
Findings of the Association for Computational Linguistics ACL 2024, pages 5102–5119
August 11-16, 2024 ©2024 Association for Computational Linguistics

: Korean Character Representations
Based on the Combination Rules of Subcharacters

SungHo Kim1∗, Juhyeong Park1∗, Yeachan Kim1, SangKeun Lee1,2

1Department of Artificial Intelligence, Korea University, Seoul, South Korea
2Department of Computer Science and Engineering, Korea University, Seoul, South Korea

{sungho3268,johnida,yeachan,yalphy}@korea.ac.kr

Abstract

The Korean writing system, Hangeul, has
a unique character representation rigidly fol-
lowing the invention principles recorded in
Hunminjeongeum.1 However, existing pre-
trained language models (PLMs) for Korean
have overlooked these principles. In this
paper, we introduce a novel framework for
Korean PLMs called , which firstly
brings the invention principles of Hangeul to
represent character. Our proposed method,

, exhibits notable experimental pro-
ficiency across diverse NLP tasks. In par-
ticular, our method outperforms the state-of-
the-art Korean PLM by an average of 2.11%
in five Korean natural language understand-
ing tasks. Furthermore, extensive experiments
demonstrate that our proposed method is suit-
able for comprehending the linguistic features
of the Korean language. Consequently, we
shed light on the superiority of using subchar-
acters over the typical subword-based approach
for Korean PLMs. Our code is available at:
https://github.com/SungHo3268/KOMBO.

1 Introduction

Determining the representation of a word is the
first stepping stone in building pre-trained language
models. The predominant approach in English has
attempted to decompose each word (e.g., pureness)
into subwords (e.g., pure + ness) based on the fre-
quency of the words, such as byte-pair encoding
(BPE) (Sennrich et al., 2016), WordPiece (Schuster
and Nakajima, 2012), and SentencePiece (Kudo
and Richardson, 2018). Notably, even for the Ko-
rean language, which has a significantly differ-
ent linguistic structure from English, the subword-
based approach has been widely adopted for Ko-
rean PLMs (Park et al., 2020, 2021).

∗These authors contributed equally to this work.
1Hunminjeongeum is a book published in 1446 that de-

scribes the principles of invention and usage of Hangeul, de-
vised by King Sejong (National Hangeul Museum, 2018).

However, the Korean writing system (known as
Hangeul) has a unique property in representing
letters. Unlike English, which typically adheres
to a "word-subword-character" structure, Korean
includes an additional "subcharacter" level con-
sisting of chosung (initial consonants), joongsung
(vowels), and jongsung (final consonants). This
leads to a "word-subword-character-subcharacter"
structure, giving rise to distinct Korean linguis-
tic features. This structure is even problematic
when generating compound words, such as기찻
길train track.2 Despite these nuances in subcharacters
with the same meaning, subword-based methods
are blind to this information, typically parsing the
compound word as separate tokens: 기,찻, and길.
Such structural differences raise questions about
the suitability of the subword-based method for
the Korean PLMs, considering that it may overlook
important linguistic information beyond characters.

In this work, given that it is crucial to ground
the linguistic nuances and unique structures of the
Korean language, we draw our attention towards
subcharacter in building Korean PLMs. To accu-
rately reflect the linguistic information of subchar-
acters, we bring the historical document Hunmin-
jeongeum, which provides comprehensive insights
into the design principles of subcharacters and their
combination rules. The following are the two essen-
tial statements related to subcharacters (National
Hangeul Museum, 2021):

• [Design of the Letters] Chosung (initial conso-
nant), joongsung (vowel), and jongsung (final
consonant) are combined to form a single char-
acter representing a syllable.

• [Combination of the Letters] Chosung can be
placed above joongsung, or it can be positioned
to the left of joongsung. Jongsung is placed
below chosung and joongsung.
2기찻길train track is formed from기차train and길track, where

a subcharacter ‘ㅅ’ is inserted between two words.

5102

https://github.com/SungHo3268/KOMBO

Building on these principles, we propose a
novel framework for Korean PLMs, referred to as

(KOrean character representations based
on the coMBinatiOn rules of subcharacters). To
instill the design principles and combination rules
of subcharacters into PLMs, starts with
subcharacters as the initial representations. These
representations are progressively combined to form
a character through a merging layer guided by the
combination principles. Additionally, we also intro-
duce a masking strategy tailored to subcharacters,
aimed at learning the structural knowledge of char-
acters during pre-training. Consequently, such a
comprehensive and fundamental approach enables
PLMs to better comprehend the unique structure
and composition of the Korean language.

To demonstrate the efficacy of the proposed
method, we perform extensive experiments over
a wide range of NLP tasks and compare ours with a
variety of Korean tokenization methods in building
PLMs. The results convincingly show that con-
sidering subcharacter, especially for Jamo, in a
principled manner brings substantial improvement
to Korean PLMs. Moreover, the in-depth analysis
supports that can better understand the
Korean features, such as conjugations and offen-
sive language, compared to existing methods. In
summary, the contributions of this paper include
the following:

• We present , a novel framework for Ko-
rean PLMs grounded in the invention principles
of Hangeul as specified in Hunminjeongeum.

• We integrate the design of characters and combi-
nation rules into neural language models, mark-
ing a novel exploration in Korean PLMs.

• We demonstrate that considering the structure
of Hangeul through invention principles leads
to remarkable performance on a wide range
of NLP tasks, thereby shedding light on the
potential of Jamo units for Korean PLMs.

2 Related Work

2.1 Korean Pre-trained Language Models
Pre-trained language models have understood the
word by splitting it into various atomic units. Sim-
ilar to other languages, Korean PLMs have also
adopted tokenizing sentences into character-level
(Cho et al., 2019), subword-level (Lee et al., 2018;
Park et al., 2018), or have split by whitespace (Eo

et al., 2022). Moreover, to consider the morpholog-
ically rich feature of the Korean language, Lee and
Shin (2021) and Moon et al. (2022) have utilized a
morpheme analyzer (Kudo, 2005) to tokenize sen-
tences. Park et al. (2020), Kim et al. (2021), and
Park et al. (2021) have presented morpheme-aware
subword tokenization, which is the subword-level
tokenization approach applying a morpheme ana-
lyzer before implementing BPE. Within this diverse
range of units, most of the current Korean PLMs
have used morpheme-aware subword units as basic
tokens to split the sentence because of their high
performance. However, subword-level methodolo-
gies have been insufficient in addressing the dis-
tinctive linguistic attributes (Albright and Kang,
2009; Park and Shin, 2018) inherent in the Korean
language, which are influenced by the presence of
subcharacters specific to Hangeul.

2.2 Korean Subcharacter Units

To consider the unique structural information of Ko-
rean letters, there have been some trials to tokenize
the word into subcharacters for word embeddings.
Stratos (2017) and Moon and Okazaki (2020) have
split words into the subcharacter unit Jamo, which
is used as a basic subcharacter of Hangeul letters.
Additionally, Kim et al. (2022) have decomposed
Jamo into smaller tokens, BTS units, which are
inspired by the invention principle of Hangeul. De-
pending on the decomposition level, they have dis-
cerned BTS units into three different units, such
as Stroke, Cji, and BTS. However, most of the
previous works have been exploited only in static
word embeddings, leaving a research gap in the
application in PLMs, such as BERT (Devlin et al.,
2019). Therefore, in this work, we propose a novel
framework for Korean PLMs based on the design
principles and combination rules of subcharacters
as mentioned in Hunminjeongeum.

3

In this section, we elaborate in details for
Korean PLMs. The framework begins with tak-
ing subcharacters as initial representations (§3.1).
These subcharacter representations are progres-
sively combined to form a character based on the
combination rules (§3.2). After passing through the
transformer blocks (§3.3), the subcharacter repre-
sentations are reconstructed to perform token-level
objectives (§3.4). To learn the structural knowl-
edge of subcharacters during pre-training, we also

5103

Contextualization

Fusion of Chosung and Joongsung

Addition of Jongsung

ㅎ

Embedding

ㅜ ㄴ ㅁ ㅣ ㄴ ㅈ ㅓ ㅇ ㅇ ㅡ ㅁ

훈 민 정 음

ㅎ ㅜ ㄴ ㅈ ㅓ ㅇ ㅇ ㅡ ㅁMASK

정 음MASK훈

MASK MASK

Separation of Jongsung

Transformer Stacks

Division of Chosung and Joongsung

ㅎ ㅜ ㄴ ㅈ ㅓ ㅇ ㅇ ㅡ ㅁ[MASK]

MASK MASK MASK

MASK MASK

h!,# h!,$ h!,%

Duplication of tokens

h!,# h!,$h!,# h!,$ h!,% h!,% +

GRUㅁ ㅣ ㄴ

h!,&

h!,& h!,&

Convolution & Pooling

Rearrangement in two rows

ㄴ

후

ㅇ ㅁ

MASK 저 으

MASK

후 저 ㅇ 으 ㅁMASK MASKㄴ후 저 ㅇ 으 ㅁMASK MASKㄴ

ℎ!

+

ㅎ ㅜ ㄴ

후 ㄴ

+

ㅈ ㅓ ㅇ

저 ㅇ

+

ㅇ ㅡ ㅁ

으 ㅁ

+

Figure 1: Overall illustration of where the input is "훈민정음Hunminjeongeum" which has four characters
and twelve subcharacters. The model starts with the twelve subcharacters and progressively combines them to
construct four characters based on the combination principles, e.g.,ㅎ+ㅜ+ㄴ→후후후+ㄴ→훈훈훈. After going through
the transformer stack, the model is trained to predict the consecutive subcharacters with the restoration layers.

introduce the span-subcharacter masking strategy
(§3.5). Figure 1 illustrates the overall procedures.

3.1 Initial Representations of
begins with treating subcharacters as

atomic units for representing a word. While there
are a number of ways to represent subcharacters
(e.g., Stroke, Cji, BTS), we primarily use Jamo in
the following sections for the sake of simplicity in
explanation.3

Subcharacter Tokenization Each input charac-
ter is decomposed into chosung, joongsung, and
jongsung. Chosung and joongsung are essential
components to create a character, whereas jong-
sung is an optional component. To represent the
absence of jongsung, we use the special empty
token (), ensuring that each character is always
represented with three Jamo units (e.g., a charac-
ter ‘차car’ is decomposed to ㅊ,ㅏ, and). We
denote the subcharacter input sequence as x =
{x1, x2, · · · , xN} ∈ RN , where N is the number
of subcharacters.

Subcharacter Embedding We project the input
sequence x onto the embedding space. The pro-

3Details regarding BTS units are provided in Appendix A.

jected token representations are denoted as follows:

e = Embedding(x) ∈ RN×D (1)

where D is the dimension of embeddings.

3.2 Subcharacter Combination
Contextualization Building on the principles of
combination, we integrate subcharacter representa-
tions to construct a character. However, simply
merging these representations without consider-
ing context and sequence fails to capture the in-
tricate composition of characters. Therefore, we
apply contextualization to the subcharacters using
shallow local transformer blocks, subsequently fol-
lowed by Gated Recurrent Units (GRU) (Cho et al.,
2014). Through the contextualization layers, the
subcharacter representations are derived as follows:

h = GRU(LocalTransformer(e)) ∈ RN×D (2)

Merging Jamo units In the following sections
for the intuitive illustration, we refer to the struc-
tural representation hi ∈ h as chosung hI,k, joong-
sung hV,k, and jongsung hF,k, respectively:

hi =

hI,k if i = 3k − 2

hV,k if i = 3k − 1

hF,k if i = 3k

(3)

5104

where each k ∈ [1, N/3] corresponds to a character
index in the sequence.

Subsequently, to form a character representation,
we combine denoted subcharacters in two steps.
Depending on the order of combining subcharac-
ters as referred to Design of the Letters, we first
merge chosung and joongsung through element-
wise summation of hI = {hI,k} and hV = {hV,k}.

hI+V = hI + hV ∈ R
N
3
×D (4)

The second merging step is to combine the resultant
representations with jongsung. Considering that
jongsung is always positioned below chosung and
joongsung, as mentioned in Combination of the
Letters, we treat it by performing vertical concate-
nation of jongsung representations hF = {hF,k}
with the combined chosung and joongsung repre-
sentations hI+V. Formally, this can be represented
as follows:

hR =

[
hI+V
hF

]
∈ R2×N

3
×D (5)

To generate the final subcharacter jongsung
based on the merged representations, we perform
convolution and pooling operations4 over the con-
catenated representations hR.

hC = AvgPool(Conv(hR)) ∈ R
N
3
×D (6)

This results in a dense character representation
grounded in the combination rules of subcharac-
ters.

3.3 Transformer Stack

On top of the merged representations, we employ
a series of transformer, consisting of L layers, to
achieve contextualization as follows:

h′
C = TransformerL(hC) (7)

The configuration of these transformer layers fol-
lows the same design as if the BERT model (Devlin
et al., 2019). Notably, it is crucial to highlight that
our framework is primarily designed to manipu-
late token representations, allowing for seamless
integration with various transformer-based archi-
tectures, extending beyond BERT.

4We heuristically explore and use (2× 1) kernels with the
stride of one to perform convolution.

3.4 Subcharacter Restoration

In sentence-level tasks, the first token (i.e., [CLS])
from the transformer stack is utilized to perform the
specified task. However, token-level classification
necessitates a fine-grained sequential output that
aligns with the vocabulary, requiring subcharacter
representations. We thus introduce the restoration
layers after the transformer stack, which convert the
character representations back into the constituent
subcharacters.

The reconstruction proceeds by reversing the
process of the subcharacter combination. First, the
character representations (h′

C or h′
R) is duplicated

by the number of tokens used in each subcharacter
combination process (Eq. (6) or Eq. (4)). Inspired
by U-Net (Ronneberger et al., 2015), the duplicated
representations are subsequently combined with
the original subcharacter representations (i.e., hR
or h) for better restoration. Finally, by leveraging
the GRU layer, we ensure the continuity between
subcharacters during the reconstruction process. In
summary, the restoration process5 can be formu-
lated as follows:

h′
R = GRU(Repeat(h′

C) + hR) ∈ R
2
3
N×D (8)

h′ = GRU(Repeat(h′
R) + h) ∈ RN×D (9)

3.5 Span-Subcharacter Masking

Furthermore, to learn the linguistic structure within
characters and their corresponding subcharacters,
we also introduce a span-subcharacter masking
strategy inspired by SpanBERT (Joshi et al., 2020).
Specifically, instead of masking tokens at arbitrary
positions, we mask out the consecutive three sub-
characters (corresponding to chosung, joongsung,
and jongsung) of each character for the objective
of MLM. Such a masking strategy encourages
the model to learn the compositional relationships
between subcharacters in the pre-training phase,
thereby leading to subcharacter-aware pre-trained
language models.

4 Experiments

In this section, we conduct a comparative analy-
sis between the proposed method and existing Ko-
rean tokenization models on both standard Korean
datasets and noisy Korean datasets.

5Comparison with the variation of restoration process is
provided in Appendix B.1.

5105

Model Tokenization
Vocab
Size

KorQuAD KorNLI KorSTS NSMC PAWS-X

Dev(EM/ F1) Dev Test Dev Test Dev Test Dev Test

BERT

Stroke 130 38.40/ 50.42 57.78 57.66 67.99 67.62 87.02 86.84 56.49 54.67
Cji 136 32.64/ 44.48 56.00 57.37 63.86 64.38 86.85 86.70 55.77 54.67
BTS 112 18.78/ 30.30 50.77 50.52 56.63 60.14 86.14 86.23 54.45 55.33
Jamo 170 55.73/ 68.90 62.27 64.73 77.22 72.96 87.84 87.78 60.40 59.09

Character 2K 55.67/ 74.67 72.51 72.59 83.98 76.34 89.03 88.89 69.51 68.70
Morpheme 32K 65.28/ 80.73 73.90 72.57 82.19 74.35 87.55 87.40 72.97 66.66
Subword 32K 70.50/ 84.23 73.14 73.32 83.80 76.41 89.03 88.91 72.31 68.88
MorSubword 32K 66.20/ 80.69 73.91 73.76 84.26 77.29 89.59 89.40 71.23 68.14
Word 64K 2.45/ 8.86 66.77 65.45 72.20 65.50 74.91 74.16 65.42 61.16

Stroke 130 64.64/ 75.59 70.31 70.58 82.42 75.55 87.65 87.47 65.25 63.79
Cji 136 68.84/ 79.68 71.74 72.13 83.37 75.28 86.55 88.08 66.56 66.11
BTS 112 58.24/ 69.49 66.77 65.97 79.73 72.90 86.68 86.40 62.86 62.49
Jamo 170 77.47/ 86.30 74.22 73.77 84.47 77.43 88.71 88.70 73.66 70.88

Table 1: Performance of various tokenization methods for PLMs on standard Korean datasets. The evaluation
metrics for each task are as follows: KorQuAD: Exact Match/ macro F1, KorNLI: accuracy (%), KorSTS: 100
× Spearman correlation, NSMC: accuracy (%), PAWS-X: accuracy (%). The best and second-best results are
highlighted in boldface and underline, respectively.

4.1 Experimental Setup

Models We compare our proposed methods with
Korean PLMs using 9 distinct tokenization meth-
ods, including BTS units (Stroke, Cji, and BTS),
Jamo, Character, Morpheme, Subword, MorSub-
word (short for Morpheme-aware Subword (Park
et al., 2020, 2021; Kim et al., 2021)), and Word
units. We uniformly apply BERT to all PLMs,
using the same configuration as BERTbase with
12 transformer blocks. Depending on the types
of subcharacters, we categorize our methods
as Stroke, Cji, BTS, and

Jamo. We match the size of all our mod-
els with the state-of-the-art Korean PLM, MorSub-
word, by adjusting the number of local transformer
blocks in the contextualization layer.

Pre-training We pre-trained all models for 1M
steps on Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) tasks as BERT. We
used the Korean Wiki corpus and the Namuwiki
corpus, 6.2 GB, including about 46M sentences in
total. The details of data preprocessing and hyper-
parameter settings are explained in Appendix C.

Evaluation Pre-trained models were individu-
ally fine-tuned on each downstream task dataset.
We report all experimental results as the average
values obtained from three random seeds. To verify
the effectiveness of the proposed method in stan-

dard Korean dataset, we evaluated the models on
five Korean NLU tasks, including machine reading
comprehension (KorQuAD 1.0), natural language
inference (KorNLI), semantic textual similarity
(KorSTS), sentiment analysis (NSMC), and para-
phrase identification (PAWS-X). We provide de-
tailed explanations about the overall data informa-
tion and hyperparameter settings in Appendix D.1.

Moreover, to assess the robustness of models
in noisy Korean settings, we synthetically injected
the typos into the Korean NLU datasets, such as
KorNLI, KorSTS, NSMC, and PAWS-X. We ran-
domly generated typos using four different typo
methods, following Zhuang and Zuccon (2021);
Insertion: randomly add a letter which is adjacent
of the letter on the keyboard, Transposition: ran-
domly switches a letter with one of its neighbor
letter, Substitution: randomly changes a letter with
one of its neighbor letters on the keyboard, and
Deletion: drops a random letter. The other settings,
unless specified, follow the same manner as Korean
NLU tasks.

4.2 Experiment Results

4.2.1 Standard Korean Datasets
In Table 1, our proposed method consis-
tently outperforms BERT models, which use the
same subcharacter tokenization as the initial rep-
resentation, for all tasks with marginal increases,

5106

Model Tokenization Clean
Insertion Transposition Substitution Deletion

+20% +40% +20% +40% +20% +40% +20% +40%

BERT

Jamo 64.73 62.87 60.54 56.38 51.31 62.60 61.36 56.47 51.29
Character 72.59 69.41 66.91 61.59 54.79 68.36 64.57 62.10 54.71
Subword 73.32 67.22 63.43 62.45 54.83 67.17 61.83 62.14 55.46
MorSubword 73.76 68.60 64.63 62.77 54.36 67.62 62.07 62.57 54.86

Jamo 73.77 70.63 67.73 62.82 54.54 70.83 68.06 63.21 54.94

Table 2: Performance on KorNLI with typo. We measure the sensitivity to typo rate using four different typo
generation methods. The best and second-best results are highlighted in boldface and underline, respectively.

averaging more than 9%. We observe that, among
ours, Jamo presents the most overwhelming
performances, while for BTS units shows
lagging performances. We suspect that this is due
to the truncated initial inputs at subcharacter level
by a setting of maximum sequence length, giving
rise to short context. Jamo outperforms the
state-of-the-art model MorSubword across all tasks
except for NSMC. Despite using only 0.53% of
the size of the static embeddings compared to the
MorSubword model, our method achieves higher
performance by an average of 2.11%. These ad-
mirable results provide valuable insight into the
prospective potential of Jamo, taking over the trend
of current subword-based Korean PLMs.

4.2.2 Noisy Korean Datasets
We evaluate the robustness of models to typos in
two experimental settings. The first is the random
typo setting, where we raise the typos by randomly
selecting typo methods among Insertion, Transpo-
sition, Substitution, and Deletion, starting from the
rate of 0% and increasing it by 5% up to 40%. In
Figure 2, the baselines using larger token units,
such as Subword and MorSubword, are highly vul-
nerable to typo, whereas the models using smaller
token units, such as Jamo and Character, gener-
ally exhibit strong robustness with a gradual de-
cline. Moreover, aligning with the trends shown
in the baselines, our proposed model Jamo
also exhibited strong robustness to typo. Further-
more, we can observe that the performance gap be-
tween Jamo and the state-of-the-art model
is getting wider as if the typo rate increases, again
demonstrating the strong robustness of our pro-
posed method. The second setting is that we inject
only one type of typo error among four different
typo methods. In Table 2, we observe that our
method is more powerful in the substitution typo
method, which is the most similar setting to real-

0 5 10 15 20 25 30 35 40

Typo Rate (%)

62.0

64.0

66.0

68.0

70.0

72.0

74.0

A
cc

ur
ac

y
(%

)

Jamo
Character
Subword
MorSubword
KOMBOJamo

Figure 2: Evaluation results on KorNLI with random
typo methods by increasing the typo rate. For better vi-
sualization of gap, we fill the area between our proposed
method and the state-of-the-art baseline in gray.

world typographical errors (Jeon et al., 2010). We
report more results for other tasks in Appendix D.2.

5 Ablations

In Table 3, we present ablation experiments on
the subcharacter combination methods of .
The subsequent segments present the experimental
results corresponding to the modifications in the
structure of subcharacter combination and kernel
size used in merging jongsung, respectively. In Ta-
ble 4, to investigate the effect of Korean character
structural knowledge, we compare our subcharac-
ter combination method with other downsampling
methods generally used in English.

5.1 Impact of Contextualization

We evaluate our proposed model by removing
the contextualization layer before merging embed-
dings. The omission of the contextualization layer
has resulted with a significant drop in performance,
which clearly indicates the assisting role of contex-
tualization in character representations. Through
these results, we insist that complementing small

5107

Condition
KorNLI KorSTS PAWS-X Total

Dev Test Dev Test Dev Test Avg

Jamo 74.22 73.77 84.47 77.43 73.66 70.88 75.74

Subcharacter Combination

w/o Contextualization 52.70 54.28 73.11 67.57 54.76 54.77 59.53
w/o Merging Subcharacters 71.45 71.68 82.54 76.27 71.97 68.42 73.72
w/o Addition of Jongsung 73.40 73.69 84.17 75.94 73.17 70.72 75.18
w/o Span-Subcharacter Masking 72.29 73.08 83.58 76.13 72.07 70.21 74.56

Kernel Size in Addition of Jongsung

w/ (2x2) kernel 73.70 75.38 83.04 75.40 65.07 63.13 72.62
w/ (2x3) kernel 73.31 74.68 82.62 75.88 62.73 61.34 71.76
w/ (2x1)+(2x2) kernel 73.78 74.84 82.95 75.27 64.46 62.17 72.25

Table 3: Ablation results for various components of Jamo. The first row is the best setting of Jamo,
which merges all subcharacters sequentially. The best and second-best results are highlighted in boldface and
underline, respectively.

Method
KorNLI KorSTS PAWS-X Total

Dev Test Dev Test Dev Test Avg

Jamo 74.22 73.77 84.47 77.43 73.66 70.88 75.74

Attention Pooling* (Dai et al., 2020) 63.91 63.38 80.58 72.43 54.93 55.37 65.10
Linear Pooling* (Nawrot et al., 2022) 63.93 62.59 80.65 72.02 55.52 55.97 65.11

Table 4: Comparison between Jamo and other downsampling methods used in English (denoted as *). Note
that we apply each downsampling methods on Jamo instead of proposed subcharacter combination methods
for comparison. The best and second-best results are highlighted in boldface and underline, respectively.

embeddings is necessary to enhance the perfor-
mance of subcharacter models.

5.2 Impact of Span-Subcharacter Masking

Instead of applying the span-subcharacter mask-
ing strategy for MLM, we adopt the token-level,
i.e., subcharacter masking strategy. We observe
that using the span-subcharacter masking strategy
enhances the quality of the combined character
representation while increasing the average perfor-
mance by 1%. Through the results, we verify the
efficacy of span-subcharacter masking to learn the
structural information of characters.

5.3 Impact of Merging Subcharacters

The model that merges subcharacters shows a sig-
nificant performance improvement, averaging ap-
proximately 2.02% higher than the model with-
out subcharacter merging. Furthermore, removing
the addition of jongsung results in a performance
decrease, averaging around 0.56%. These consis-

tently lower performances underscore the impor-
tance of the subcharacter merging steps.

5.4 Impact of Kernel Size

By changing the size and number of the kernels,
we explore the most effective kernel size in our sub-
character combination method. The experimental
results show that using a (2x1) size kernel, which
looks at each character individually, yields the best
performance across all tasks except the KorNLI test
set. This indicates that the best understanding of
Korean is obtained when focusing on the character
level, which is the composite unit of Hangeul.

5.5 Impact of Korean Character Structure

In Table 4, to explore the effect of recognition
of character structure in Korean, we compare our
method with other English downsampling methods
(Dai et al., 2020; Nawrot et al., 2022), which do
not consider the unique Korean character structure.
Instead of our subcharacter combination method,

5108

KO
M
BO
Ja
m
o

C
ha
ra
ct
er

Figure 3: Visualization of the character representations. Given the target sentence as "찬찬찬바람에손이매우차차차다.
(My hands are very cold in the cold wind.)", the histogram represents the cosine similarities between each of the
two embeddings of the character ‘찬cold’ and ‘차cold’ and all characters in the target sentence.

we opt to employ each downsampling method to
combine subcharacter embeddings. Both methods
show significant performance drops by an average
of over 10% compared to our method. We demon-
strate that considering the structure of Hangeul is a
keystone to comprehending the Korean language.

6 Analysis

In this section, we analyze two Korean linguistic
characteristics. The primary objective is to investi-
gate the resilience of predicates against variations
arising from Korean conjugations, while the sec-
ondary aim involves evaluating the model’s robust-
ness to Korean offensive languages.

6.1 Robustness to Character Conjugations

Korean, as an agglutinative language, presents a
multitude of conjugational variations occurring at
both the character and subcharacter levels through
inserting, deletion, or substitution of endings, re-
sulting in alterations in parts-of-speech (POS) or
tense. For instance, the verb ‘차다 be cold’, com-
posed of the stem ‘차cold’ and the ending ‘다 be’,
can transform into the adjective ‘찬cold’ by sub-
stituting the ending ‘다 be’ with the subcharacter
‘ㄴ’. Consequently, a profound understanding of
the subcharacter structure within Hangeul is es-
sential for proficiently handling Korean conjuga-
tions. We compare the vanilla character model
with Jamo, as illustrated in Figure 3. For
the given target sentence, we extract embeddings
for the characters ‘찬’ and ‘차’ from both mod-
els. Subsequently, we compute cosine similarities
between these two embeddings and all character
embeddings in the target sentence, visualizing the
results on a heatmap. The vanilla character model
with static embeddings distinguishes ‘찬cold’ and

‘차cold’ as distinct entities, whereas Jamo
recognizes them as semantically similar characters,
displaying significantly higher similarity scores for
both embeddings (0.68) compared to the charac-
ter model’s score of 0.21. Further instances are
provided in Appendix E.

6.2 Robustness to Korean Offensive Language
Warning: This section contains several offensive
statements.

To evaluate the robustness of our proposed method
to offensive language, we experiment on the Ko-
rean offensive language datasets BEEP! (Moon
et al., 2020), K-MHaS (Lee et al., 2022a), and
KOLD (Jeong et al., 2022). Details for data and ex-
perimental settings are presented in Appendix D.3.
In Table 5, Jamo shows the highest macro
F1 score across all tasks, demonstrating its robust-
ness on Korean offensive wordings. Interestingly,
we find that the subword-based models struggle
with the Korean offensive wordings; for example,
they tokenize the compound word ‘개새끼puppy’,
which is combined ‘개dog’ and ‘새끼pup’, into in-
dependent three characters ‘개’, ‘새’, and ‘끼’. 6

7 Conclusion

Although there is crucial linguistic information and
clear invention principles in Korean letters, the ex-
isting Korean PLMs have overlooked them and
just opted to use subword-level tokenization meth-
ods due to their high performance. In this paper,
we first bring attention to the overlooked design
principles and combination rules of subcharacters,
as specified in Hunminjeongeum. We have intro-
duced a novel framework for Korean PLMs called

6In Korean, ‘개새끼puppy’ is used as an insult to refer to
someone in a disrespectful manner.

5109

Model Tokenization
BEEP! K-MHaS KOLD

P R F1 P R F1 P R F1

BERT

Jamo 87.05 69.78 77.43 77.85 73.27 75.13 39.03 47.96 41.95
Character 89.62 71.27 79.40 78.58 75.24 76.45 46.97 52.82 49.12
Subword 87.30 71.49 78.61 77.01 75.28 75.90 45.88 53.59 48.66
MorSubword 89.09 72.45 79.91 77.99 75.63 76.58 46.70 52.45 48.91

Jamo 90.66 74.28 81.57 79.21 76.15 77.48 47.22 55.79 50.42

Table 5: Evaluation results for the robustness of the models on three Korean offensive language datasets. We
evaluate the model reporting performance metrics, including Precision (P), Recall (R), and macro F1. The best and
second-best results are highlighted in boldface and underline, respectively.

, which generates character representa-
tions following the design and combination rules
of subcharacters. We have demonstrated the effi-
cacy of on both standard Korean datasets
and noisy Korean datasets by outperforming vari-
ous Korean tokenization baselines on most of the
tasks we evaluated. Additionally, through diverse
ablations and analyses, we have shown that our
proposed method improves the quality of character
representations and has a more robust adaptabil-
ity to Korean conjugations and offensive language.
These convincing outcomes of Jamo follow-
ing the invention principles of Hangeul can thereby
provide an inspiring insight for the prospective po-
tential of Jamo unit applying in Korean PLMs.

Limitations

While our proposed methodology demonstrates its
suitability for Korean natural language processing,
it comes with some limitations for future research.
Although our proposed is designed with
an encoder transformer model, our framework is
primarily designed to manipulate token representa-
tions, allowing for seamless integration with vari-
ous transformer-based architectures, extending be-
yond Encoder Models. Therefore, we believe that
its dynamic ability to generate appropriate char-
acter embeddings for each input also works well
in generative modeling, too. We leave the explo-
ration of its value in generative models for future
research.

In this work, we limit our focus to Korean repre-
sentations up to the character-level, as our main ob-
jective is to incorporate Korean subcharacter units
into PLMs following the principles of Hangeul.
However, given the morphologically intricate na-
ture of the Korean language, considering repre-
sentations up to the subword-level is also impera-

tive. With our hierarchical combination approach
demonstrating superior performance at the charac-
ter level, we anticipate that it may serve as a pre-
cursor for future methodologies transitioning from
character-level to subword-level representations in
Korean language processing.

Ethics Statement

We only use three previously collected or syntheti-
cally generated Korean offensive language bench-
marks, which are annotated with humans who have
verified their qualifications. We strictly follow the
data usage agreements for each public dataset we
implement in this paper. We also mention a warn-
ing statement in §6.2, where the offensive state-
ments are directly used in this paper. Addition-
ally, we recognize the potential that the high per-
formance in Korean offensive language also means
the model might be biased toward misused or offen-
sive language. However, we believe that the high
robustness of our method is aligned with the ad-
vantages due to the deep comprehension of Korean
character structure, not the familiarity with toxic
wording.

Acknowledgements

This work was supported by the Basic Research
Program through the National Research Founda-
tion of Korea (NRF) grant funded by the Korea
government (MSIT) (2021R1A2C3010430) and
Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No.RS-2019-
II190079, Artificial Intelligence Graduate School
Program (Korea University)).

5110

References
Adam Albright and Yoonjung Kang. 2009. Predict-

ing innovative alternations in korean verb paradigms.
Current issues in unity and diversity of languages:
Collection of the papers selected from the CIL 18,
held at Korea University in Seoul, pages 1–20.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Won Ik Cho, Seok Min Kim, and Nam Soo Kim. 2019.
Investigating an effective character-level embedding
in korean sentence classification. In Proceedings of
the 33rd Pacific Asia Conference on Language, In-
formation and Computation, pages 10–18, Hakodate,
Japan. Waseda Institute for the Study of Language
and Information.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le.
2020. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 4271–4282, Online. Curran Asso-
ciates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sugyeong Eo, Chanjun Park, Hyeonseok Moon, Jae-
hyung Seo, and Heuiseok Lim. 2022. Word-level
quality estimation for korean-english neural machine
translation. IEEE Access, 10:44964–44973.

Jiyeon Ham, Yo Joong Choe, Kyubyong Park, Ilji Choi,
and Hyungjoon Soh. 2020. KorNLI and KorSTS:
New benchmark datasets for Korean natural language
understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
422–430, Online. Association for Computational Lin-
guistics.

Hee-Won Jeon, Daniel Huang, and Hae-Chang Rim.
2010. Analyzing of hangul search query spelling er-
ror patterns and developing query spelling correction
system based on user logs. In Annual Conference
on Human and Language Technology, pages 15–21,
Gyeongju, Republic of Korea. Human and Language
Technology.

Younghun Jeong, Juhyun Oh, Jongwon Lee, Jaimeen
Ahn, Jihyung Moon, Sungjoon Park, and Alice Oh.
2022. KOLD: Korean offensive language dataset.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10818–10833, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Boseop Kim, HyoungSeok Kim, Sang-Woo Lee,
Gichang Lee, Donghyun Kwak, Jeon Dong Hyeon,
Sunghyun Park, Sungju Kim, Seonhoon Kim, Dong-
pil Seo, Heungsub Lee, Minyoung Jeong, Sungjae
Lee, Minsub Kim, Suk Hyun Ko, Seokhun Kim,
Taeyong Park, Jinuk Kim, Soyoung Kang, Na-Hyeon
Ryu, Kang Min Yoo, Minsuk Chang, Soobin Suh,
Sookyo In, Jinseong Park, Kyungduk Kim, Hiun
Kim, Jisu Jeong, Yong Goo Yeo, Donghoon Ham,
Dongju Park, Min Young Lee, Jaewook Kang, Inho
Kang, Jung-Woo Ha, Woomyoung Park, and Nako
Sung. 2021. What changes can large-scale language
models bring? intensive study on HyperCLOVA:
Billions-scale Korean generative pretrained trans-
formers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3405–3424, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Nayeon Kim, Jun-Hyung Park, Joon-Young Choi, Eojin
Jeon, Youjin Kang, and SangKeun Lee. 2022. Break
it down into BTS: Basic, tiniest subword units for
Korean. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 7007–7024, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

5111

https://web.mit.edu/albright/www/papers/AlbrightKang-CIL18Paper.pdf
https://web.mit.edu/albright/www/papers/AlbrightKang-CIL18Paper.pdf
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://jaslli.org/files/proceedings/02_paclic33_postconf.pdf
https://jaslli.org/files/proceedings/02_paclic33_postconf.pdf
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://proceedings.neurips.cc/paper_files/paper/2020/file/2cd2915e69546904e4e5d4a2ac9e1652-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2cd2915e69546904e4e5d4a2ac9e1652-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ACCESS.2022.3169155
https://doi.org/10.1109/ACCESS.2022.3169155
https://doi.org/10.1109/ACCESS.2022.3169155
https://doi.org/10.18653/v1/2020.findings-emnlp.39
https://doi.org/10.18653/v1/2020.findings-emnlp.39
https://doi.org/10.18653/v1/2020.findings-emnlp.39
https://doi.org/10.18653/v1/2022.emnlp-main.744
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://doi.org/10.18653/v1/2021.emnlp-main.274
https://aclanthology.org/2022.emnlp-main.472
https://aclanthology.org/2022.emnlp-main.472
https://aclanthology.org/2022.emnlp-main.472

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Takumitsu Kudo. 2005. Mecab : Yet another part-of-
speech and morphological analyzer.

Chanhee Lee, Dongyub Lee, YunA Hur, Kisu Yang,
and Heuiseok Lim. 2018. Comparing byte pair en-
coding methods for korean. In Annual Conference
on Human and Language Technology, pages 291–
295, Seoul, Republic of Korea. Human and Language
Technology.

Jean Lee, Taejun Lim, Heejun Lee, Bogeun Jo, Yangsok
Kim, Heegeun Yoon, and Soyeon Caren Han. 2022a.
K-MHaS: A multi-label hate speech detection dataset
in Korean online news comment. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 3530–3538, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Jean Lee, Taejun Lim, Heejun Lee, Bogeun Jo, Yangsok
Kim, Heegeun Yoon, and Soyeon Caren Han. 2022b.
K-MHaS: A multi-label hate speech detection dataset
in Korean online news comment. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 3530–3538, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Sangah Lee and Hyopil Shin. 2021. The Korean mor-
phologically tight-fitting tokenizer for noisy user-
generated texts. In Proceedings of the Seventh Work-
shop on Noisy User-generated Text (W-NUT 2021),
pages 410–416, Online. Association for Computa-
tional Linguistics.

Seungyoung Lim, Myungji Kim, and Jooyoul Lee. 2019.
Korquad1. 0: Korean qa dataset for machine reading
comprehension. arXiv preprint arXiv:1909.07005.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, New Or-
leans, United States.

Jihyung Moon, Won Ik Cho, and Junbum Lee. 2020.
BEEP! Korean corpus of online news comments for
toxic speech detection. In Proceedings of the Eighth
International Workshop on Natural Language Pro-
cessing for Social Media, pages 25–31, Online. As-
sociation for Computational Linguistics.

Sangwhan Moon, Won Ik Cho, Hye Joo Han, Naoaki
Okazaki, and Nam Soo Kim. 2022. OpenKorPOS:
Democratizing Korean tokenization with voting-
based open corpus annotation. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 4975–4983, Marseille, France. Eu-
ropean Language Resources Association.

Sangwhan Moon and Naoaki Okazaki. 2020. Jamo
pair encoding: Subcharacter representation-based
extreme Korean vocabulary compression for effi-
cient subword tokenization. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 3490–3497, Marseille, France. European
Language Resources Association.

National Hangeul Museum. 2018. A guide to
hunminjeongeum. https://hangeul.go.
kr/user/synapView.jsp?filename=BBS/
2BD8647E-0CBE-42A9-EEF9-8C5AD8AC70CE.pdf.

National Hangeul Museum. 2021. Easy read-
ing of hunminjeongeum. https://hangeul.
go.kr/user/synapView.jsp?filename=BBS/
A0479188-1C12-D328-AE4D-B4DF9C279181.pdf.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski,
Lukasz Kaiser, Yuhuai Wu, Christian Szegedy, and
Henryk Michalewski. 2022. Hierarchical transform-
ers are more efficient language models. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 1559–1571, Seattle, United
States. Association for Computational Linguistics.

Kyubyong Park, Joohong Lee, Seongbo Jang, and Da-
woon Jung. 2020. An empirical study of tokenization
strategies for various Korean NLP tasks. In Proceed-
ings of the 1st Conference of the Asia-Pacific Chap-
ter of the Association for Computational Linguistics
and the 10th International Joint Conference on Nat-
ural Language Processing, pages 133–142, Suzhou,
China. Association for Computational Linguistics.

Lucy Park. 2016. Naver sentiment movie corpus.

Sungjoon Park, Jeongmin Byun, Sion Baek, Yongseok
Cho, and Alice Oh. 2018. Subword-level word vec-
tor representations for Korean. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2429–2438, Melbourne, Australia. Association for
Computational Linguistics.

Sungjoon Park, Jihyung Moon, Sungdong Kim, Won Ik
Cho, Ji Yoon Han, Jangwon Park, Chisung Song, Jun-
seong Kim, Youngsook Song, Taehwan Oh, Joohong
Lee, Juhyun Oh, Sungwon Lyu, Younghoon Jeong,
Inkwon Lee, Sangwoo Seo, Dongjun Lee, Hyunwoo
Kim, Myeonghwa Lee, Seongbo Jang, Seungwon
Do, Sunkyoung Kim, Kyungtae Lim, Jongwon Lee,
Kyumin Park, Jamin Shin, Seonghyun Kim, Lucy
Park, Lucy Park, Alice Oh, Jung-Woo Ha (NAVER
AI Lab), Kyunghyun Cho, and Kyunghyun Cho.
2021. KLUE: Korean Language Understanding Eval-
uation. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Bench-
marks, volume 1. Curran.

Suzi Park and Hyopil Shin. 2018. Grapheme-level
awareness in word embeddings for morphologically
rich languages. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

5112

https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://api.semanticscholar.org/CorpusID:61584143
https://api.semanticscholar.org/CorpusID:61584143
https://koreascience.kr/article/CFKO201832073078730.pdf
https://koreascience.kr/article/CFKO201832073078730.pdf
https://aclanthology.org/2022.coling-1.311
https://aclanthology.org/2022.coling-1.311
https://aclanthology.org/2022.coling-1.311
https://aclanthology.org/2022.coling-1.311
https://doi.org/10.18653/v1/2021.wnut-1.45
https://doi.org/10.18653/v1/2021.wnut-1.45
https://doi.org/10.18653/v1/2021.wnut-1.45
https://arxiv.org/abs/1909.07005
https://arxiv.org/abs/1909.07005
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2020.socialnlp-1.4
https://doi.org/10.18653/v1/2020.socialnlp-1.4
https://aclanthology.org/2022.lrec-1.531
https://aclanthology.org/2022.lrec-1.531
https://aclanthology.org/2022.lrec-1.531
https://aclanthology.org/2020.lrec-1.429
https://aclanthology.org/2020.lrec-1.429
https://aclanthology.org/2020.lrec-1.429
https://aclanthology.org/2020.lrec-1.429
https://hangeul.go.kr/user/synapView.jsp?filename=BBS/2BD8647E-0CBE-42A9-EEF9-8C5AD8AC70CE.pdf
https://hangeul.go.kr/user/synapView.jsp?filename=BBS/2BD8647E-0CBE-42A9-EEF9-8C5AD8AC70CE.pdf
https://hangeul.go.kr/user/synapView.jsp?filename=BBS/2BD8647E-0CBE-42A9-EEF9-8C5AD8AC70CE.pdf
https://hangeul.go.kr/user/synapView.jsp?filename=BBS/A0479188-1C12-D328-AE4D-B4DF9C279181.pdf
https://hangeul.go.kr/user/synapView.jsp?filename=BBS/A0479188-1C12-D328-AE4D-B4DF9C279181.pdf
https://hangeul.go.kr/user/synapView.jsp?filename=BBS/A0479188-1C12-D328-AE4D-B4DF9C279181.pdf
https://doi.org/10.18653/v1/2022.findings-naacl.117
https://doi.org/10.18653/v1/2022.findings-naacl.117
https://aclanthology.org/2020.aacl-main.17
https://aclanthology.org/2020.aacl-main.17
https://doi.org/10.18653/v1/P18-1226
https://doi.org/10.18653/v1/P18-1226
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/98dce83da57b0395e163467c9dae521b-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/98dce83da57b0395e163467c9dae521b-Paper-round2.pdf
https://aclanthology.org/L18-1471
https://aclanthology.org/L18-1471
https://aclanthology.org/L18-1471

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
2015. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2015,
pages 234–241, Munich, Germany. Springer, Cham.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149–5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Karl Stratos. 2017. A sub-character architecture for
Korean language processing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 721–726, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019. PAWS-X: A cross-lingual adversar-
ial dataset for paraphrase identification. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3687–3692, Hong
Kong, China. Association for Computational Linguis-
tics.

Shengyao Zhuang and Guido Zuccon. 2021. Dealing
with typos for BERT-based passage retrieval and
ranking. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2836–2842, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

5113

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/D17-1075
https://doi.org/10.18653/v1/D17-1075
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/D19-1382
https://doi.org/10.18653/v1/D19-1382
https://doi.org/10.18653/v1/2021.emnlp-main.225
https://doi.org/10.18653/v1/2021.emnlp-main.225
https://doi.org/10.18653/v1/2021.emnlp-main.225

Appendix

A for BTS units

Kim et al. (2022) introduced Basic, Tiniest Sub-
word (BTS) units for the Korean language, inspired
by the invention principle of Hangeul. BTS units
comprise 5 basic consonants and 3 basic vowels,
defined as atomic units in Hunminjeongeum. The
decomposition of Korean characters into BTS units
is referred to as BTS decomposition, where the
consonant is split into a maximum of 4 subchar-
acters (e.g., a consonant ‘ㅋ’ is decomposed into
‘ㄱ’ and ‘-’), and the vowel is split into a maxi-
mum of 5 subcharacters (e.g., a vowel ‘ㅏ’ is de-
composed into ‘l’ and ‘·’). Additionally, there are
two variant decomposition units: the consonant-
only BTS decomposition (denoted as Stroke) and
the vowel-only BTS decomposition (denoted as
Cji, short for Cheonjiin). In this paper, we con-
sider all applications for BTS units as subcharac-
ter units and present as Stroke, Cji,
and BTS. To simplify, we collectively call
these three models as BTS units. We illus-
trate Jamo in Figure 4, as a representative
example among BTS units.

Subcharacter Tokenization Unlike Jamo units,
which have three subcharacters for each character,
BTS units decompose Jamo into smaller subcharac-
ters. Depending on the type of BTS unit, the num-
ber of tokens comprising one character is different.
Stroke has 9, Cji has 7, and BTS has 13 tokens for
each character. To ensure that the number of tokens
forming each Jamo is always maximum, we use
the special empty token ().

Subcharacter Embedding By the same process
in Eq. (1), we project the subcharacter sequence
onto the embedding space, denoted as:

e = {e1, e2, · · · , eN} ∈ RN×D (10)

where N is the number of subcharacters, and D is
the dimension of embeddings.

Contextualization To capture the intricate com-
position of characters, we apply contextualization
to the subcharacters, same as in Eq. (2).

h = GRU(LocalTransformer(e)) ∈ RN×D (11)

Merging Jamo units The contextualized sub-
character representations are combined to form a
character representation similar to §3.2. Before

merging chosung, joongsung, and jongsung, there
is a preceding step combining the subcharacter rep-
resentations into the representations of chosung,
joongsung, and jongsung. We primarily use Stroke
(consonant-only BTS decomposition) in the follow-
ing sections for the sake of simplicity in explana-
tion. For each k ∈ [1, N/9], hI,k, hV,k, and hF,k in
Eq. (3) can be denoted as follows:

hI,k =
4∑

j=1

h9(k−1)+j (12)

hV,k =

5∑

j=5

h9(k−1)+j (13)

hF,k =
9∑

j=6

h9(k−1)+j (14)

Then, we sum the combined chosung and joong-
sung representations to form the intermediate repre-
sentation hI+V with the same process as in Eq. (4).

hI+V = hI + hV ∈ R
N
9
×D (15)

To consider the position of jongsung, below
chosung and joongsung, we vertically concatenate
the combined representations hI+V and jongsung
hF, represented in Eq. (5).

hR =

[
hI+V
hF

]
∈ R2×N

9
×D (16)

The resultant representations are then performed
using the operations in Eq. (6) to generate the char-
acter representation.

hC = AvgPool(Conv(hR)) ∈ R
N
9
×D (17)

Subcharacter Restoration We also reconstruct
the outputs of the transformer stack into subchar-
acters. Due to the simplicity of the addition of
subcharacters into Jamo, we directly decompose in-
termediate representations into BTS units, jumping
the decomposition step from Jamo to BTS units.
Thus, the process of subcharacter restoration is
almost the same as in Eq. (8) and Eq. (9), but dif-
ferent in the size of the vectors. More formally,

h′
R = GRU(Repeat(h′

C) + hR) ∈ R
2N
9

×D (18)

h′ = GRU(Repeat(h′
R) + h) ∈ RN×D (19)

5114

Contextualization

Fusion of Chosung and Joongsung

Addition of Jongsung

ㅇ

Embedding

- ▂ ▂ ㅜ ㄴ ▂ ▂ ▂

훈

ㅇ - ▂

후 저 ㅇ 으 ㅁMASK MASKㄴ

정 음MASK훈

ㅁ ▂ ▂ ▂ ㅣ ㄴ ▂ ▂ ▂

민

ㅅ - ▂ ▂ ㅓ ㅇ ▂ ▂ ▂

정

ㅇ ▂ ▂ ▂ ㅡ ㅁ ▂ ▂ ▂

음

▂ ㅜ ㄴ ▂ ▂ ▂ ㅁ ▂ ▂ ▂ ㅣ ㄴ ▂ ▂ ▂ ㅅ - ▂ ▂ ㅓ ㅇ ▂ ▂ ▂ ㅇ ▂ ▂ ▂ ㅡ ㅁ ▂ ▂ ▂

Combination of BTS units into Jamo

ㅎ ㅜ ㄴ ㅈ ㅓ ㅇ ㅇ ㅡ ㅁMASK MASK MASK

Figure 4: Detailed description of the subcharacter combination method of Stroke. There is one more merging
layer to merge BTS units to Jamo, unlike Jamo.

Restoration
KorNLI KorSTS PAWS-X Total

Dev Test Dev Test Dev Test Avg

Linear 73.09±0.77 73.96±0.14 84.42±0.30 76.23±0.45 71.51±0.78 71.30±0.22 75.09
Linear+HR 73.69±0.13 74.32±0.25 83.80±0.38 76.43±0.62 72.80±1.00 70.54±0.32 75.26
Linear+HR+RC 73.71±0.08 74.22±0.24 84.15±0.15 77.25±0.53 72.62±0.69 69.08±0.43 75.17
GRU 74.04±0.34 74.20±0.22 83.91±0.23 75.91±1.19 72.24±1.28 68.63±2.00 74.82
GRU+HR 73.66±0.70 73.88±0.28 84.24±0.18 76.40±0.42 73.04±0.94 70.35±0.60 75.26
GRU+HR+RC 74.22±0.45 73.77±0.08 84.47±0.31 77.43±0.15 73.66±0.69 70.88±0.58 75.74

Table 6: Comparison of the variation of restoration process on KorNLI, KorSTS, and PAWS-X tasks. HR means
restoring the subcharacter embedding hierarchically, and RC means residual connection. The best and second-best
results are highlighted in boldface and underline, respectively. Gray area indicates the best Decomposing method.

B Additional Ablations

B.1 Impact of Subcharacter Restoration

We explore the effects of the various subcharacter
restoration methods. Table 6 shows the experi-
mental results. We observe that leveraging only a
single GRU layer does not help subcharacter recon-
struction. However, the GRU layers in hierarchical
manners are effective for increasing the granular-
ity of character-level sequences. Moreover, the
residual connection, which combines duplicated
representations with the original subcharacter em-
beddings, significantly enhances the performance
when combined with the GRU layer, whereas it
does not provide any advantages in the case of the
linear layer.

C Details of Pre-training

Data Preprocessing We use the Korean Wiki
corpus and the Namuwiki corpus, extracted from

dump data using data extractors such as WikiEx-
tractor 7 and NamuWikiExtractor 8. After applying
the data extractor to dump data, we clean the data
by removing irregular empty spaces and parsing
traces, such as HTML tags. We only retain Korean
and English text and punctuation with regular ex-
pression. As a result, we can get a total of 6.2 GB,
including about 46 million sentences.

Training Settings Each model is pre-trained
for 1M steps with a batch size of 128 using the
RTX 3090 GPU. We set the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 5e-05 warm-up over the first 10K steps. We use
a sequence length of 128. To match the size of our
models with the state-of-the-art Korean pre-trained
language model, MorSubword, we adjust the num-
ber of local transformer blocks in contextualization
layers. The number of parameters in both mod-

7WikiExtractor
8NamuWikiExtractor

5115

https://github.com/attardi/wikiextractor
https://github.com/jonghwanhyeon/namu-wiki-extractor/

els is 110M, but the training time of Jamo
is almost half of vanilla MorSubword model. We
compare the number of parameters and the training
time rate in Figure 5.

0M 20M 40M 60M 80M 100M 120M 140M

Number of Parameters

Jamo

BTS

Cji

Stroke

Word

MorSubword

Subword

Morpheme

Character

Jamo

BTS

Cji

Stroke

To
ke

ni
za

tio
n

BERT
KOMBO

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Pretraining Time Rate

Jamo

Cji

BTS

Stroke

Cji

BTS

Stroke

Jamo

Character

Subword

Morpheme

MorSubword

Word

To
ke

ni
za

tio
n

BERT
KOMBO

(b)

Figure 5: Comparison of (a) number of parameters and
(b) training time of model according to tokenization
method for each model. To facilitate clear quantitative
comparison of training times, we express the training
time in rate.

D Details of Fine-tuning

D.1 Standard Korean Datasets

Datasets KorQuAD 1.0 (Lim et al., 2019) is
the Korean version of the well-known SQuAD 1.0
dataset (Rajpurkar et al., 2016), designed for the
machine reading comprehension task. KorQuAD
1.0 dataset consists of 10,645 passages and 66,181
question-answer pairs (60,407 for the training set
and 5,774 for the development set). Similar to
SQuAD 1.0 dataset, the evaluation involves the
model predicting the position of the answer within
the given passage.

KorNLI (Ham et al., 2020) is a dataset consist-
ing of 942,854 training sets and 7,500 evaluation

sets for natural language inference, sourced from
SNLI dataset (Bowman et al., 2015), MNLI dataset
(Williams et al., 2018), and XNLI dataset (Con-
neau et al., 2018). The labels of the dataset are
entailment, contradiction, and neutral.

KorSTS (Ham et al., 2020) is designed to evalu-
ate the semantic similarity between two sentences.
It is a Korean adaptation of STS-B dataset (Cer
et al., 2017). KorSTS dataset comprises 5,749 train-
ing examples and 2,879 evaluation examples. Each
sample is labeled with a similarity score scaled
from 0 to 5, indicating the similarity between the
two sentences.

NSMC (Park, 2016) is a NAVER movie review
dataset used for performing a sentiment analysis of
each Korean sentence. NSMC dataset consists of
150,000 training samples and 50,000 test samples,
with each sentence labeled as negative or positive.

PAWS-X (Yang et al., 2019) is a dataset for the
paraphrase identification task. PAWS-X dataset has
six language tasks, and we only evaluate models on
the Korean subset. It consists of 53,338 sentence
pairs (49,410 for the training set, 1,965 for the de-
velopment set, and 1,972 for the test set), and each
label has two possible values, different meanings,
or paraphrases.

Data Preprocessing To focus solely on evalu-
ating Korean language processing capabilities, we
convert English words into Hangeul based on the
International Phonetic Alphabet (IPA) symbols 9

(e.g., ‘bus’ → ‘버스’) and remove special charac-
ters.

Hyperparameters For each of the datasets, we
use the following hyperparameters: KorQuAD 1.0
uses 5 epochs and a batch size of 16 . KorNLI uses
3 epochs and 16 batch size. KorSTS uses 5 epochs
and a batch size of 64. NSMC uses 3 epochs and
a batch size of 64. PAWS-X uses 5 epochs and a
batch size of 64. We select the best learning rate
(among 1e-04, 4e-05, and 5e-05) on the Dev set
and warmup over the first 10% steps of the total.
We use a dropout probability of 0.1. We choose the
maximum sequence length (among 128, 256, 512,
1024, and 2048) depending on the type of token.

D.2 Noisy Korean Datasets

We conduct additional typo experiments for the Ko-
rSTS, NSMC, and PAWS-X datasets. In Figure 6,

9To convert graphemes to phonemes, we leverage the g2pK
library. Refer to https://github.com/Kyubyong/g2pK

5116

https://github.com/Kyubyong/g2pK

we illustrate the result of random typo experiments.
In Table 7, we present the results of each of the
four distinct typo generation methods.

D.3 Korean Offensive Language Dataset
Datasets BEEP! (Moon et al., 2020) is a Korean
corpus annotated for toxic speech detection, which
consists of 10K manually human-annotated Korean
corpus collected from a Korean entertainment news
aggregation platform. The labels include Hate, Of-
fensive, and None, categorizing the aggressiveness
of the given sentences. To distinguish whether the
text contains offensive language or not, we reformu-
late the labels into ‘Hate or Offensive’ and ‘None’
for binary classification.

K-MHaS (Lee et al., 2022b) is a Korean multi-
label hate speech detection dataset that consists of
109K utterances from Korean news comments. K-
MHaS requires the classification of fine-grained
discrimination labels among Politics, Origin, Phys-
ical, Age, Gender, Religion, Race, and Profanity
based on the input sentences.

KOLD (Jeong et al., 2022) is a dataset for detect-
ing the Korean offensive language. KOLD com-
prises 40,429 comments, annotated hierarchically
with the type and the target. KOLD has three tasks:
Level A (Offensive language detection), Level B
(Target types categorization), and Level C (Target
group Identification). In this paper, we implement
the most difficult task, Level C in KOLD, labeling
into 22 target groups: LGBTQ+, Men, Women,
Asian, Black, Chinese, Indian, Korean-Chinese,
Southeast Asian, White, Conservative, Progressive,
Buddhism, Catholic, Christian, Islam, Agism, Dis-
abled, Diseased, Feminist, Physical Appearance,
and Socio-economic Status.

For all offensive language datasets, we convert
English words into Hangeul based on the Interna-
tional Phonetic Alphabet (IPA) symbols.

Hyperparameters We train the models on
BEEP! for 10 epochs with 32 batch size. In the
case of the K-MHaS dataset, we train the models
for 4 epochs with 32 batch size. For the experi-
ments on KOLD, we train the models for 5 epochs
with a batch size of 32 using a learning rate of 5e-
05. We choose the max sequence length (among
128, 256, 512) depending on the type of tokens.

E Robustness to Character Conjugation

We illustrate more examples about Korean charac-
ter conjugations in Figure 7, 8, 9, and 10.

5117

0 5 10 15 20 25 30 35 40

Typo Rate (%)

40.0

50.0

60.0

70.0

A
cc

ur
ac

y
(%

)

Jamo
Character
Subword
MorSubword
KOMBOJamo

(a) PAWS-X

0 5 10 15 20 25 30 35 40

Typo Rate (%)

86.0

87.0

88.0

89.0

A
cc

ur
ac

y
(%

)

Jamo
Character
Subword
MorSubword
KOMBOJamo

(b) NSMC

0 5 10 15 20 25 30 35 40

Typo Rate (%)

58.0

60.0

62.0

64.0

66.0

68.0

70.0

A
cc

ur
ac

y
(%

)

Jamo
Character
Subword
MorSubword
KOMBOJamo

(c) PAWS-X

Figure 6: Visualization of the evaluation results on KorSTS, NSMC, and PAWS-X datasets with increasing the typo
rate. We fill the gap between our proposed method and the state-of-the-art baseline in gray.

KorSTS

Model Tokenization Clean
Insertion Transposition Substitution Deletion

+20% +40% +20% +40% +20% +40% +20% +40%

BERT

Jamo 72.96 71.67 69.61 47.68 29.77 72.15 69.62 47.31 30.84
Character 76.34 70.93 66.33 49.86 32.30 72.34 68.95 49.63 33.81
Subword 76.41 64.26 57.00 50.52 31.46 68.43 62.64 49.94 32.22
MorSubword 77.29 66.09 57.26 57.21 34.89 68.04 57.42 57.09 36.29

Jamo 77.42 73.13 69.19 52.34 31.64 73.21 68.17 52.47 32.42

NSMC

Model Tokenization Clean
Insertion Transposition Substitution Deletion

+20% +40% +20% +40% +20% +40% +20% +40%

BERT

Jamo 87.78 87.22 86.58 84.04 79.17 87.22 86.68 84.08 79.45
Character 88.89 87.69 86.20 84.72 79.44 87.62 86.24 84.95 79.89
Subword 88.91 87.41 85.86 84.84 79.56 87.31 85.57 84.90 79.73
MorSubword 89.40 87.57 85.72 85.30 79.94 87.66 85.63 85.29 79.93

Jamo 88.70 87.57 86.33 84.49 79.15 87.80 86.70 84.64 79.44

PAWS-X

Model Tokenization Clean
Insertion Transposition Substitution Deletion

+20% +40% +20% +40% +20% +40% +20% +40%

BERT

Jamo 59.09 58.32 57.65 56.95 56.07 58.18 58.84 58.07 56.77
Character 68.70 66.91 64.91 60.28 56.98 66.88 65.33 61.33 57.16
Subword 68.88 64.63 61.23 60.63 55.40 66.60 62.60 61.37 56.84
MorSubword 68.14 62.88 60.56 60.25 55.40 63.51 60.67 61.86 57.65

Jamo 70.88 69.30 67.44 63.02 55.26 69.09 67.44 63.51 57.51

Table 7: Evaluation results on the typo dataset. We measure the sensitivity to typo rate using four different generation
methods.The best and second-best results are highlighted in boldface and underline, respectively.

5118

KO
M
BO
Ja
m
o

C
ha
ra
ct
er

Figure 7: Visualization of the character representations. Given the target sentence as "물이많아밥이질질질어져진진진
밥을먹게되었다. A lot of water makes the rice mushy, so I have to eat mushy rice.)", the histogram represents
the cosine similarities between the embeddings of the character ‘질’ and ‘진’ extracted from the target sentence and
all characters in the target sentence.

KO
M
BO
Ja
m
o

C
ha
ra
ct
er

Figure 8: Visualization of the character representations. Given the target sentence as "흐흐흐르는개천은강물과
만나바다로흘흘흘러간다. (A flowing stream joins the river and flows into the sea)", the histogram represents the
cosine similarities between the embeddings of the character ‘흐’ and ‘흘’ extracted from the target sentence and all
characters in the target sentence.

KO
M
BO
Ja
m
o

C
ha
ra
ct
er

Figure 9: Visualization of the character representations. Given the target sentence as "다른사람을도도도와주는것은
나를돕돕돕는것이다. (Helping others is to help myself.)", the histogram represents the cosine similarities between
the embeddings of the character ‘도’ and ‘돕’ extracted from the target sentence and all characters in the target
sentence.

KO
M
BO
Ja
m
o

C
ha
ra
ct
er

Figure 10: Visualization of the character representations. Given the target sentence as "희미하게들들들리는소리
를듣듣듣기위해집중했다. (I have to concentrate on hearing the sound, which is unclear to hear.)", the histogram
represents the cosine similarities between the embeddings of the character ‘들’ and ‘듣’ extracted from the target
sentence and all characters in the target sentence.

5119

