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Abstract

Large language models (LLMs) show great
performance in various tasks, but face deploy-
ment challenges from limited memory capac-
ity and bandwidth. Low-bit weight quantiza-
tion can save memory and accelerate infer-
ence. Although floating-point (FP) formats
show good performance in LLM quantization,
they tend to perform poorly with small group
sizes or sub-4 bits. We find the reason is
that the absence of asymmetry in previous
FP quantization makes it unsuitable for han-
dling asymmetric value distribution of LLM
weight tensors. In this work, we propose asym-
metric FP quantization (AFPQ), which sets
separate scales for positive and negative val-
ues. Our method leads to large accuracy im-
provements and can be easily plugged into
other quantization methods, including GPTQ
and AWQ, for better performance. Besides,
no additional storage is needed compared
with asymmetric integer (INT) quantization.
The code is available at https://github.
com/zhangsichengsjtu/AFPQ.

1 Introduction

LLMs have significantly advanced language under-
standing, generation, and reasoning (Touvron et al.,
2023; Rozière et al., 2023; Zhang et al., 2022).
However, the increasing size of LLMs poses great
pressure on memory capacity and bandwidth dur-
ing deployment. Low-bit quantization is a widely
used solution to decrease both memory capacity
and bandwidth requirements. To effectively ac-
commodate LLMs, new quantization methods have
been proposed, such as GPTQ (Frantar et al., 2022)
and AWQ (Lin et al., 2023). These methods quan-
tize LLMs with low-bit INT formats.

Recent studies suggest utilizing low-bit FP for-
mats, such as FP4 and NF4 (Dettmers et al., 2021),
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Figure 1: On LLaMA2-70B (Touvron et al., 2023), our
asymmetric FP quantization reduces the WikiText-2
perplexity (the lower the better) in both 3-bit and 4-
bit FP quantization (NF, short for NormalFloat, is an
advanced type of FP formats). We use group-size ’-1’
to represent per-channel quantization.

in place of INT can lead to improved quantiza-
tion accuracy of LLMs (Dettmers and Zettlemoyer,
2023; Zhang et al., 2023; Wu et al., 2023). This im-
provement is attributed to the non-uniform distribu-
tion of low-bit FP formats, which more effectively
align with LLM weights, characterized by mostly
smaller values and a long tail of larger, significant
ones. Although generally superior, FP formats tend
to be worse than INT when quantization with small
group sizes or sub-4 bits.

We identify this is caused by the absence of
asymmetry in FP quantization. Given that most
weight tensors naturally exhibit asymmetric dis-
tributions, it is not suitable to quantize them with
standard low-bit FP values, which have a symmet-
ric distribution. Furthermore, we find the conven-
tional methods used in asymmetric INT quantiza-
tion, such as scale and zero-point adjustments, do
not perform well in the context of FP quantization.

In this work, we propose asymmetric floating
point quantization (AFPQ), a simple yet effective
approach to fit the weight asymmetry in LLMs.
Unlike previous symmetric FP quantization, which
uses a uniform scale for positive and negative val-
ues within a weight group, AFPQ sets seperate
scales for positive and negative values. AFPQ en-
sures that the rescaled FP values can better match
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the original weight values, thereby enhancing quan-
tization accuracy in LLMs. In Figure 1, our AFPQ
with FP and NP formats show better results in both
3-bit and 4-bit round-to-neare (RTN) quantization.
Moreover, AFPQ requires no additional storage
compared with asymmetric INT quantization.

Our contributions can be summarized as follows:

1. We identify that the subpar quantization accu-
racy of FP for LLMs is caused by the asymme-
try of weights within the quantization group.

2. We introduce the asymmetric FP quantization,
which can enhance FP quantization perfor-
mance significantly.

3. AFPQ can work as a plugin to other quantiza-
tion methods, such as GPTQ and AWQ. We
integrate AFPQ with these methods.

2 Background and Motivation

Post Training Quantization (PTQ) for LLMs.
There are two PTQ methods for LLMs: 1) Quan-
tizing both weights (W) and activations (A), for ex-
ample, W8A8 quantization (Dettmers et al., 2022;
Xiao et al., 2023); 2) W-only quantization, for ex-
ample, W4A16 one (Dettmers and Zettlemoyer,
2023). This article focuses on the W-only method.
The naive W-only method is RTN. The advanced
methods include GPTQ (Frantar et al., 2022) and
AWQ (Lin et al., 2023). GPTQ uses second-order
information to compensate for quantization error,
while AWQ scales salient weights before quantiza-
tion. Both methods use INT for quantization.

Lack of asymmetry for FP quantization In the
weight tensors of LLMs, outliers often appear (Lin
et al., 2023; Dettmers et al., 2023). Due to the
randomness of outliers, many weight tensors ex-
hibit an asymmetric distribution of maximum and
minimum values. In Figure 2, we have randomly
selected some LLaMA2 weight groups. It can be
observed that more than 50% of the groups exhibit
an asymmetric value distribution.

For INT, asymmetric quantization with one zero-
point (for range translation) and one scale (for scal-
ing) for each weight group can fit the asymmetric
tensor distribution well. However, zero-point scale
based asymmetric quantization is not suitable for
FP because it may move the dense value area far
from zero, making FP lose advantages over INT
format. For example, if we apply asymmetric INT
quantization to asymmetric weights in Figure 3,

Figure 2: Randomly selected weight groups (group-size
is 128) from LLaMA2-7B. The maximum and minimum
values in many groups are not symmetric about zero.

Figure 3: Red points are original asymmetric weight
values. Recaled INT4-asym covers the weight values
well, but the coverage of rescaled FP4-sym exceeds the
range of weights, thus wasting values in FP formats.

the original weights will be fully covered by the
rescaled asymmetric INT (INT-asym) values. How-
ever, when applying previous FP quantization (only
one scale for scaling)12, the range of rescaled sym-
metric FP (FP-sym) values exceeds the range of
original weights, leading to a waste of the expres-
sive ability of some FP values. Therefore, asym-
metric FP quantization should be introduced.

3 Asymmetric Floating Point
Quantization

Quantization methods. To make FP quantiza-
tion applicable to the asymmetric distribution of
LLM weights, an intuitive approach is to apply the
method with one scale and zero-point used in asym-
metric INT quantization to FP quantization. How-
ever, this approach would shift the dense number
area of FP from zero to the left of zero, eliminating
the advantages of using FP formats, shown in the
purple block of Figure 4.

To preserve the advantage of FP formats, we pro-
pose asymmetric FP quantization with two separate
scales, one for positive numbers and another for
negative numbers in each weight group. In Algo-
rithm 1, we show our FP quantization process of a
weight group. Each FP16 weight will be divided
by scale_pos or scale_neg depending on its sign,
then it can be rounded to the nearest FP4 values.

In this way, the rescaled FP-asym values can
better fit the distribution of original weights (Fig-

1https://github.com/TimDettmers/
bitsandbytes

2https://github.com/openppl-public/ppq
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Algorithm 1 Quantization methods from FP16
weight groups to FP4-asym ones with two scales
input :Wgrp_16bit
output :Wgrp_4bit
constant :range # The range of FP4 formats
# Get the positive scale and negative one for this weight group
W_max = max(Wgrp_16bit)
scale_pos = W_max

range/2

W_min = min(Wgrp_16bit)
scale_neg = −W_min

range/2

# Wgrp_4bit is an empty tensor with the same shape of
Wgrp_16bit
for index in shape(Wgrp_16bit) do

if Wgrp_16bit[index] > 0 then
W_tmp = Wgrp_16bit[index]

scale_pos

end
else

W_tmp = Wgrp_16bit[index]
scale_neg

end
# Round W_tmp to the nearest FP4 values
Wgrp_4bit[index] = Round(W_tmp, ’FP4’)

end
return Wgrp_4bit

Figure 4: Red points are original asymmetric weight
values. Recaled FP4-asym using two scales gathers
more values near zero than the FP4-asym using one
scale and zero-point, which aligns with the distribution
of LLMs weights more.

ure 4 green block). Besides, no storage overhead is
incurred compared with asymmetric INT quantiza-
tion (both need two parameters for one group).

Application to SOTA methods. As AFPQ oper-
ates on each individual sub-tensor or group, it can
work as a plugin to other high-level quantization
algorithms such GPTQ (Frantar et al., 2022) and
AWQ (Lin et al., 2023). To demonstrate the appli-
cability, we integrate AFPQ with SOTA methods
GPTQ and AWQ for better quantization accuracy.

Inference system implementation. In W-only
low-bit inference systems, the low-bit weights
should be de-quantized to FP16 ones before their
MatMul with FP16 activation tensors. Therefore,
the system overhead can come from different de-
quantization process. We’ve implemented two ver-
sion of inference system for our AFPQ method, the
naive one and the optimized one.

Instead of the naive de-quantization method of
multiplying each weight with the positive scale
or negative one depending on its sign (detailed
in Appendix E), we generate conversion LUT for

each weight group to largely reduce the number of
sign judgments and scale multiplications. In Algo-
rithm 2, we take FP4-asym as an example to show
the optimized de-quantization process of a weight
group. For each weight group, we first obtain its ex-
clusive conversion LUT lut_grp, then we can map
Wgrp_4bit to Wgrp_16bit using lut_grp. After all
4-bit weight groups in a weight tensor have been
converted to the 16-bit ones, it can be matmuled
with the activation tensor. This approach reduces
the number of sign judgments during inference to
be equal to the size of lut_grp. If the quantization
group size is 128, the overhead could be reduced
by 8x because the number of sign judgments in a
quantization group decreases from naive 128 (the
number of weights in a group) to 16 (the size of
lut_grp for 4-bit quantization). Moreover, the sys-
tem overhead can be reduced more if the group-size
gets larger or the bit-width gets smaller.

Algorithm 2 Optimized de-quantization of weight
groups from FP4-asym (two scales) to FP16 ones
input :Wgrp_4bit, scale_pos, scale_neg
output :Wgrp_16bit
constant :FP4toFP16_lut # Standard LUT of mapping FP4

values to IEEE FP16 ones
lut_grp = {} # Conversion LUT for each weight group

for k, v in FP4toFP16_lut do
# Generating lut_grp depending on the value signs
lut_grp[k] = v * scale_pos if v > 0 else v * scale_neg

end
# Mapping Wgrp_4bit to Wgrp_16bit using lut_grp
Wgrp_16bit = [lut_grp[w_4bit] for w_4bit in Wgrp_4bit]

return Wgrp_16bit

4 Experiments

Experimental setup. We focus on 4-/3-bit PTQ
since they can mostly preserve the performance
of LLMs (Dettmers and Zettlemoyer, 2023). The
formats we use are shown in Appendix B. We se-
lect LLaMA2 (Touvron et al., 2023) models for
basic evaluation because of their superior perfor-
mance among open-sourced LLMs (Zhang et al.,
2022; Scao et al., 2022). We also include Wizard-
Coder (Luo et al., 2023) and MetaMath (Yu et al.,
2023) models for further evaluation. We conduct
quantization experiments on AutoGPTQ project3.
We use ’g-1’ to represent per-channel quantization
in this section.

Comparisons between AFPQ with two scales
and the one with scale + zero-point. We evaluate
LLaMA2-70B with these two methods using the

3https://github.com/PanQiWei/AutoGPTQ
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Table 1: WikiText-2 perplexity and MMLU average accuracy on LLaMA2 models after 4-bit RTN quantization.

LLaMA2-7B LLaMA2-13B LLaMA2-70B
g-1 g256 g128 g64 g-1 g256 g128 g64 g-1 g256 g128 g64

FP16 5.47 4.88 3.32

WikiText-2 ↓ INT4 6.12 5.75 5.72 5.67 5.20 5.02 4.98 4.97 3.67 3.49 3.46 3.44
NF4-sym 5.87 5.68 5.66 5.65 5.09 5.01 4.99 4.98 3.52 3.44 3.44 3.42
NF4-asym 5.77 5.67 5.66 5.64 5.07 5.00 4.98 4.97 3.51 3.44 3.42 3.40

FP16 46.58 55.38 69.58

MMLU(%) ↑ INT4 40.31 43.67 45.28 45.59 52.92 54.09 54.33 54.44 67.82 68.43 68.32 68.53
NF4-sym 43.04 43.94 45.09 45.70 53.59 54.37 54.58 54.84 67.96 68.41 68.66 69.18
NF4-asym 45.05 43.53 45.42 46.12 54.10 54.93 54.71 55.03 67.78 68.64 68.81 68.93

Table 2: WikiText-2 perplexity and MMLU average accuracy on LLaMA2 models after 3-bit RTN quantization.

LLaMA2-7B LLaMA2-13B LLaMA2-70B
g-1 g256 g128 g64 g-1 g256 g128 g64 g-1 g256 g128 g64

FP16 5.47 4.88 3.32

WikiText-2 ↓ INT3 542.80 7.10 6.66 6.40 10.68 5.67 5.52 5.39 7.53 4.11 3.98 3.85
NF3-sym 74.27 6.74 6.45 6.26 7.73 5.53 5.43 5.35 8.38 3.98 3.92 3.85
NF3-asym 9.85 6.42 6.29 6.15 6.53 5.46 5.35 5.27 5.42 3.89 3.82 3.74

FP16 46.58 55.38 69.58

MMLU(%) ↑ INT3 25.22 37.46 38.50 40.06 27.79 48.91 51.23 50.77 34.39 64.77 65.05 66.16
NF3-sym 26.20 36.85 38.61 38.47 38.96 49.84 50.97 51.72 40.63 66.40 65.90 66.92
NF3-asym 30.31 38.58 41.61 41.11 42.74 52.31 52.60 53.3 56.07 66.23 66.78 66.43

256 128 64
Group-size

3.44

3.46

3.48

3.50

W
ik

iTe
xt

-2
 P

er
pl

ex
ity

Quantization with FP4
INT4
FP4-sym
FP4-asym (scale + zero-point)
FP4-asym (two scales)

256 128 64
Group-size

3.4

3.5

3.6

3.7

3.8

W
ik

iTe
xt

-2
 P

er
pl

ex
ity

Quantization with NF4

INT4
NF4-sym
NF4-asym (scale + zero-point)
NF4-asym (two scales)

256 128 64
Group-size

3.9

4.0

4.1

4.2

4.3

W
ik

iTe
xt

-2
 P

er
pl

ex
ity

Quantization with FP3
INT3
FP3-sym
FP3-asym (scale + zero-point)
FP3-asym (two scales)

256 128 64
Group-size

3.8

4.0

4.2

4.4

4.6

W
ik

iTe
xt

-2
 P

er
pl

ex
ity

Quantization with NF3

INT3
NF3-sym
NF3-asym (scale + zero-point)
NF3-asym (two scales)

Figure 5: When quantizing LLaMA2-70B, FP-asym
and NF-asym quantization with two scales shows lower
perplexity (ppl) on WikiText-2 (the lower the better).

RTN quantization on WikiText-2 perplexity follow-
ing Frantar et al. (2022). As shown in Figure 5,
quantization using FP-asym with two scales brings
better quantization accuracy in both 4-bit and 3-bit
grouped quantization for FP and NF formats. For
simplicity, asymmetric FP quantization mentioned
below is the one using two scales. Note that the
performance of the FP3 formats is still worse than
INT3, this is because FP3 can only represent 7 val-
ues for quantization, whereas INT3 and NF3 can
represent 8. To ensure a fair comparison, the re-
maining quantization experiments in this section
are conducted using INT and NF formats.

Results across various group-sizes and bit-

widths using RTN quantization. To demonstrate
the generality of our method, we evaluate our
AFPQ using RTN on LLaMA2 models with differ-
ent bit-widths and group-sizes. The evaluation fo-
cuses on WikiText-2 and MMLU benchmark with
in-context learning (5-shot) following Lin et al.
(2023). We provide the 4-bit and 3-bit results in Ta-
ble 1 and Table 2, respectively. For both bit-widths,
quantization with NF-asym achieves better or on-
par results in all settings. Detailedly, NF3-asym
with group-size 128 can lead to 3% MMLU accu-
racy improvement for LLaMA2-7B (a model size
well-suited for edge deployments (Dettmers et al.,
2023)) compared with INT3 and NF3-sym quanti-
zation. The conclusions of FP4 and FP3 are similar
to NF formats, which are shown in Appendix D.

Table 3: WikiText-2 perplexity and MMLU average ac-
curacy on LLaMA2-70B after we integrate asymmetric
FP quantization with GPTQ.

LLaMA2-70B
g-1 g256 g128 g64

WikiText-2 ↓ INT3 4.57 3.88 3.77 3.67

FP16: 3.32
NF3-sym 4.16 3.77 3.72 3.67
NF3-asym 4.07 3.73 3.66 3.61

MMLU(%) ↑ INT3 60.10 66.65 67.25 67.75

FP16: 69.58
NF3-sym 64.45 67.03 67.42 67.72
NF3-asym 64.95 67.33 68.05 68.03

Results of applying AFPQ to GPTQ. Although
being effective PTQ methods, there is still an accu-
racy gap between FP16 LLMs and quantized ones
using GPTQ. In Table 3, We try to improve GPTQ
by replacing the INT3 quantization with NF3-asym
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Table 4: WikiText-2 perplexity and MMLU average ac-
curacy on LLaMA2-70B after we integrate asymmetric
FP quantization with AWQ.

LLaMA2-70B
g-1 g256 g128 g64

WikiText-2 ↓ INT3 4.91 4.10 3.87 3.72

FP16: 3.32
NF3-sym 4.26 4.03 3.83 3.71
NF3-asym 4.18 3.87 3.74 3.65

MMLU(%) ↑ INT3 59.08 65.15 66.45 67.40

FP16: 69.58
NF3-sym 62.60 65.02 65.88 67.66
NF3-asym 63.57 66.56 67.00 67.41

ones. GPTQ with NF3-asym shows improved ac-
curacy in all group-sizes. For group-size 128, the
commonly used setting in Frantar et al. (2022); Lin
et al. (2023), our method can reduce WikiText-2
ppl by 0.11 from GPTQ-INT3, which should be
considered significant.

Results of applying AFPQ to AWQ. In Table 4,
we also improve AWQ by replacing the INT3 quan-
tization with NF3-asym ones. Note that the INT3
or NF3 baseline is already strong, our NF3-asym
one can still raise the performance to a higher level.

Table 5: Evaluation results on WizardCoder-7B and
MetaMath-7B after 3-bit AWQ with group-size of 64.
For WizardCoder-7B, we show the percentage of pass
rates on the HumanEval. For MetaMath-7B, we show
the testing accuracy on gsm8k.

FP16 INT3 NF3-sym NF3-asym
WizardCoder-7B ↑ 57.31 47.56 45.12 52.43

MetaMath-7B ↑ 66.41 63.52 60.86 64.53

As quantization may hurt LLMs’ performance
in difficult downstream tasks, such as coding and
mathematical ones, we evaluate AWQ with NF3-
asym on WizardCoder-7B and MetaMath-7B in
Table 5. NF3-asym helps reach the highest quan-
tization accuracy in both tasks. Notably, the accu-
racy of quantized WizardCoder-7B is enhanced by
4.87% compared with AWQ-INT3, which strongly
proves the effectiveness of our method.

Table 6: Inference latency (ms) of LLaMA2-7B and
LLaMA2-13B under different formats. The group-size
is 128.

FP16 INT4 NF4-sym NF4-asym NF4-asym
(naive) (optimized)

LLaMA2-7B 415.06 174.29 187.23 265.54 215.42
LLaMA2-13B 788.01 309.87 317.15 485.42 352.00

Efficiency evaluation. We have implemented
an inference system prototype to verify the over-
head. Since low-bit NF-based kernels have not
been proposed in previous work, we develop these

kernels and integrate them into FasterTransformer4

framework. We measure the end-to-end latency of
LLaMA2 models on a single A6000 GPU. We keep
the batch size to be 1, the input sequence length
to be 128, and a uniform output token count of 20.
In Table 6, our AFPQ method with NF4-asym (op-
timized) reduces the latency of NF4-asym (naive)
largely and achieves up to 2.24x speedup compared
with FP16 baseline.

5 Conclusion

In this study, we identify that the lack of asymmetry
in previous FP quantization can lead to poor quan-
tization for LLM weight tensors with asymmetric
distribution. To solve the problem, we propose
asymmetric FP quantization which sets separate
scales for positive and negative values. Besides,
our method can be easily plugged into other ef-
fective methods, including GPTQ and AWQ, for
performance improvements. In the future, we plan
to push towards other promising formats such as
Posit (Gustafson and Yonemoto, 2017) for better
LLM quantization results.

6 Limitations

Although we pay efforts to design an efficient FP-
asym-based inference system in Section 3, it still
incurs inference overhead compared with INT4-
/NF4-sym-based system shown in Section 4. We
believe the gap can be narrowed with advanced
kernel optimizations or specific hardware design,
which we leave it as a future work.
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Appendix

A Model quantization methods

Quantization is a process that reduces the preci-
sion of Deep Neural Network (DNN) weights to
decrease model size and accelerate model infer-
ence (Han et al., 2015; Jacob et al., 2018). Existing
quantization methods can be broadly categorized
into two types: Post Training Quantization (PTQ)
and Quantization Aware Training (QAT) (Bengio
et al., 2013; Gholami et al., 2022). QAT neces-
sitates model training, which can be expensive,
whereas PTQ does not. We focus on PTQ in this
work.

Besides, the group-wise quantization we use in
this work is one kind of fine-grained quantization
methods of a weight tensor. It can lead to bet-
ter quantization accuracy compared with coarse-
grained one such as per-weight or per-channel
quantization methods.

B Low-bit formats used in this work

The current mainstream quantization formats in-
clude low-bit INT and FP (Yao et al., 2022; Wu
et al., 2023). INT is uniformly distributed, while
FP, with its exponent and mantissa design, has a
distribution that is dense near zero and sparse far
from it. In addition, some new formats have also
emerged, such as NF (Dettmers et al., 2021), a
new type of FP formats designed based on normal
number distribution.

In this work, we use FP4 E2M1 and FP3 E1M1
formats. Both excludes NaN and Inf follow-
ing Zhang et al. (2023). For NF formats, we use the
values from Bitsandbytes5. The exact values of the
INT, FP and NF formats used in our experiments
are as follows:

INT4: [-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4,
5, 6, 7]

FP4: [-6, -4, -3, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5,
2, 3, 4, 6]

NF4: [-1, -0.6961928009986877, -
0.5250730514526367, -0.39491748809814453,
-0.28444138169288635, -0.18477343022823334,
-0.09105003625154495, 0, 0.07958029955625534,
0.16093020141124725, 0.24611230194568634,
0.33791524171829224, 0.44070982933044434,
0.5626170039176941, 0.7229568362236023, 1]

INT3: [-4, -3, -2, -1, 0, 1, 2, 3]
5https://github.com/TimDettmers/

bitsandbytes

FP3: [-4, -2, -1, 0, 1, 2, 4]
NF3: [-1, -0.5350227355957031, -

0.2469314038753510, 0, 0.1833375245332718,
0.3819939494132996, 0.6229856610298157, 1]

Algorithm 3 Quantization methods from FP16
weight groups to INT4-asym ones
input :Wgrp_16bit
output :Wgrp_4bit
constant :range # The range of INT4 formats
W_max = max(Wgrp_16bit)
W_min = min(Wgrp_16bit)
scale = W_max−W_min

range

zeropoint = [−W_min
scale

]

// Wgrp_4bit is an empty tensor with the same shape of
Wgrp_16bit
for index in shape(Wgrp_16bit) do

W_tmp = Wgrp_16bit[index]
scale

+ zeropoint
// Round W_tmp to the nearest INT4 values
Wgrp_4bit[index] = Round(W_tmp, ’INT4’)

end
return Wgrp_4bit

Algorithm 4 Quantization methods from FP16
weight groups to FP4-sym ones
input :Wgrp_16bit
output :Wgrp_4bit
constant :range # The range of FP4 formats
W_max = max(Wgrp_16bit)
W_min = min(Wgrp_16bit)
scale = max(W_max,|W_min|)

range/2

// Wgrp_4bit is an empty tensor with the same shape of
Wgrp_16bit
for index in shape(Wgrp_16bit) do

W_tmp = Wgrp_16bit[index]
scale

// Round W_tmp to the nearest FP4 values
Wgrp_4bit[index] = Round(W_tmp, ’FP4’)

end
return Wgrp_4bit

C Detailed quantization methods

In this section, we present the pseudocode of other
quantization methods used in our experiments, in-
cluding INT4-asym, FP4-sym, and FP4-asym (one
scale and one zero-point). Detailedly, INT4-asym
is shown in Algorithm 3, FP4-sym in Algorithm 4,
and FP4-asym (one scale and one zero-point) in
Algorithm 5. As 3-bit quantization methods are
similar to 4-bit ones, we won’t go into further de-
tail in this section.

D Results of AFPQ with FP formats

Additional results of RTN quantization using FP4/3
formats are shown in Table 7 and Table 8, respec-
tively. We use ’g-1’ to represent per-channel quan-
tization in this section.
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Table 7: WikiText-2 perplexity and MMLU average accuracy on LLaMA2 models after FP4 RTN quantization

LLaMA2-7B LLaMA2-13B LLaMA2-70B
g-1 g256 g128 g64 g-1 g256 g128 g64 g-1 g256 g128 g64

FP16 5.47 4.88 3.32

WikiText-2 ↓ INT4 6.12 5.75 5.72 5.67 5.20 5.02 4.98 4.97 3.67 3.49 3.46 3.44
FP4-sym 5.89 5.73 5.70 5.67 5.11 5.03 5.02 5.01 3.54 3.47 3.46 3.44
FP4-asym 5.82 5.71 5.70 5.67 5.09 5.02 5.01 4.99 3.52 3.47 3.45 3.43

FP16 46.58 55.38 69.58

MMLU(%) ↑ INT4 40.31 43.67 45.28 45.59 52.92 54.09 54.33 54.44 67.82 68.43 68.32 68.53
FP4-sym 44.14 44.25 43.74 44.04 53.77 54.17 54.83 54.62 68.14 68.72 68.71 68.90
FP4-asym 45.25 44.61 45.15 44.55 54.23 54.47 54.70 54.99 68.74 68.65 68.86 69.06

Table 8: WikiText-2 perplexity and MMLU average accuracy on LLaMA2 models after FP3 RTN quantization

LLaMA2-7B LLaMA2-13B LLaMA2-70B
g-1 g256 g128 g64 g-1 g256 g128 g64 g-1 g256 g128 g64

FP16 5.47 4.88 3.32

WikiText-2 ↓ INT3 542.80 7.10 6.66 6.40 10.68 5.67 5.52 5.39 7.53 4.11 3.98 3.85
FP3-sym 1621.90 7.16 6.89 6.64 12.76 5.82 5.66 5.54 8.43 4.22 4.11 4.00
FP3-asym 18.72 6.89 6.63 6.48 7.72 5.69 5.57 5.41 5.93 4.11 4.01 3.89

FP16 46.58 55.38 69.58

MMLU(%) ↑ INT3 25.22 37.46 38.50 40.06 27.79 48.91 51.23 50.77 34.39 64.77 65.05 66.16
FP3-sym 23.73 31.75 36.55 33.08 27.13 48.66 49.76 49.89 32.32 64.65 65.17 65.91
FP3-asym 27.32 35.42 40.33 40.24 36.15 50.09 50.72 51.60 49.74 64.62 66.14 66.41

Algorithm 5 Quantization methods from FP16
weight groups to FP4-asym ones with one scale
and one zeropoint
input :Wgrp_16bit
output :Wgrp_4bit
constant :range # The range of FP4 formats
W_max = max(Wgrp_16bit)
W_min = min(Wgrp_16bit)
scale = W_max−W_min

range

zeropoint = [−W_min
scale

]

// Wgrp_4bit is an empty tensor with the same shape of
Wgrp_16bit
for index in shape(Wgrp_16bit) do

W_tmp = Wgrp_16bit[index]
scale

+ zeropoint
// Round W_tmp to the nearest FP4 values
Wgrp_4bit[index] = Round(W_tmp, ’FP4’)

end
return Wgrp_4bit

E More details about system
implementation

Currently, W-only quantization requires low-bit
weights to be dequantized to FP16 during inference,
and then calculations are performed with the FP16
activations. In our system implementation, we store
two 4-bit quantized weights using one byte. During
de-quantization, we load the byte and recover it to
two 4-bit weights.

For INT formats, the de-quantization from 4-
bit to FP16 values can be completed by algebraic
computation. For FP/NP formats, we realize the
de-quantization process by using look-up tables

(LUTs).

Algorithm 6 Naive de-quantization process of
weight groups from FP4-asym to FP16 ones
input :Wgrp_4bit, scale_pos, scale_neg
output :Wgrp_16bit
constant :FP4toFP16_lut # Standard LUT of mapping FP4

values to IEEE FP16 ones
# Mapping Wgrp_4bit to Wgrp_16bit using FP4toFP16_lut
Wgrp_16bit = [FP4toFP16_lut[w_4bit] for w_4bit in
Wgrp_4bit]

for w_16bit in Wgrp_16bit do
# Multiplying w_16bit with scale_pos or scale_neg de-
pending on the sign of w_16bit
w_16bit = w_16bit * scale_pos if w_16bit > 0 else
w_16bit * scale_neg

end
return Wgrp_16bit

In the main text, we say the optimized de-
quantization process can be faster than the naive
version by reducing the number of sign judgements
and scale multiplications, but we only shows the
optimized de-quantization process because of text
length limitation. Here we show the naive version
in Algorithm 6, taking FP4 as an example. In this
version, each quantized 4-bit weight is converted
to an FP16 value using look-up tables (LUT), re-
ferred to FP4toFP16_lut. The number of look-up
values is 16 (24) for 4-bit quantization and 8 (23)
for 3-bit quantization. These values are then mul-
tiplied by either scale_pos or scale_neg based on
the weight’s sign. This process results in a num-
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ber of sign judgments during inference equal to
the number of weights, leading to system overhead.
For example, in the naive NF4-asym system with
group-size 128, the number of sign judgements and
scale multiplications is 128 because each weight
should be multiplied with the positive scale or neg-
ative scale depending on its sign.
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