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Abstract

Complex KBQA leverages the knowledge base
(KB) to answer complex natural questions in-
volving complicated semantics like multi-hop
reasoning. Existing methods involve a ques-
tion decomposition process, i.e., breaking a
complex question into several simpler sub-
questions, to assist obtaining logical forms
for querying the KB. However, existing ques-
tion decomposition process derives all sub-
questions directly according to the original
question, resulting in limitations when one sub-
question relies on the answer from a previ-
ous one. In this work, we propose Chain-of-
Question, a progressive question decomposi-
tion approach to address complex KBQA chal-
lenges. First, inspired by chain-of-thought, we
design a prompt to guide LLM to sequentially
decompose multiple semantically clear sub-
questions and provide corresponding reference
answers, where each step of the decomposition
relies on the previous results. Next, we uti-
lize the decomposition result to select relevant
patterns (relation-entity pairs) as accurate and
faithful auxiliary information for the follow-
ing logical form generation. Finally, we jointly
perform logical form generation and answer
prediction, utilizing the predicted answer to
supplement non-executable logical forms. Ex-
perimental results demonstrate that our method
achieves state-of-the-art performance on multi-
ple datasets.

1 Introduction

Knowledge Base Question Answering (KBQA)
which empowers machines to answer natural ques-
tions using the knowledge base (KB) is a critical
task in developing high-confidence AI systems. Se-
mantic parsing, as a prevailing approach, trans-
forms natural questions into logical forms with
robust interpretability and executes them on the
KB to generate answers, achieving notable per-
formance (Das et al., 2021; Ye et al., 2022; Hu
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Figure 1: An example of progressive question decom-
position. Red denotes the intermediate answer and its
occurrence in the subsequent sub-question.

et al., 2022). However, addressing complex KBQA,
which involves answering complex questions con-
taining complicated semantics such as multi-hop
reasoning, remains a challenge. For machines,
comprehending complex questions directly and ob-
taining accurate and complete logical forms can
often be difficult, consequently leading to the non-
executable problem.

A natural approach to comprehend complex
question is question decomposition, the core idea of
which is to break down complicated semantics into
simpler semantic components. Therefore, many
studies utilize question decomposition to assist se-
mantic parsing, which involves question decom-
position process to understand the question and
then integrate the decomposition result as auxil-
iary information for obtaining the logical form. In
some prior methods (Talmor and Berant, 2018; Min
et al., 2019), a question is decomposed into two sub-
questions, where the relationship between these
two sub-questions could be coordinate (connected
using conjunctive descriptions) or inclusion (one is
included in the other). However, they cannot han-
dle complex questions that involve more semantic
components and types of relationships. (Huang
et al., 2023) proposed question decomposition tree
to better model the semantic structure of questions,
They linearize the question decomposition tree into
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Dean L. Bresciani is part of the organization with what mascot?

[SUBQ] What organization is Dean L. Bresciani a part of? [ANS] North Dakota State University(#1) [SUBQ] What is the mascot of North Dakota State University? [ANS] Thundar(#2)

Question

Chain of Question Decomposition Construction

Schema Items Retrieval & Patterns Selection 

organization.organization.leadership,

organization.leadership.person,

sports.sports_team.team_mascot,

education.educational_institution.mascot,
people.person.profession

…

Candidate Relations
m.0ds707w (Dean L. Bresciani)

m.027b9ff (William L. DeAndrea)

1-hop relations: 
people.person.gender,            
organization.leadership.person,…

Candidate Entities

1-hop relations: 
people.person.profession,…

…

[REL]organization.leadership.person [ENT] Dean L.Bresciani (3.99)

[REL] people.person.profession [ENT] William L.DeAndrea (1.02)

Candidate Patterns

…
√

Translate to S-expression: Question | Top patterns | Chain of Question 
Decomposition

Answer the question: Question | Top patterns | Chain of Question 
Decomposition

PLM

( JOIN (R [education, educational institution, mascot]) (JOIN 
[organization, organization, leadership] (JOIN [organization, 
leadership, person] [Dean L. Bresciani])))

Logical form

Thundar
Answer

Thundar
KB Answer

Thundar
Final Answer

Joint Logical Form Generation and Answer Prediction 
Input for Logical Form Generation

Input for Answer Prediction
executable

logical form non-executable

Figure 2: Overview of CoQ. Red highlights the top patterns and the corresponding schema items. The relations
under candidate entities are the 1-hop relations in the KB.

a question with inserted special tokens and directly
generate the linearized question decomposition tree
as the decomposition result, enabling the represen-
tation of questions with multiple semantic compo-
nents that have different relationships.

However, in the aforementioned methods, the
question decomposition process derives all sub-
questions according to the original question di-
rectly. It is not suitable in cases where the next
sub-question needs to be generated based on the
answer to the preceding sub-question, like multi-
hop reasoning which is quite common in complex
KBQA. Actually, the progressive question decom-
position, i.e., providing intermediate results dur-
ing the decomposition and utilizing the previous
step’s results to guide the subsequent decompo-
sition, makes the modeling of each question se-
mantic component more accurate and interpretable.
Moreover, it aligns more closely with human intu-
ition in problem-solving. For example, consider-
ing the question "Dean L. Bresciani is part of the
organization with what mascot?" human reason-
ing naturally tends to decompose it into a simpler
sub-question like "What organization is Dean L.
Bresciani part of?" Following the answer to this
sub-question, the subsequent sub-question "What
is the mascot of North Dakota State University"
can be derived based on the intermediate answer,
eventually leading to the final answer. In this pro-
cess, the sub-questions clearly represent the corre-
sponding semantic components, and the intermedi-
ate answers provide supplementary information to
enhance the comprehension of the complex ques-
tion. While some efforts (Wolfson et al., 2020;
Zhu et al., 2023) explore this decomposition for
text-based QA without relying on a KB, they strug-

gle with the absence of intermediate answers and
resort to complex training procedures involving
methods like Hard-EM. More importantly, lacking
of grounding to KBs makes it challenging for them
to achieve satisfactory performance on complex
KBQA requiring factual information.

To better comprehend complex questions and
assist semantic parsing, we propose Chain-of-
Question (CoQ), a progressive question decom-
position approach that sequentially models seman-
tic components of the question to address com-
plex KBQA problems. The overall process is de-
picted in Figure 2. Firstly, inspired by chain-of-
thought (CoT) (Wei et al., 2022) which highlights
the significance of intermediate reasoning steps
on enhancing the complex reasoning capabilities
of large language models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022), we prompt the LLM
with a limited number of samples to mimic the
progressive question decomposition process and
construct a chain of question decomposition. Dur-
ing this process, the model decomposes multiple
semantically clear sub-questions and provide cor-
responding reference answers step by step, where
each step of the decomposition relies on the pre-
vious result. Secondly, to improve the accuracy
and faithfulness of the logical form, we retrieve
relevant candidate schema items (relations and en-
tities) according to their similarity to the question,
and combine these candidate schema items into
candidate patterns (relation-entity pairs) based on
their connectivity in the KB. We then select sev-
eral patterns that best match the semantic of the
question. Finally, we feed the chain of question
decomposition and these patterns as auxiliary in-
formation into a pre-trained language model for
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multi-task learning of logical form generation and
answer prediction. This process enhances the accu-
racy of logical form generation and enables the use
of the predicted answer to solve the non-executable
problem.

Our work incorporates LLM to address KBQA
problem, which represents a significant and promis-
ing research direction. Previous studies (Omar
et al., 2023; Tan et al., 2023) have demonstrated
that directly employing LLMs to answer KBQA
questions may yield less factual results. Thus, inte-
grating semantic parsing methods becomes essen-
tial. To our knowledge, we are the first to utilize
LLM for question decomposition to assist seman-
tic parsing in the KBQA context. We harness the
robust reasoning capabilities of LLM along with ex-
ternal knowledge to enhance question comprehen-
sion. This is complemented by semantic parsing
to ensure accurate and factual answers, reducing
reliance solely on LLMs.

We conduct experiments on three datasets, and
compare our method against a series of strong
baselines. Remarkably, on the challenging CWQ
dataset, known for its complex logic, our method
outperform all previous approaches with an im-
provement of 1.8 F1 and 8.6 Hit@1. On two other
popular datasets, WebQSP and GraphQ, we also
achieve outstanding performance. These experi-
mental results demonstrate the effectiveness of our
method in addressing complex KBQA problems.

2 Related Work

2.1 Complex KBQA

Distinguished from text-domain question answer-
ing (Khashabi et al., 2020; Peng et al., 2023),
KBQA task involves mining information from the
KB. Generally, there are two main paradigms em-
ployed to address complex KBQA: information
retrieval (IR)-based methods (Saxena et al., 2020;
Thai et al., 2022; Dai et al., 2023; Chen et al., 2022)
and semantic parsing (SP)-based methods. The
former builds a question-specific graph to capture
relevant information and ranks entities based on
their question relevance . The latter transforms a
question to a symbolic logical form and query the
KB to obtain the answers. Due to the interpretabil-
ity and successful transition to generative paradigm
recently (Das et al., 2021; Ye et al., 2022), SP-
based methods often achieve better performance.
To effectively utilize schema items as auxiliary in-
formation to enhance the accuracy of logical forms,

(Hu et al., 2022) proposes a multi-task approach
which jointly learns entity disambiguation, rela-
tion classification and logical form generation. Our
work employs a question decomposition approach
to assist semantic parsing, and have achieved state-
of-the-art performance on multiple datasets.

2.2 Question Decomposition for KBQA
Many studies employ question decomposition to
simplify the process of comprehending complex
questions. (Talmor and Berant, 2018; Min et al.,
2019) as split-based methods, classify the question
into a single compositional types and use pointer
network to split it into two parts. To better model
the complex questions, (Huang et al., 2023) in-
serts special tokens in the question to decompose
its different semantic components as a linearized
question decomposition tree and employs a gen-
erative approach to obtain this linear question de-
composition tree. (Jia et al., 2018) also devises
rules to decompose questions with temporal con-
straints. Compare to their approach of deriving all
the sub-questions directly according to the orig-
inal question, our proposed progressive question
decomposition method utilizes the results from the
previous decomposition at each step, resulting in
a more accurate and interpretable process of ques-
tion decomposition. Recently, there has also been
some works (Gu and Su, 2022; Gu et al., 2022)
dynamically decomposing logical forms. How-
ever, the decomposition at each step is based on
the origin question, and lacking of explicit mod-
eling of semantic structure may lead to less accu-
rate logical forms. For text-based QA, (Wolfson
et al., 2020) constructs a question decomposition
dataset through manual annotation, yet lacking sub-
answers. (Zhu et al., 2023) optimizes sub-answers
training through Hard-EM. However, the absence
of grounding to KBs makes it challenging for them
to achieve satisfactory performance on complex
KBQA that require factual information.

2.3 Reasoning with LLMs
In recent years, numerous methods have emerged
that enable LLMs to exhibit powerful reasoning
capabilities. Chain-of-thought (CoT) (Wei et al.,
2022) emphasizes the importance of intermediate
reasoning steps in augmenting the complex reason-
ing abilities of LLMs. (Katz et al., 2022) implic-
itly decomposes relationships in the question using
LLM, lacking explicit decomposition. (Omar et al.,
2023; Tan et al., 2023) have demonstrated that di-
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rectly utilizing LLMs to answer knowledge-based
complex questions often results in answers with
weak factual accuracy. Our approach utilizes LLMs
to progressively decompose questions, model ques-
tion semantic structure, and facilitate semantic pars-
ing to address complex KBQA. It combines the
strengths of strong reasoning abilities of LLMs and
the factual accuracy of semantic parsing.

3 Method

In this section, we elaborate on our method CoQ
for addressing complex KBQA problems. Figure 2
provides an overview of our approach, which con-
sists of three main components: chain of question
decomposition construction, relevant schema items
retrieval and patterns selection, and performing
joint logical form generation and answer prediction
via multitask learning. We will provide the details
in the following subsections.

3.1 Preliminaries

KBQA can be defined as: Given a natural language
question q, refer to the KB to obtain the correspond-
ing answer a that exists in the KB. KB often rep-
resents knowledge in the form of subject-relation-
object triples, denoted as (s, r, o), where s is an
entity, r is a relation, and o can be either an entity
or a literal (e.g., text descriptions, numeric values,
etc). For complex KBQA, q contains complicated
semantics and always involves multiple triples.

The SP-based method achieves KBQA by pars-
ing q into a logical form y such as SPARQL or
s-expression (Gu et al., 2021) to execute on the KB
and obtain the answers. We use s-expression as the
logical form following (Gu et al., 2021) as its trade-
off on compositionality and readability. We use
generative semantic parsing to obtain logical forms.
The generation target is a normalized s-expression,
with entities represented by their corresponding
mentions and tokenized relations. After generation,
we denormalize the s-expression, mapping men-
tions to entity IDs and restoring relations, and then
convert the s-expression into SPARQL to execute
on the KB. We unitedly name the relations, entities
in an s-expression as the schema items.

3.2 Chain of Question Decomposition
Construction

A progressive decomposition process can be
formulated as: (q1, a1) → ... → (qm, am). The
decomposition of each sub-question qi takes into

Figure 3: Prompt for progressive question decomposi-
tion.

account the decomposition results from previous
steps, and each intermediate answer ai is derived
based on its corresponding sub-question qi. We
define the chain of question decomposition D =
[SUBQ] q1 [ANS] a1...[SUBQ] qm [ANS] am,
which is a sequence of sub-questions and corre-
sponding intermediate answers, separated by some
special tokens.

Inspired by CoT, we design a prompt to enable
LLM to mimic the progressive decomposition pro-
cess and construct the chain of question decompo-
sition. As illustrated in Figure 3, the prompt starts
with “Decompose the question” and the require-
ment “The decomposition process is step-by-step
using previous result”, which enables the model to
understand the need for step-by-step decomposition
of the question. As shown in the example, given
a question q, we employ the prompt “Decompose
the question q step by step.” Subsequently, LLM
will simulate the step-by-step question decompo-
sition process. At each step, the LLM first get the
sub-question, and accordingly get the answer of
the sub-question. Each step of the decomposition
relies on previous results. To make the decomposi-
tion result encompass schema items and facilitate
retrieval in the subsequent subsection, we prompt
the LLM to identify relevant relations and entities
during the decomposition. Finally, the LLM orga-
nizes the sub-questions and intermediate answers
to form the decomposition result, from which we
extract the chain of question decomposition.

3.3 Schema Items Retrieval and Patterns
Selection

We begin by initially retrieve several candidate re-
lations and entities from KB, Subsequently, joint
relation classification and entity disambiguation is
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conducted for the further refinement and scoring
of schema items (relations and entities). Relevant
patterns selection is then based on these scores.

Retrieval of Candidate Schema Items Initially,
our focus is on maximize the retrieval of schema
items. The refinement process is deferred to later
stages. To identify candidate entities for a given
question, we follow (Hu et al., 2022) to employ the
end-to-end entity linking model, ELQ (Li et al.,
2020), and entity mention mappings from the
FACC1 project (Evgeniy Gabrilovich and Subra-
manya, 2013) to obtain top-l candidate entities. Fol-
lowing the common practice in the literature, we
adopt dense retrieval approach to obtain candidate
relations. For each question, we select the top-l
relations with the highest relevance scores. Please
refer to Appendix A for specific retrieval details.

Relation Classification and Entity Disambigua-
tion Ambiguity exists among the retrieved candi-
date entities, where multiple entities are retrieved
for one mention. As a result, 1-1 mapping between
mentions and entity IDs cannot be ensured dur-
ing the denormalization for the generated logical
forms. Therefore, entity disambiguation becomes
necessary. We jointly perform two tasks: relation
classification and entity disambiguation. These
two tasks mutually reinforce each other to select
correct schema items. As illustrated in Figure 4,
both tasks share an encoder, utilizing distinct pre-
fixes to denote different tasks which aligns with
the characteristics of the T5 (Raffel et al., 2020).
Therefore, we employ a shared T5 encoder to ob-
tain representations for each input, which are then
fed into separate networks to accomplish the two
tasks. Relation classification aims to select the
correct relations from the previously obtained can-
didate relations based on the question q and its
corresponding chain of question decomposition D.
We concatenate q, D and the relation r, apply the
"Relation Classification" prefix, and input them to
the T5 encoder to obtain a scalar score:

hq,D,r = Avgpool(T5Encoder([q;D; r]));

s(q,D, r) = Sigmoid(Linear(hq,D,r))
(1)

and calculate the binary cross-entropy loss:

LREL = −1

l

l∑

i=1

[ui · log(s(q,D, ri))+

(1− ui) · log(1− s(q,D, ri))]

(2)

Figure 4: Joint relation classification and entity disam-
biguation. q is the question, D is the chain of question
decomposition. Both tasks share one encoder. Red
dashed line indicates subsequent task using result of
previous task.

where ui is the classification label of relation ri,
l denotes the number of candidate relations. We
then set a score threshold to select refined relations.

Similar to relation classification task, we formal-
ize the entity disambiguation task as a sequence
classification task. We concatenate the label of en-
tity e with its 1-hop neighboring relations to form
a semantic enhanced context γe, represented as
“labele | r1 | r2 |...”. To maintain consistency with
inference, we only concatenate the refined relations
classified from the previous relation classification
task. We concatenate q, D, γe and using "Entity
Classification" prefix as input to the T5 encoder,
obtain a scalar score:

hq,D,e = Avgpool(T5Encoder([q;D; γe]));

s(q,D, e) = Sigmoid(Linear(hq,D,e))
(3)

and similar to (2), we calculate the binary cross
entropy loss LENT.

The combined loss for jointly training is:

L = LREL + LENT (4)

Patterns Selection We define connected relation-
entity pairs in the KB as patterns, which are de-
noted as (r, e). Patterns are built upon the foun-
dation of schema items and can provide more ac-
curate and faithful auxiliary information for the
subsequent generation of logical forms. Firstly, we
generate candidate patterns based on the previously
obtained candidate relations and candidate entities.
In order to represent the relevance of these patterns
to different semantic components of the question
in a more fine-grained manner, we decompose the
chain of question decomposition D into multiple
sub-chains, i.e., D1, D2, ..., Dm. Each sub-chain
consists of a sub-question and its corresponding an-
swer, that is, Di = [SUBQ] qi [ANS] ai. For each
pattern P , we obtain its relevance score with all
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sub-chains based on the following formula:

s(P,Di) = s(q,Di, r) + s(q,Di, e), i = 1, ...,m
(5)

where r and e are relation and entity, respectively,
that form the pattern. s(q,Di, r) and s(q,Di, e)
are obtained according to (1) and (3). We aggre-
gate the relevance scores of each pattern with all
sub-chains to obtain a final score, representing its
alignment with the overall semantic of the question.

s(P ) =

m∑

i=1

s(P,Di) (6)

Finally, we rank the candidate patterns based on
their final scores and select the top-k patterns as
auxiliary information for the subsequent generation
of logical forms.

3.4 Joint Logical Form Generation and
Answer Prediction

To enhance logical form generation and address
non-executability, we propose integrating logical
form generation with answer prediction. We uti-
lize a transformer-based shared seq-to-seq model
(Vaswani et al., 2017), instantiated as T5, and em-
ploy distinct prefixes to guide the model in perform-
ing separate tasks. This multi-task generation ap-
proach based on different prefixes has been proven
effective in various studies (Raffel et al., 2020; Xie
et al., 2022). Specifically, as shown in Figure 2, for
the logical form generation task, we add a prefix to
the concatenation of question q, chain of question
decomposition D, and the selected top-k patterns
to construct the input: “Translate to S-expression:
q |P1 | ... |Pk |D”, which is called as γLF . We fed
it to T5 and calculate the cross entropy loss using
teacher forcing as follows:

[h1, ...,hn] = Encoder(γLF );

pj = Decoder(g1, ..., gj−1,h1, ...hn);

LLF =
1

m

m∑

j=1

logpj,gj

(7)

where n is number of tokens in γLF , hi is the rep-
resentation of the i-th token of the input. g1, ..., gm
are the tokens in the target logical form. pj is the
probability distribution over the decoding vocabu-
lary at the j-th step.

For the answer prediction task, similar to the
logical form generation, we add another prefix
to construct the input: “Answer the question:

q |P1 | ... |Pk |D”, which is called as γANS . Simi-
lar to (7), we calculate the cross entropy loss of the
answer prediction task LANS using teacher forcing.

Therefore, the final loss of joint logical form
generation and answer prediction is:

L = LLF + αLANS (8)

where α is a trade-off between the two loss terms.
During inference, we employ beam search to

generate multiple logical forms, and execute them
to obtain KB answers. We select the KB answer of
the first executable logical form as the final answer.
If none of the logical forms can be executed, we
use the answer generated by the answer prediction
task as the final answer. Through this approach, we
can partially alleviate the non-executable issue.

4 Experiment

4.1 Setup
Datasets We conducted experiments on the Com-
plexWebQuestions (CWQ) (Talmor and Berant,
2018), WebQuestionsSP (WebQSP) (Yih et al.,
2016) and GraphQ (Su et al., 2016) datasets, all of
which are based on the Freebase. CWQ contains
34689 complex questions. These questions require
up to 4-hop reasoning, making CWQ highly chal-
lenging. WebQSP is a popular dataset containing
4937 questions which require up to 2-hop reason-
ing. We adopt the same split for the training and
test sets as done by (Ye et al., 2022) as there is no
official split. GraphQ is also challenging due to the
small size of training set and non-i.i.d setting.

Implementation Details We use Huggingface
implementation of T5 base and BERT-base-
uncased models. All experiments are conducted
on a single V100 GPU. For question decomposi-
tion, we utilize gpt-3.5-turbo from OpenAI API
and Llama-2 (7B) (Touvron et al., 2023). We uti-
lize the entity mappings obtained during the entity
disambiguation stage to transform the normalized
s-expression back into its original form. Finally, we
convert the generated s-expression into SPARQL
and execute it on KB. Please refer to Appendix G
for more implementation details and specific met-
rics.

4.2 Main Results
We present the experimental results on CWQ
dataset in Table 1. The results of other compar-
ative methods are taken from corresponding pa-
pers. Our method achieves 78.8 F1, surpassing
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Methods CWQ
F1 Hit@1

GPT-4 45.9 51.2
FC-KBQA (Zhang et al., 2023b) 56.4 -
Program Transfer (Cao et al., 2022) - 58.1
CBR-KBQA (Thai et al., 2022) 70.0 70.4
QDTQA (Huang et al., 2023) 72.8 -
GMT-KBQA (Hu et al., 2022) 77.0 -
DecAF (T5-large) (Yu et al., 2022) - 68.1
CoQ 78.8 79.0
CoQ (w Llama-2) 77.7 78.1

Table 1: QA performance on CWQ dataset.

Methods WebQSP
F1 Hit@1

GPT-4 39.3 47.8
IR-based methods

TransferNet (Shi et al., 2021) - 71.4
NSM∗ (Saxena et al., 2020) 67.4 74.3
CBR-iKB (Thai et al., 2022) - 78.3

SP-based methods
CBR-KBQA (Das et al., 2021) 72.8 -
Rng-KBQA (Ye et al., 2022) 75.6 -
GMT-KBQA (Hu et al., 2022) 76.6 -
TIARA (Shu et al., 2022) 76.7 -
FC-KBQA (Zhang et al., 2023b) 76.9 -
Pangu (T5-base) (Gu et al., 2022) 77.3 -
DecAF (T5-large) (Yu et al., 2022) 77.1 80.7
CoQ 78.1 79.3
CoQ (w Llama2) 77.5 78.6

Table 2: QA performance on WebQSP dataset.

the prior SOTA (GMT-KBQA) (Hu et al., 2022).
Our approach also achieves the best Hit@1 of 79.0,
surpassing CBR-KBQA (Das et al., 2021) by a
large margin of 8.6. Compared to these approaches
that directly perform semantic parsing based on the
original question, our method, which relies on ques-
tion decomposition, offers a more effective means
of modeling the structure of the question. Our ap-
proach also outperforms the previous question de-
composition method QDTQA (Huang et al., 2023),
demonstrating that our progressive question decom-
position approach can effectively utilize previous
step results to obtain more accurate decomposition
results during the decomposition process. We also
employ state-of-the-art LLM, GPT-4, to decom-
pose questions and extract answers based on the
prompts within our methodology, without query-
ing KB. The performance is not satisfactory, which

Methods GraphQ
UNDEPLAMBDA (Reddy et al., 2017) 17.7
PARA4QA (Dong et al., 2017) 20.4
SPARQA (Sun et al., 2020) 21.5
BERT+Ranking (Gu et al., 2021) 27.0
ArcaneQA (Gu and Su, 2022) 34.3
Pangu (T5-base) (Gu et al., 2022) 53.3
CoQ 53.8

Table 3: QA performance (F1) on GraphQ dataset.

Methods CWQ WebQSP
F1 ∆ F1 ∆

CoQ 78.8 - 78.1 -
w/o Decomp 73.0 -5.8 74.5 -3.6
w/o Interm. Answers 77.1 -1.7 76.9 -1.3
w/o Pattern 77.1 -1.7 77.3 -0.8
w/o Answer Prediction 73.9 -4.9 75.7 -2.4
w/o LF Generation 44.8 -34.0 25.5 -52.6

Table 4: Ablation study.

demonstrates the necessity of integrating LLM and
other components within our approach. Addition-
ally, we demonstrate the performance of the use of
Llama2 (7B) for decomposition in our experiment
remains highly competitive, further demonstrating
the robustness and reproducibility of our approach.

On both WebQSP and GraphQ datasets, we
achieve outstanding performance, as shown in Ta-
ble 2 and Table 3. On WebQSP, our method
achieves higher F1 score than all previous ap-
proaches. including the method with larger base
model (e.g., DecAF using T5-large). Our Hit@1
score is also competitive compared to DecAF. This
strongly indicates the effectiveness of our approach.
Our method also performs better than the previ-
ous step-wise semantic parsing method Pangu (Gu
et al., 2022), which confirms the importance of
explicitly modeling the semantic structure of ques-
tions through decomposition. On GraphQ, CoQ
achieves best performance across all the compared
methods, affirming the adaptability of our approach
across different datasets.

4.3 Analyses
Ablation Study To analyze the impact of indi-
vidual modules on the full method, we compared
the performance of the full method with various
incomplete ablations, as shown in Table 4. First,
we remove the chain of question decomposition
and retrain the final T5 model, leading to F1 scores
dropping of 5.8 and 3.66 on CWQ and WebQSP,
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Methods F1 ∆ Hit@1 ∆

CoQ 78.8 - 79.0 -
QDT 75.8 -3.0 75.9 -3.1

Table 5: Performance of different question decomposi-
tion approaches on CWQ dataset.

Metric
Relation Entity

Sep Joint Sep Joint
P 82.8 84.3 60.4 78.2
R 79.6 80.6 59.4 69.5
F 79.4 80.8 57.2 71.9

Table 6: Results of retrieving schema items seperately
vs jointly.

respectively. This underscores the significance of
our chain of question decomposition for address-
ing complex KBQA. The removal of intermediate
answers during decomposition also results in per-
formance degradation, demonstrating that interme-
diate answers contribute to a more comprehensive
decomposition. We also attempted to use the place-
holders described in (Zhang et al., 2023a) to replace
intermediate answers during question decomposi-
tion. As shown in Table 9, the performance of using
placeholder on WebQSP is inferior to the method
of generating intermediate answers, further demon-
strating the necessity of generating intermediate
answers.

The performance drop observed upon remov-
ing patterns from the input of the final multi-task
model demonstrates that selected patterns enhance
the comprehension of complex questions and fur-
ther improve the accuracy and faithfulness of logi-
cal form generation. We also separately removed
the answer prediction task and the logical form
generation task, resulting in varying degrees of per-
formance decline. The decrease in performance
upon removing the former indicates the benefit of
the answer prediction task in effectively utilizing
additional reference knowledge within the question
decomposition chain. This complements the non-
executable generated logical forms. The removal
of the latter task leads to a significant performance
decrease, emphasizing the impact of the logical
form generation. As shown in Table 11, we also
present the F1 performance of separately training
two models and ensembling them and observe that
the performance is lower compared to the jointly
trained model. This further validates the comple-
mentary nature of both tasks for achieving optimal
performance.

Methods F1 ∆ Hit@1 ∆

CoQ 78.8 - 79.0 -
Random 76.9 -1.9 77.7 -1.3
Oracle 84.3 +5.5 85.4 +6.4

Table 7: Performance of different patterns selection
approaches on CWQ dataset.

Decomposition Approach Study To further
demonstrate the effectiveness of our progressive
decomposition approach, we designed a variant
that utilizes the linear question decomposition tree
generated by QDTQA to replace our chain of ques-
tion decomposition. The rest of methodology re-
mains consistent with that of CoQ for answering
the questions. The performance of this variant on
CWQ dataset is presented in Table 5. It can be ob-
served that its F1 score and Hit@1 score decrease
by 3.0 and 3.1, respectively, compared to CoQ. This
clearly demonstrates that the progressive decom-
position process leads to improved accuracy and
interpretability in questions comprehension, ulti-
mately enhancing the accuracy of semantic parsing.

Schema Items Retrieval Study To demonstrate
that joint relation classification and entity dis-
ambiguation can improve the retrieval results of
schema items, in Table 6, we compare separate and
joint approaches for relation classification and en-
tity disambiguation on the CWQ dataset, It can be
observed that joint training leads to a significant
improvement in the final retrieval results of schema
items, providing ample evidence for the mutual
enhancement of the two tasks.

Table 7 illustrates the influence of different pat-
tern selection methods on final predictions. Ran-
domly selecting candidate schema items to com-
pose patterns 1 is found to be detrimental to pre-
diction performance, suggesting that incorporating
noisy schema items into patterns may confuse the
model. We also evaluate the model’s QA perfor-
mance using patterns constructed by oracle schema
items, showing a significant improvement in final
predictions. This underscores the importance of
precise schema item retrieval for the model to accu-
rately locate entities and relations, leading to more
accurate logical form predictions and enhanced QA
performance.

Efficiency Analysis We leveraged 100 randomly
chosen samples to compare the average inference

1The random patterns here are randomly selected from the
1-hop neighbor relations of the entities.
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times of our method with two semantic parsing
methods, GMT-KBQA(Hu et al., 2022) and RNG-
KBQA(Ye et al., 2022). GMT-KBQA (5.17s)
demonstrated slightly higher inference efficiency
than ours (7s), attributed to the consolidation of
schema items retrieval and LF generation. When
compared to the classical RNG-KBQA method
(9.08s), our average inference time is shorter. This
demonstrates the rationality of our approach in
terms of efficiency.

5 Error Analysis

We conduct an analysis on 200 randomly select
questions from the CWQ test set for which CoQ
does not answer correctly (F1<1.0). The errors can
be summarized as follows:

Schema Items Error (34.5%) The largest pro-
portion of incorrect answers is attributed to errors
in generating schema items, i.e., relations and en-
tities, in the logical forms. Despite providing rele-
vant patterns as auxiliary information to improve
accuracy and faithfulness, the retrieval of schema
items remains a significant challenge for complex
KBQA.

Logical Form Structure Error (25.5%) Despite
CoQ explicitly modeling the question structure
through question decomposition and enhancing the
accuracy of logical form structure, there are still
some complex questions for which it cannot gen-
erate accurate logical form structures. The reason
could be that CoQ does not enforce the decom-
position results to fully match particularly these
complex structures.

Answer Prediction Error (28.3%) The accu-
racy of the answer prediction task still has limita-
tions, which results in some questions remaining
not being correctly answered.

S-expression Conversion or Denormalization
Error (11.7%) Some particularly complex
SPARQL queries cannot be well converted into
matching S-expressions, and errors may also occur
during the denormalization phase of the generated
logical forms.

6 Conclusion

This paper introduces Chain-of-Question (CoQ), a
progressive question decomposition method for ad-
dressing complex KBQA. We first design a prompt
that guides a LLM to progressively construct a

chain of question decomposition, containing sub-
questions and corresponding reference answers.
Relevant schema items are then retrieved, and pat-
terns are selected to improve the accuracy and faith-
fulness of logical forms. The final step involves
jointly generating logical forms and predicting an-
swers with the assistance of the chain of question
decomposition and selected patterns, using pre-
dicted answers to mitigate non-executable issues.
Experimental results demonstrate the method’s
state-of-the-art performance on multiple datasets.
The impact of schema item retrieval on final predic-
tions is also explored, revealing significant poten-
tial. Future research will focus on refining schema
item accuracy and effectively modeling the seman-
tic structure of questions.

7 Limitation

Similar to other pipeline-based KBQA methods,
the primary limitation of this article lies in the
lack of an end-to-end framework, which may lead
to the error accumulation. Our current approach
mainly involves three steps: question decomposi-
tion, schema items retrieval with pattern selection,
and joint logical form generation and answer pre-
diction. In Table 7, we experimented with using
gold labels from the second step in the third step
(using gold patterns for the third step), providing
a quantification of the error accumulation. De-
spite the inherent error accumulation in pipeline
methods, our work explores strategies to address
compounding errors (Our method, when compared
to the random patterns selection method, demon-
strated an increase of 1.9 in F1 score and 1.3 in
Hit@1 score in Table 7). Our method represents a
preliminary exploration of utilizing LLM for pro-
gressive question decomposition to assist semantic
parsing in addressing complex KBQA problems. In
the future, there may be further attempts to explore
more effective solutions for minimizing compound-
ing errors.
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A Retrieval of Entities and Relations

To identify candidate entities for a given question,
we follow (Hu et al., 2022) to employ the end-to-
end entity linking model, ELQ (Li et al., 2020),
and integrate entity mention mappings from the
FACC1 project (Evgeniy Gabrilovich and Subra-
manya, 2013) to separately obtain the top-l/2 rel-
evant candidate entities. These entities are then
combined to form the final set of top-l candidate
entities, leveraging both retrieval methods to en-
hance overall candidate entity coverage.

Following the common practice in the literature,
we adopt a dense retrieval approach to obtain candi-
date relations. As shown in Figure 5, we employ a
cross encoder to learn the interaction representation
of the question and relations.

Figure 5: Relations retrieval with cross-encoder

Each pair (q, r) of question q and relation r is
concatenated and used as input to BERT, and then
we can obtain the relevance score of q and r as
follows:

s(q, r) = Linear(BERTCLS[q; r]) (9)

where Linear is a linear layer and BERTCLS is
the representation of [CLS] in BERT. We then se-
lect top-l relations with the highest relevant scores
for each question. We train cross-encoder using
cross-entropy loss.

B Prompt for Question Decomposition

For each dataset, we randomly selected two sam-
ples from the training set to construct prompts, en-
abling LLM to mimic the progressive decomposi-
tion process and construct the chain of question
decomposition. The complete prompts used for
the CWQ and WebQSP datasets are illustrated in
Figure 6 and Figure 7, respectively. Following the
decomposition process of these two cases, given a
question q highlighted in red, the LLM decomposes

Method CWQ WebQSP
3 5 7 2 3 4

CoQ (F1) 78.4 78.8 78.5 77.6 78.1 77.6

Table 8: Effects of different numbers of patterns on
CWQ and WebQSP datasets.

Method F1
CoQ (w Interm. Answer) 78.1
CoQ (w Placeholder) 77.1

Table 9: The F1 performance of CoQ with intermediate
answers and with the use of placeholders on WebQSP.

it into a sub-question at each step, and presents the
corresponding intermediate answer (providing the
actual answer if known, otherwise offering a nu-
meric label prefixed with “#”). Each step of the
decomposition relies on previous results.

C Effect of the Number of Patterns

We further investigated the impact of the number
of top-k patterns selected for auxiliary information
on the model’s performance. For CWQ dataset,
we tried k=3, 5, 7, while for WebQSP dataset, we
tried k=2, 3, 4. The results indicated that setting
k=5 for CWQ dataset and k=3 for WebQSP dataset
achieved the best performance. We analyzed that if
k is too small, it may result in insufficient auxiliary
information retrieval, while if k is too large, it may
introduce some irrelevant noise, affecting the accu-
racy of the results. The reason for requiring a larger
value of k for achieving the best performance on
CWQ dataset compared to WebQSP dataset is at-
tributed to the fact that CWQ dataset involves more
complex questions with multiple schema items, as
compared to WebQSP dataset. Consequently, a
larger number of relevant patterns are needed to
assist in understanding these complex questions
effectively.

D Effect of Hyper-parameter

To demonstrate the rationale behind our choice
of the hyper-parameter α (i.e., weight for the an-

Dataset 0.1 0.2 0.3 0.4 0.6 0.8
CWQ 75.6 76.5 77.6 77.9 78.8 78.1
WebQSP 77.1 78.1 77.9 78.0 77.6 77.5

Table 10: The F1 performance with different α on CWQ
and WebQSP datasets.
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Figure 6: Prompt for progressive question decomposition on CWQ dataset. For each case, green and blue denote
different decomposition steps. Red represents the given original question.

Method F1
CoQ (Jointly) 78.1
CoQ (Separately) 77.4

Table 11: The F1 performance on WebQSP of jointly
or separately performing answer prediction and logical
form generation.

swer prediction task), we further provide the per-
formance of our model with different α in Table 10.
The optimal alpha on the CWQ dataset (0.6) is
higher than that on the WebQSP dataset (0.2). This
may be because questions in the CWQ dataset are
more complex, making it potentially more difficult
to obtain accurate logical forms. Therefore, there
is a greater need for assistance from the answer
prediction task.

E Patterns Search Space

Our patterns search occurs within the sub-space of
initially retrieved schema items. Assuming initial
retrieval of N entities and M relations per ques-
tion, the search space is N*M. In contrast, di-
rectly searching the original space involves scan-
ning all KB schema items, significantly expanding
the search space.

F Expandability Analysis

This work is a generic approach designed for com-
plex KBQA. In theory, the proposed method does
not impose restrictions on the syntax of logical
forms or the representation of entities and relations.
Therefore, it is applicable to new KBs and is not
constrained by different datasets or languages. As
a result, there are no limitations on its extension to
new tasks.

G Implement Details and Metrics

The candidate number l in schema items retrieval
is set as 10. For the joint relation classification and
entity disambiguation model, the epoch and batch
size is set to 10 and 6 on both two datasets. We
select 5 top patterns for CWQ and 3 top patterns
for WebQSP and GraphQ. For jointly logical form
generation and answer prediction, on CWQ, the
epoch is set to 15, the batch size is 16, and the
trade-off is 0.6. On WebQSP and GraphQ, we set
epoch as 20, batch size as 8 and the trade-off as 0.2.
During the inference process, we set the beam size
to 50 for both datasets. The random seed is set to
42 for all experiments.

We use F1 and Hit@1 as evaluation metrics. For
obtaining Hit@1, we randomly select one answer
from several obtained answers, repeating this pro-
cess 5 times and taking the average as the final
Hit@1 score.
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Figure 7: Prompt for progressive question decomposition on WebQSP dataset. For each case, green and blue denote
different decomposition steps. Red represents the given original question.

H Comparisons with Other Question
Decomposition

Compared to other question decomposition meth-
ods, the novelty of our approach is manifested in
the training complexity, decomposition process,
and KB access methodology. For training complex-
ity, unlike methods that require defining templates
or complex training processes, we only require a
small amount of demonstration, reducing manual
involvement and training efforts, thereby facilitat-
ing generalization. In terms of decomposition pro-
cess, unlike implicit non-progressive decomposi-
tion, our explicit progressive decomposition with
reference to intermediate answers ensures more ac-
curate and comprehensive decomposition. In KB
access methodology, existing CoT-like question
decomposition methods cannot access the entire
KB and cannot utilize semantic parsing for accu-
rate querying. Our approach not only leverages
the reasoning capability of CoT but also assists
semantic parsing in accurate querying across the
entire KB. Additionally, to further demonstrate the
significance of our design, Table 1 and 2 showcase
that directly applying LLM for question decompo-
sition fails to achieve satisfactory results in solving
complex KBQA.

I Adaptation and Implementation for
Different Use Cases

The adaptation and implementation our method
for different use cases are not challenging. First,
for adaptation to different datasets, the training
part of our method is essentially similar to other
mainstream KBQA methods (Hu et al., 2022; Shu
et al., 2022). The models only require training
BERT and T5, and the LLM part does not need
training. The BERT model is used solely for the
initial selection of schema items and can even reuse
the trained model from other methods, allowing for
training only the T5 model. If there is a desire to
implement with other LLMs, it would only require
retraining the T5 model.
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