrieval performances of trio models.

Performance on Modern QA Datasets
We performed experiments using QA datasets from
MTEB to assess the efficacy of our methods in mod-
ern retrieval tasks. We incorporated MPNET-QA
and SGPT-125M-msmarco, utilizing the develop-
ment set for training and the test set for evaluation.
The results presented in Table 12 show the effec-
tiveness of our approach across datasets.

Dataset MPNET SGPT Ours
DBPedia 0.656 0.264 0.669
FEVER 0.542 0.151 0.546

FiQA2018 0.560 0.120 0.560
HotpotQA 0.622 0.234 0.634

MSMARCO 0.352 0.425 0.663
NFCorpus 0.539 0.130 0.539

QuoraRetrieval 0.868 0.797 0.877

Table 12: Model performances on question answering
datasets from MTEB, reported in MRR.

End-to-end Evaluation on RAG
We conducted Retrieval-Augmented Generation
(RAG) experiments to assess the end-to-end perfor-
mance of our method using the mistral-7b-instruct-
v0.2 (Jiang et al., 2023) as a reader model. The out-
comes were evaluated based on METEOR (Baner-
jee and Lavie, 2005), BERT-F1 (Zhang et al., 2020),
and ROUGE-L scores. Our systems demonstrate
performance improvements, as shown in Table 13.

Model ME BERT RO-L
SQuAD

BM25 0.298 0.722 0.194
MPNET 0.225 0.700 0.143

SGPT 0.346 0.737 0.225
MPNET + BM25 0.328 0.731 0.213

SGPT + BM25 0.359 0.741 0.233
SGPT + MPNET 0.348 0.738 0.227

Trio 0.362 0.742 0.236
Oracle Retriever 0.464 0.770 0.298

NQ
BM25 0.251 0.697 0.155

MPNET 0.286 0.706 0.173
SGPT 0.325 0.719 0.200

MPNET + BM25 0.289 0.707 0.175
SGPT + BM25 0.325 0.719 0.201

SGPT + MPNET 0.344 0.724 0.212
Trio 0.345 0.724 0.213

Oracle Retriever 0.362 0.742 0.236

Table 13: The performances of models in RAG tasks.
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Multilingual Settings

We conducted a non-English language experiment
to assess the performance of our method when uti-
lizing a multilingual model setup. We performed
the experiment in the context of Thai language, uti-
lizing the iapp-wiki-qa-squad datasets (Viriyayud-
hakorn and Polpanumas, 2021) which adhere to the
SQuAD styles. Our modifications to support the
Thai language include:

1) Changing USE-QA, which only supports En-
glish language, to Multilingual Universal Sentence
Encoder Question Answering (mUSE-QA).

2) Substituting the NLTK (Bird and Loper, 2004)
tokenizer with the PyThaiNLP (Phatthiyaphaibun
et al., 2023) newmm tokenizer.

3) Using BM25 as the main retriever instead
of the neural model due to a significant gap in
performance on the R@10 metric.

The result shows that our method outperforms
routing techniques. Notably, routing strategies only
selected the ranking from the BM25 models, yield-
ing a 0% uplift in performance. The results are
shown in Table 14.

Model MRR R@1 R@10
ReQA iAppTH

BM25 0.828 0.742 0.951
mUSEqa 0.636 0.533 0.811

Routingmuse 0.828 0.742 0.951
BM25muse 0.835 0.748 0.960

Table 14: Model performances on multilingual settings.

5 Conclusion

In this paper, we propose an effective method to
combine term weighting and neural-based ReQA
systems. Our approach involves training re-ranker
neural networks using a modified pairwise re-
ranking objective. Through empirical evaluations,
the combined system exhibits a significant perfor-
mance improvement over other combining strate-
gies, particularly when confronted with significant
performance disparities among the individual mod-
els. It is noteworthy that this technique is not re-
stricted to a specific type or quantity of retrieval
models. Our method focuses on improving the QA
system by enhancing the retrieval which we iden-
tified as a bottleneck. Further investigation into
improving the overall performance by directly op-
timizing the reader along with the retrieval model
might improve the overall pipeline.

Limitations

In our work, we have focused on implementing
our methodology within the context of the retrieval
question answering task. Nonetheless, it is rea-
sonable to anticipate that the application of our
techniques to a broader retrieval task would yield
favorable results. Our methodology necessitated
the selection of a main retriever. This is helpful
in reducing the computing load of the supporting
retriever, yet it can introduce a cap on the final per-
formance. In the future, we may try to eliminate
the need for main retrieval model selection. We
also focus our experiment on techniques that do
not require full-weight updates. Nevertheless, our
approach can complement other full-weight update
fine-tuning techniques to further enhance perfor-
mance. Lastly, our model’s computational cost
scales with the number of re-ranking indexes fed
through the re-ranker (k), as the process requires
the prediction of k2 pairs of attributes to determine
the final ranking. This aspect may present chal-
lenges when deploying the model in situations with
a tight compute budget.
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A Effect of the Amount of Re-ranked
Documents

We conducted an experiment to study the effect of
the number of re-ranked documents on the retrieval
performance (Figure 3) and runtime (Figure 4).
The processing was conducted on a standalone ma-
chine featuring Intel(R) Core(TM) i7-7700 CPU @
3.60GHz, with no GPU acceleration.

To measure the latency, we ran our trio model
with k = 16. The re-ranker network adds a latency
of 0.0133 seconds per query on average across
datasets.

Figure 3: Relationship between the number of re-ranked
documents (k) and retrieval performance (MRR).

Figure 4: Relationship between the number of re-ranked
documents (k) and inference time (query/sec).

B Correlation Between Retrieval and
Overall QA Performance

We assess the correlation between retrieval and
overall QA performance. The findings reveal a
strong correlation across metrics, suggesting that
improvements in retrieval performance have a posi-
tive influence on overall QA performance.

Metric MRR R@1
SQuAD
ROUGE-L 0.8225 0.8392

EM 0.8182 0.8385
NQ
ROUGE-L 0.8806 0.8909

EM 0.8430 0.8751

Table 15: Correlation coefficient between retrieval and
overall question answering performance.
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Model MRR Recall@1 Recall@5 Recall@10
ReQA SQuAD

Oursuse 0.7503 ±0.0002 0.6629 ±0.0002 0.8598 ±0.0006 0.9015 ±0.0004
Oursmpnet 0.7476 ±0.0004 0.6576 ±0.0008 0.8561 ±0.0004 0.9090 ±0.0003

Ourssgpt 0.8146 ±0.0004 0.7364 ±0.0005 0.9131 ±0.0006 0.9451 ±0.0005
ReQA NQ

Oursuse 0.5902 ±0.0012 0.4518 ±0.0022 0.7646 ±0.0005 0.8319 ±0.0008
Oursmpnet 0.6422 ±0.0014 0.4568 ±0.0026 0.9077 ±0.0008 0.9510 ±0.0006

Ourssgpt 0.6554 ±0.0007 0.5292 ±0.0011 0.8160 ±0.0006 0.8621 ±0.0019

Table 16: Summary statistics for experimental results on ReQA SQuAD and ReQA NQ.

Query Routing Ours
What two artists came
out with Coldplay during
the half-time show?

On December 3, the league con-
firmed that the show would be
headlined by the British rock
group Coldplay.

The Super Bowl 50 halftime show
was headlined by the British rock
group Coldplay with special guest
performers Beyoncé and Bruno
Mars, who headlined the Super
Bowl XLVII and Super Bowl
XLVIII halftime shows, respec-
tively.

What type of relation-
ships do enthusiastic
teachers cause?

Students who had enthusiastic
teachers tend to rate them higher
than teachers who didn’t show
much enthusiasm for the course
materials.

Enthusiastic teachers are particu-
larly good at creating beneficial
relations with their students.

When did Luther return
to Wittenberg?

When the town council asked
Luther to return, he decided it was
his duty to act.

Luther secretly returned to Wit-
tenberg on 6 March 1522.

What is the mortality rate
of pneumonic plague?

Septicemic plague is the least
common of the three forms, with
a mortality rate near 100%.

Pneumonic plague has a mortality
rate of 90 to 95 percent.

What was the population
Jacksonville city as of
2010?

Jacksonville has Florida’s largest
Filipino American community,
with 25,033 in the metropolitan
area as of the 2010 Census.

Jacksonville is the principal city
in the Jacksonville metropoli-
tan area, with a population of
1,345,596 in 2010.

What was the result of
the 1967 referendum?

However, as a result of the refer-
endum in France and the referen-
dum in the Netherlands, the 2004
Treaty establishing a Constitution
for Europe never came into force.

When a consolidation referendum
was held in 1967, voters approved
the plan.

Table 17: Comparative analysis between Routing and our model reveals distinct characteristics. The outcomes
obtained from the Routing technique demonstrate the limitations inherent in the BM25 model, as it heavily relies on
the presence of overlapping evidence while inadequately addressing the critical aspect of question-answer alignment.
Conversely, our model exhibits a robust approach by incorporating ranking information from the neural model.
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