@inproceedings{zhang-etal-2024-senticvec,
title = "{S}entic{V}ec: Toward Robust and Human-Centric Neurosymbolic Sentiment Analysis",
author = "Zhang, Xulang and
Mao, Rui and
Cambria, Erik",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.289",
doi = "10.18653/v1/2024.findings-acl.289",
pages = "4851--4863",
abstract = "The success of state-of-the-art Natural Language Processing (NLP) systems heavily depends on deep neural networks, which excel in various tasks through strong data fitting and latent feature modeling abilities. However, certain challenges linked to deep neural networks and supervised deep learning deserve considerations, e.g., extensive computing resources, knowledge forgetting, etc. Previous research attempted to tackle these challenges individually through irrelative techniques. However, they do not instigate fundamental shifts in the learning paradigm. In this work, we propose a novel neurosymbolic method for sentiment analysis to tackle these issues. We also propose a novel sentiment-pragmatic knowledge base that places emphasis on human subjectivity within varying domain annotations. We conducted extensive experiments to show that our neurosymbolic framework for sentiment analysis stands out for its lightweight nature, robustness across domains and languages, efficient few-shot training, and rapid convergence.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2024-senticvec">
<titleInfo>
<title>SenticVec: Toward Robust and Human-Centric Neurosymbolic Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xulang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Cambria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The success of state-of-the-art Natural Language Processing (NLP) systems heavily depends on deep neural networks, which excel in various tasks through strong data fitting and latent feature modeling abilities. However, certain challenges linked to deep neural networks and supervised deep learning deserve considerations, e.g., extensive computing resources, knowledge forgetting, etc. Previous research attempted to tackle these challenges individually through irrelative techniques. However, they do not instigate fundamental shifts in the learning paradigm. In this work, we propose a novel neurosymbolic method for sentiment analysis to tackle these issues. We also propose a novel sentiment-pragmatic knowledge base that places emphasis on human subjectivity within varying domain annotations. We conducted extensive experiments to show that our neurosymbolic framework for sentiment analysis stands out for its lightweight nature, robustness across domains and languages, efficient few-shot training, and rapid convergence.</abstract>
<identifier type="citekey">zhang-etal-2024-senticvec</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.289</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.289</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>4851</start>
<end>4863</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SenticVec: Toward Robust and Human-Centric Neurosymbolic Sentiment Analysis
%A Zhang, Xulang
%A Mao, Rui
%A Cambria, Erik
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F zhang-etal-2024-senticvec
%X The success of state-of-the-art Natural Language Processing (NLP) systems heavily depends on deep neural networks, which excel in various tasks through strong data fitting and latent feature modeling abilities. However, certain challenges linked to deep neural networks and supervised deep learning deserve considerations, e.g., extensive computing resources, knowledge forgetting, etc. Previous research attempted to tackle these challenges individually through irrelative techniques. However, they do not instigate fundamental shifts in the learning paradigm. In this work, we propose a novel neurosymbolic method for sentiment analysis to tackle these issues. We also propose a novel sentiment-pragmatic knowledge base that places emphasis on human subjectivity within varying domain annotations. We conducted extensive experiments to show that our neurosymbolic framework for sentiment analysis stands out for its lightweight nature, robustness across domains and languages, efficient few-shot training, and rapid convergence.
%R 10.18653/v1/2024.findings-acl.289
%U https://aclanthology.org/2024.findings-acl.289
%U https://doi.org/10.18653/v1/2024.findings-acl.289
%P 4851-4863
Markdown (Informal)
[SenticVec: Toward Robust and Human-Centric Neurosymbolic Sentiment Analysis](https://aclanthology.org/2024.findings-acl.289) (Zhang et al., Findings 2024)
ACL