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Abstract

Transformer based Large Language Models
(LLMs) often impose limitations on the length
of the text input to ensure the generation of flu-
ent and relevant responses due to the quadratic
complexity. These constraints restrict their ap-
plicability in long text scenarios. In this pa-
per, we propose a novel semantic compres-
sion method that enables generalization to texts
that are 6-8 times longer without incurring sig-
nificant computational costs or requiring fine-
tuning. Our proposed framework draws in-
spiration from source coding in information
theory and employs a pre-trained model to re-
duce the semantic redundancy of long inputs
before passing them to the LLMs for down-
stream tasks. Experimental results demonstrate
that our method effectively extends the con-
text window of LLMs across a range of tasks
including question answering, summarization,
few-shot learning, and information retrieval.
Furthermore, the proposed semantic compres-
sion method exhibits consistent fluency in text
generation while reducing the associated com-
putational overhead.

1 Introduction

The recent successful release of large language
models (LLMs) such as ChatGPT (Radford et al.,
2019) and LLaMA (Touvron et al., 2023) have
sparked significant research efforts from both in-
dustry and academia. These LLMs have demon-
strated the ability to engage in fluent and coherent
conversations with human users, and have shown
exceptional performance across various tasks, in-
cluding document summarization, question answer-
ing, dialogue bots, and code generation.

One critical issue faced by state-of-the-art
(SoTA) LLMs is the restriction on the length of text
that can be inputted into the model at once. When
the input context exceeds the limit of the context
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window, the performance of these models declines
rapidly. This limitation poses a challenge to current
LLMs when it comes to handling long texts such as
scientific papers, novels, and legal contracts. As a
result, there has been a growing interest in finding
ways to extend the input length without signifi-
cantly compromising the models’ performance.

The limitation on the context window primarily
stems from the quadratic computation of the self-
attention mechanism in the transformer. Handling
lengthy texts significantly increases the computa-
tional costs in terms of both memory and time. Typ-
ically, models are trained on shorter contexts, so the
maximum sequence length (i.e., the context win-
dow) is fixed. If the models are compelled to gen-
erate contexts that exceed the context window, they
tend to compromise the quality of the output due
to the lack of position encoding information that is
not learned from the training. Furthermore, gener-
ating long sequences imposes substantial memory
requirements on the computational device. This ac-
cumulation of memory requirements and the lack
of effective position encoding can result in length
generalization failure (Anil et al., 2022), where the
models struggle to generate meaningful and coher-
ent text beyond a certain context window size.

Some techniques have been developed to address
the aforementioned challenges. One approach is to
devise architectures with nearly linear complexity,
which enables efficient scaling to handle very long
sequences. However, training a large model from
scratch incurs substantial costs. Another strategy
involves employing interpolation and fine-tuning
techniques to adapt the position encoding to unseen
sequence lengths. While this method has the poten-
tial to improve the overall performance of LLMs
on long sequences, it still demands significant time
and GPU resources for fine-tuning and inference.
Therefore, methods that do not necessitate altering
the parameters of the pre-trained models are more
efficient and resource-friendly.
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Figure 1: With the inclusion of the semantic compression module, the redundancies in the input are eliminated, thereby
effectively extending the context window. The semantic compression is reminiscent of the concept of source coding in
information theory.

While most previous algorithms involve modi-
fying the pre-trained models, we instead exploit
the statistical properties of the natural language in-
put. One empirical phenomenon, known as Zipf’s
law (Zipf, 2016), observes that a small set of the
most frequent word tokens in a large corpus of nat-
ural language account for almost all occurrences.
This pattern arises from the tendency of language
users to minimize effort in their daily conversations.
Consequently, by utilizing an expanded vocabulary,
sentences can be significantly shortened while pre-
serving the semantic meaning. Moreover, it is com-
mon for language users to include redundant words
during communication (Strunk Jr, 2007). These
language habits are prevalent among users, and we
propose to include a semantic compression module
to mitigate the associated redundancies.

Our proposed semantic compression method,
reminiscent of lossy source coding in information
theory, extends the context window by equivalently
shortening the long text input while preserving the
semantic meaning. This procedure is conducted be-
fore inputting the tokens into the pre-trained LLMs.
As illustrated in Fig. 1, the input undergoes com-
pression before being transmitted to the LLM for
potential downstream tasks. The semantic compres-
sion method can be customized and optimized for
downstream tasks, taking into consideration practi-
cal constraints such as time and memory resources.
The implementation of the semantic compression
module is straightforward and can be easily in-
corporated into other interpolation-based context
window extension methods and black box APIs.
Our method demonstrates enhanced performance
compared to SoTA interpolation-based methods on
a range of tasks, including single-document ques-
tion answering, multi-document question answer-
ing, summarization, few-shot learning, and infor-
mation retrieval, using real-world datasets while
incurring no extra parameter updates or memory
consumption. Empirically, the proposed method is
computationally efficient and achieves 6-8 times
context window extension.

Our contributions:

• We propose a context window extension
framework for LLMs that serves as a plug-
and-play tool to mitigate redundancies in in-
put texts by efficiently performing topic mod-
eling and semantic compression.

• We construct a graph representation of the
input to identify distinct sections of the text
that pertain to different topics. The result is
the segmentation of long texts into separate
chunks, each focusing on a specific topic. We
then conquer each chunk independently, re-
sulting in a concise version of the original
texts. This compression technique helps to
condense the information while preserving
the key ideas and contexts.

• We demonstrate the applicability of our pro-
posed semantic compression method through
extensive experiments. The results highlight
the advantages of our method in several key
applications, including single-document ques-
tion answering, multi-document question an-
swering, summarization, few-shot learning,
and information retrieval.

2 Related Work

2.1 Efficient Attention Operations
Due to the self-attention mechanism, the inference
cost of LLMs grows quadratically with respect to
the sequence length. One line of research aims
to reduce the complexity when handling long con-
texts. Dai et al. (2019) present Transformer-XL
which utilizes segment-level recurrence agency and
a novel positional encoding scheme. Beltagy et al.
(2020) introduce Longformer with a sparse atten-
tion mechanism that scales linearly with sequence
length. Bo (2021) provides a faster transformer,
RWKV, which exploits the strength of RNN and
has linear complexity during inference. Dao et al.
(2022) propose FlashAttention, a chunking strategy
for the input, and utilize recomputation to avoid
the quadratic complexity of attention computation.
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While these methods have the potential to handle
longer input sequences (Ding et al., 2023), training
new models can be very costly. Moreover, these
methods are still not effective when dealing with
out-of-distribution content lengths.

2.2 Position Extrapolation and Interpolation
A larger group of research focuses on adapting
existing LLMs trained on short texts to accommo-
date longer text during inference (Anil et al., 2022).
The key challenge resides in the position encod-
ing of the input, which has solely been trained on
short texts, therefore is inadequate for handling
long texts. Current studies are usually based on the
relative positional encoding, Rotary Position Em-
beddings (RoPE) (Su et al., 2024) which is widely
adopted due to its strong extrapolation capabilities.
Chen et al. (2023b) develop the Position Interpo-
lation (PI) method to linearly scale the positional
encoding of long text into trained encoding. Their
experiments show that an effective long-context
model can be achieved with just 1000 fine-tuning
steps. Peng et al. (2023) introduce YaRN, an ef-
ficient extrapolation mechanism using the neural
tangent kernel which dynamically scales the logits.
Chen et al. (2023a) further proposes continuous dy-
namics and utilizes ordinary differential equations
to fit the length scaling factor.

The introduction of new positional embeddings
requires fine-tuning long sequences to adapt to the
unseen increased length, which can be computa-
tionally expensive. To address this problem, Lon-
gLoRA is introduced by Chen et al. (2023c), of-
fering an efficient fine-tuning method with limited
computational costs. Unlike the above methods,
our approach does not require fine-tuning on long
texts and is a low-cost length-extending solution.

2.3 Prompting Compression
There are ongoing efforts to extend the context win-
dow through smart prompting designs. Wingate
et al. (2022) employ soft prompts to compress the
context so that the compressed prompts can retain a
substantive amount of information. Chevalier et al.
(2023) further presents AutoCompressor, which
utilizes unsupervised learning to adapt LLMs to
compress long contexts into compact summary vec-
tors and then extends the original length of the base
model by conditional language modeling. Li (2023)
leverage mutual information to eliminate redundant
tokens and enhance inference efficiency. Similarly,
Jiang et al. (2023) employ a small language model

to identify and remove non-essential tokens in the
input prompts. These methods collectively show-
case the potential of prompt compression in extend-
ing the context window of LLM. Both Zhou et al.
(2023) and Wang et al. (2023a) recurrently apply
LLMs to summarize the input texts to maintain
long short-term memory for specific purposes such
as story writing and dialogue generation, respec-
tively.

More details on dealing with long text in LLMs
are provided in the survey by Huang et al. (2023).

3 Methodology

We now introduce our semantic compression
method for extending the context window. The
core idea is to compress the input into shorter texts
without losing the key information or important
details. This enables us to effectively include more
content within the fixed input length constrained by
the base LLM. Fig. 2 provides an overview of our
method, which leverages pre-trained summariza-
tion models commonly used in Natural Language
Processing (NLP).

Like LLMs, existing summarization methods
also have limitations regarding the length of the
input. Here, we propose a divide-and-conquer ap-
proach that takes into account the topic structure
of the text. By identifying distinct topics in the
lengthy text and dividing the text into blocks that
exhibit a certain level of mutual independence, the
content within each block can be compressed effi-
ciently owing to their statistical correlation. The
blocks can then be processed in parallel using pre-
trained models, and the results are combined to
create a condensed textual input that can be pro-
cessed by the base LLM. This approach provides a
computationally efficient way of removing redun-
dancies in long texts which effectively extend the
context window of the input.

3.1 Model

Real-world textual content, such as speech and
books, frequently displays hierarchical structures,
wherein each section is structured around a partic-
ular topic, and different sections differ in a topic
in a sequential manner. This hierarchical struc-
ture, based on topics, bears resemblance to cliques
in graphs. To identify this structure within long
texts, we utilize weighted graphs to represent them
and employ clustering methods to detect cliques
in these graphs. The cliques can then be utilized
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Figure 2: An illustration of our semantic compression method. The input text is initially segmented into topic-based chunks,
utilizing the graph representation. Subsequently, these chunks undergo refinement using pre-trained models to ensure the
preservation of key information. Finally, the refined chunks are assembled in accordance with the original order. The resulting
texts, which have been semantically compressed, are approximately 6-8 times shorter in length compared to the original input.
Consequently, they fall within the context window of the LLMs. Furthermore, for an additional extension of the length, other
methods such as extrapolation and interpolation-based techniques can be concatenated.

to represent the topic-based content of the text, al-
lowing us to obtain chunks based on the semantic
relevance of the topics.

We begin by sequentially constructing sentence-
level blocks within given lengths and representing
them as nodes in our graph. In this step, we parse
the text into different sentences or sub-sentences
based on punctuation marks. Next, we sequen-
tially fill the sentence-level blocks until they ex-
ceed the desired length before proceeding to the
next blocks. Once we have obtained the sentence-
level blocks, we build the graph representation of
long text G based on a pre-trained sentence em-
bedding model (e.g., MiniLM (Wang et al., 2020)),
where the weight G[i][j] represents the semantic
similarity between the i-th and j-th sentence-level
blocks. Typically, this similarity is computed using
cosine similarity, which measures the cosine of the
angle between two embeddings. If the similarity
between two blocks is higher, it indicates that they
are closer in topics.

3.2 Topic-Based Chunking

We then apply spectral clustering algorithms 1 on
the graph to identify the underlying topic struc-
ture. Within each cluster, we group the sentence-
level blocks sequentially to obtain the topic-based
chunks, which can then be handled simultaneously
by the pre-trained model chosen according to the
downstream task. The number of clusters can be

1We present the detailed introduction of our used clustering
method in Appendix C.2.

adjusted to regulate the length of the text following
semantic compression. If these semantic chunks
still surpass the predetermined length, the identi-
cal procedure is repeated to acquire sub-level topic
structures.

The obtained topic structures are tree-like, which
can be flattened in accordance with the order of the
original content. As per the model, each chunk is
semantically centered around a specific topic, and
these topics are mutually exclusive. Consequently,
these chunks can be compressed independently
by utilizing a pre-trained summarization model.
Choosing from different pre-trained summariza-
tion models allows a trade-off between efficiency
and effectiveness. Consequently, we can opt to
selectively substitute the original chunks with the
output of these pre-trained models to ensure the
preservation of the underlying topic structure. The
semantic compressed text can be forwarded to the
LLM directly or in combination with other SoTA
extension schemes to further enhance the overall
outcome.

3.3 Complexity

To implement our method, two language models
may be involved.2 The first one is the base LLM of
interest whose context window is to be extended,
and the other serves the purpose of semantic com-
pression, which can be adapted from pre-trained

2Compared to the language model, the computational over-
head of other components is significantly smaller. Please refer
to Table 5 for more information regarding this.
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summarization models. Since most of the current
models are transformer-based, we can assume that
their complexities are k1n

2 and k2n
2 respectively,

where k1 and k2 are coefficients that depend on the
number of the parameters of the models.

Empirically, the ratio between the summaries
generated by the summary model and the origi-
nal text remains relatively stable. Therefore, we
assume a fixed compression coefficient α for the
summary model. Given an input text with length
L, the origin complexity is k1L2. Our method uti-
lizes a divide-and-conquer strategy, dividing the
long text into chunks of lengths l1, . . . , lm so that
L = l1 + · · · + lm. During inference using the
compressed context, the complexity is

k1(

m∑

i=1

αli)
2 = k1(α

m∑

i=1

li)
2 = α2k1L

2. (1)

Let γ1 and γ2 be the minimum and maximum
input lengths of the summary model, where γ1 ≤
li ≤ γ2. Since mγ1 ≤ L, we have

m∑

i=1

k2l
2
i ≤

m∑

i=1

k2γ
2
2 = mk2γ

2
2 ≤ k2

γ22
γ1

L. (2)

Thus the complexity of compressing length-L
context can be bounded by k2

γ2
2

γ1
L, which is linear

in L. Furthermore, the summary models usually
have smaller parameter sizes, and the entire com-
pression process can be parallelized, allowing for
further acceleration. The proposed compression
significantly reduces the inference time for long
texts. We also present the detailed empirical run-
ning time in Appendix D.

4 Experiments

We demonstrate that the proposed method of se-
mantic compression can effectively extend the con-
text window by up to 7-8 times without modifying
the parameters of the pre-trained models. Further-
more, the semantic compression module can be
seamlessly integrated into existing methods, allow-
ing for further extension of the context window.
This versatility enables our approach to be adapted
and combined with other techniques such as YaRN,
enhancing the overall performance and flexibility.
To evaluate the performance of our method, we
conduct experiments on several language tasks that
require an understanding of long contexts. These
tasks include passkey retrieval, single-document

question answering, multi-document question an-
swering, summarization, and few-shot learning. In
each task, the model is provided with a sequence of
context C (typically lengthy texts) and a sequence
of text Q (e.g., a prompt), and it is expected to gen-
erate the output answer A. Then we conduct the
ablation study of the summary model to explore
how much parameter work. We conducted an abla-
tion study on the semantic compression module to
investigate the parameter size at which the module
becomes effective. Additionally, we also investi-
gate the perplexity of generated text by our method
in Appendix E.

4.1 Evaluating Tasks

We evaluate our proposed method on various stan-
dard benchmark tasks in the long context. Our
length extension implementation is based on the
pre-trained 7B LLaMA model (Touvron et al.,
2023), where the context window size of this model
is 4096. The semantic compression module utilizes
bart-large-cnn and please refer to Appendix C for
further details. We begin with the evaluation of
passkey retrieval because this task can present the
procedure of our methods. Then we assess the
comprehensive ability on four kinds3 of natural
language task from LongBench (Bai et al., 2023).
Lastly, we conduct the ablation study of the seman-
tic compression module based on LongBench.

Passkey Retrieval Retrieval has been an impor-
tant application of LLMs. We evaluate the pro-
posed method using a synthetic task for passkey re-
trieval introduced by Mohtashami and Jaggi (2023),
where prompts are synthesized to conceal a gener-
ated passkey within a randomly chosen section of
a long document. This task assesses the capacity
to extract important information from any position
within lengthy contexts. An illustration of the task
is shown in Fig. 3. The synthetic long text incorpo-
rates the passkey digits, and the task for the LLM is
to retrieve these digits from the input text. Further
specifics can be found in Appendix B.

General NLP Tasks LongBench (Bai et al.,
2023) is a multi-task benchmark designed for
long text scenarios, consisting of six distinct

3Since our semantic compression module relies on a sum-
marization model, the current implementation is not suitable
for the remaining code and synthetic tasks in LongBench. We
present the remaining results in Appendix A. Additionally,
the summarization results for Llama2 7b are also provided in
Appendix A.
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Figure 3: Example of synthetic prompt for the passkey retrieval task (Mohtashami and Jaggi, 2023). The pre-trained LLM
is incapable of processing long input due to the context length constraint. By applying semantic compression, the redundant
information in the long document is removed, and the compressed input retains essential key information. The LLM can then
process the compressed input along with the prompt to generate an accurate answer. Notably, the distinct colors used in the
illustration correspond to topic-based chunks.

tasks. In this study, we focus on the three En-
glish tasks from the set of four natural language
tasks, namely single-document question answering,
multi-document question answering, summariza-
tion, and few-shot learning. Each of the selected
datasets contains 200 instances. Further informa-
tion can be found in Appendix B.

4.2 Baselines
We choose SoTA solutions from each mainstream
approach as our baselines.

Fixed-size chunking To accommodate long con-
text within a fixed-size context window, chunking
is a straightforward yet efficient approach. In NLP-
related applications, large pieces of text are usually
broken down into smaller segments for targeted
applications. When the input length exceeds the
context window, the fixed-size chunking method
(Bai et al., 2023) truncates the input sequence from
the middle. This is because the most significant
information typically resides at the beginning and
end of the sequence.

Interpolation-based method YaRN (Peng et al.,
2023) is a computationally efficient method for in-
terpolating position encoding, which dynamically
adjusts the Relative Positional Encoding RoPE over
dimensions and scales the attention. YaRN offers
multiple length-extended models for different ver-
sions of Llama2, with the models being trained on

a total of 64 GPUs from 8 × A100 machines. In
order to ensure a fair comparison, we choose the
model based on Llama2 7B, adjusted from 4k to
64k, as our baseline.

Fine-tuning approach LongLoRA (Chen et al.,
2023c) is an efficient approach for fine-tuning that
combines LoRA and shifts sparse attention to re-
duce computational costs. LongLoRA applies this
technique to Llama2 models of different sizes, rang-
ing from Llama2 7B, Llama2 13B, to Llama2 70B,
with token lengths extended from 4k to 32k on a
single 8 ×A100 device. In order to ensure a fair
and unbiased comparison, we choose the Llama2
7B model with context extension achieved through
improved LoRA fine-tuning as our baseline.

5 Results

In this section, we report the results of the above
experiments along with a comprehensive analysis.

Passkey Retrieval We present the results of the
passkey retrieval task in Fig. 4. We also show-
case the compression results of our method for
this task in Fig. 3. When employing Llama2 for
passkey retrieval, we observe a rapid drop in ac-
curacy to zero once the input length surpasses the
window size of 4096. However, by utilizing our
method, the retrieval accuracy of the Llama2 model
remains above 90% even for inputs with lengths
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Task Dataset
(length)

Method
Long
LoRA

Long
LoRA (4k) YaRN YaRN (4k) Ours Ours (4k) 4k

4k-8k

Single-Doc QA
NarrativeQA - - - - - - 18.7

Qasper 11.6 11.8 13.4 12.1 23.7 29.6 19.2
MultiFieldQA-en 24.5 13.2 34.9 32.9 39.0 58.7 36.8

Multi-Doc QA
HotpotQA 11.5 8.3 11.3 22.6 55.8 50.0 25.4

2WikiMultihopQA 10.1 10.6 8.9 14.4 31.7 61.8 32.8
MuSiQue 10.0 - 21.1 - 50.0 - 9.4

Summarization
GovReport 24.7 28.9 28.8 35.0 28.6 32.6 27.3
QMSum 20.3 17.0 22.8 18.7 21.5 22.2 20.8

MutiNews 0.0 0.0 1.2 18.9 23.8 27.3 25.8

Few-Shot
Learning

TREC 65.8 54.2 70.9 50.0 55.7 54.2 61.5
TriviaQA 87.6 80.6 90.9 88.9 83.6 75.0 77.8
SAMSum 43.1 40.8 40.4 39.9 41.3 43.7 40.7

8k-16k

Single-Doc QA
NarrativeQA 9.2 - 13.9 - 17.3 - 18.7

Qasper - 11.8 10.3 12.1 20.6 29.6 19.2
MultiFieldQA-en 22.5 13.2 18.9 34.4 35.9 58.7 36.8

Multi-Doc QA
HotpotQA 8.9 8.3 8.7 22.6 35.1 50.0 25.4

2WikiMultihopQA 9.5 10.6 9.9 14.4 30.5 61.8 32.8
MuSiQue 6.1 - 4.2 - 24.2 - 9.4

Summarization
GovReport 24.0 28.9 25.1 35.0 28.8 32.6 27.3
QMSum 22.5 17.0 21.8 18.7 23.3 22.2 20.8

MutiNews 0.0 0.0 0.0 18.9 22.7 27.3 25.8

Few-Shot
Learning

TREC 80.4 54.2 77.3 50.0 66.0 54.2 61.5
TriviaQA 86.5 80.6 89.1 88.9 80.1 75.0 77.8
SAMSum 44.5 40.8 43.8 39.9 38.7 43.7 40.7

16k-32k

Single-Doc QA
NarrativeQA 12.4 - 8.6 - 11.9 - 18.7

Qasper - 11.8 9.2 12.1 28.3 29.6 19.2
MultiFieldQA-en 36.5 13.2 32.6 32.9 39.0 58.7 36.8

Multi-Doc QA
HotpotQA 9.3 8.3 10.1 22.6 26.0 50.0 25.4

2WikiMultihopQA 7.9 10.6 10.7 14.4 31.4 61.8 32.8
MuSiQue 5.4 - 5.0 - 15.1 - 9.4

Summarization
GovReport 24.7 28.9 26.4 35.0 26.4 32.6 27.3
QMSum 20.0 17.0 20.8 18.7 22.8 22.2 21.5

MutiNews 0.3 0.0 0.3 18.9 21.0 27.3 26.4

Few-Shot
Learning

TREC - 54.2 - 50.0 - 54.2 61.5
TriviaQA 88.8 80.6 90.1 88.9 81.4 75.0 77.8
SAMSum 44.7 40.8 43.6 39.9 40.6 43.7 40.7

32k+

Single-Doc QA NarrativeQA oom - oom - 19.4 - 18.7

Summarization
GovReport oom 28.9 oom 35.0 21.8 32.6 27.3
QMSum oom 17.0 oom 18.7 18.8 22.2 21.5

Table 1: Comparison of our method with other baselines on many tasks from the LongBench. Method (4k) denotes evaluation
results on texts shorter than 4k. The last column, labeled 4k, showcases the performance of the Llama2-7B-chat-4k baseline.
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Figure 4: The Accuracy of different model variants on the
passkey retrieval task.

of up to 30,000. This indicates that the semantic
compression method extends the context window
size of the language model by approximately 7-8
times. Furthermore, we combine our method with
the SoTA interpolation-based method, YaRN, to
further expand the context window size to up to
60,000, while consistently maintaining an accuracy
above 90%. This demonstrates that our method can
further extend the context window by integrating
with current SoTA interpolation approaches.

General NLP Tasks We present our results on
various general NLP tasks in Table 1, includ-
ing single-document question answering, multi-
document question answering, summarization, and
few-shot learning. When the token length is less
than 4k, there is no need to compress the con-
text, and our method performs at the same level
as the original Llama2 model. However, both the
interpolation-based method YaRN and the fine-
tuning approach LongLoRA negatively impact the
performance of the Llama2 model across almost all
tasks. In the 4k-8k range, our method outperforms
others in 6 out of 11 tasks. It is worth noting that
our model performs slightly worse in the few-shot
learning task. This can be attributed to the fact that
few-shot learning necessitates more detailed infor-
mation, whereas our compression scheme main-
tains information within a fixed window. Moving
on to the 8k-16k range, our method achieves the
best results in 9 out of 12 tasks, exhibiting similar
performance to the 4k-8k range. In the 16k-32k
range, our method outperforms others in 8 out of
11 tasks. In the 32k+ range, other methods fail due
to out-of-memory issues, while our method still
maintains 70% of the performance achieved in the
4k range.

Table 2: Ablation study the neural compression mod-
els. Large represents Facebook bart-large-cnn (406M
parameters). Medium represents sshleifer distilbart-cnn-
12-6 (320M parameters). Small represents Falconsai
text_summarization (60M parameters).

Task Single Multi Sum Few Mean
Large 28.75 21.45 24.77 50.27 31.31

Medium 26.59 22.60 24.83 49.03 30.76
Small 27.63 20.92 24.40 50.00 30.74

Ablation Study The summary model in the se-
mantic compression module plays a crucial role.
The larger the parameter size of the model, the
better its ability to generalize, and the same prin-
ciple applies to the task of summarization as well.
In this section, we investigate the effect of pa-
rameter size on the performance of the seman-
tic compression module. We adopt three mod-
els with parameter sizes of 406M for bart-large-
cnn, 320M for distilbart-cnn-12-6, and 60M for
text_summarization, which we refer to as “Large”,
“Medium”, and “Small”, respectively.

By only changing the summary model, we evalu-
ate their performance on the English tasks in Long-
Bench dataset. The results in Table 2 demonstrate
that as the size of the summary model decreases,
the average scores of the compression module built
by the three summary models slowly decrease.
Though the “large” did not achieve the best per-
formance in the summarization task, it exceeded
the average scores in the other three tasks. Even
with the small model, the performance remains
competitive. The above discussion indicates the
robustness and reliability of our approach.

6 Conclusion

In this work, we propose a novel approach to ad-
dressing the limitation of context window length in
large language models using semantic compression.
By leveraging the statistical properties of natural
language and exploiting redundancy in communi-
cation, we are able to significantly shorten texts
while preserving their semantic meaning. This al-
lows for a 6-8 time extension of the context win-
dow without the need for modifying the parameters
of the pre-trained model or incurring additional
computational costs. The experiments demonstrate
that our proposed semantic compression method
outperforms current SoTA approaches on the multi-
task long context understanding benchmark, Long-
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Bench. Furthermore, the implementation of our
semantic compression module is straightforward
and can be easily integrated into other interpolation-
based methods and black box APIs. This provides
flexibility and adaptability to different downstream
tasks, considering practical constraints such as time
and memory resources. We believe our work can
lead to a simpler context window extension method
to be used in practice, thereby reducing the cost of
large language models.

7 Limitation

The semantic compression method we propose is a
lossy compression that retains only key semantic
information. When faced with fine-grained tasks
such as counting the occurrences of a specific name
in the full text, our method may struggle to provide
accurate answers. The current implementation just
supports English since there are many effective
summary models. We will introduce the multilin-
gual version in the future.

8 Potential Risks

As a context window extension approach for large
language models, our proposed semantic compres-
sion approach enables the model to process long
texts that are 6-8 times the length of the origi-
nal context window. The experiments and eval-
uations we conducted utilized publicly available
academic datasets, thus avoiding direct ethical con-
cerns. However, it is worth noting that our method
could potentially be used to extract inferred privacy
information from long texts in commercial settings.
This is a common ethical concern associated with
long text models.

9 Future Work

The core assumption of our compression approach
is that long text remains redundant (Li, 2023). An
apparent direction involves a task-agnostic com-
pression strategy that considers the semantic infor-
mation from task instructions. The evaluated tasks
primarily focus on information retrieval from long
texts. Reasoning is a fundamental ability of artifi-
cial intelligence systems (Wang et al., 2021; Yin
et al., 2024b; Wang et al., 2024), and exploring per-
formance on long text reasoning is well-deserved.
The evaluation is based on automatic metrics in
NLP, which may be biased. Therefore, it could be
beneficial to conduct human evaluations through a

crowdsourcing platform or use GPT-4 scores (Sot-
tana et al., 2023).
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A Other results

We present the results of all the tasks on Long-
Bench dataset in Table 3. Compared with the base-
lines, it can be observed that our method performs
well in Single-Doc QA, Multi-Doc QA, and Sum-
marization tasks. We also present the performance
of our method using prompting LLM as a neural
compressor in Table 4. The summary prompts are
the following. Although letting the model perform
the summarization task itself can reduce the need
for a separate summarization model, it generally
results in average performance while increasing
complexity.

Write a concise summary of the

following text. '''{text}'''SUMMARY:

B Datasets
Single-Doc QA assesses the model’s ability to retrieve local
information, while the summarization task requires the model
to know the full text. Multi-Doc QA involves answering multi-
hop questions (Wang et al., 2023b; Yin et al., 2024a) across
long document content, which poses a significant challenge as
it requires sophisticated reasoning abilities (Fei et al., 2024;
Yin et al., 2023; Wang et al., 2021). However, there is still
room for improvement in Few-shot Learning, Code Comple-
tion, and Synthetic tasks.

Single-Doc QA

• NarrativeQA (Kočiskỳ et al., 2018) is a standard
question-answering dataset that includes books from
Project Gutenberg3 and movie screenplays from a list
of websites. Question-answer pairs were provided by
annotators, so that each of the 1,567 books and scripts
has about 30 questions and answers, and two reference
answers are given for each question.

• Qasper (Dasigi et al., 2021) is a question-answering
dataset of NLP publications containing abstractive, ex-
tractive, and yes/no questions.

• MultiFieldQA-en (Bai et al., 2023) is a dataset cre-
ated from multiple sources including legal documents,
government reports, encyclopedias, and academic publi-
cations. Doctoral students were requested to annotate
each article’s queries and responses.

Multi-Doc QA

• HotpotQA (Yang et al., 2018) includes many 2-hop
questions written by native speakers based on two re-
lated paragraphs.

• 2WikiMultihopQA (Ho et al., 2020) involves up-to
5-hop questions systematacially constructed by manual
templates. Answering these questions requires reason-
ing paths and can not be solved by local content.

• MuSiQue(Trivedi et al., 2022) consists of up to 4-hop
questions and removes shortcuts and naturalness ques-
tions. Each question contains 2-4 supplement para-
graphs which present the reasoning path and related
paragraphs.

Summarization

• GovReport (Huang et al., 2021) collects detailed re-
ports containing human-written summaries from the
U.S. Government Accountability Office and Congres-
sional Research Service. These reports span a wide
variety of national policy issues.

• QMSum (Zhong et al., 2021) contains annotated
meeting-summary pairs across many domains including
including product, academic, and committee meetings.

• MultiNews(Fabbri et al., 2019) is a multi-document
summarization dataset. (Bai et al., 2023) cluster 2-10
news articles discussing the same event or topic, each
paired with a human-written summary and form a new
long text summarization task.
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Table 3: The results of the entire LongBench tasks. The results of our are based on the Facebook bart-large-cnn.
We assign the labels 1-1, 1-2, and 1-3 to NarrativeQA, Qasper, and MultiFieldQA-en, respectively. We designate
HotpotQA, 2WikiMultihopQA, and MuSiQue as 2-1, 2-2, and 2-3, respectively. Similarly, we assign the labels 3-1,
3-2, and 3-3 to GovReport, QMSum, and MutiNews, respectively. TREC, TriviaQA, and SAMSum are labeled
as 4-1, 4-2, and 4-3, respectively. LCC and Repobench-P are denoted as 5-1 and 5-2, while Passage Count and
PassageRetrieval-en are labeled as 6-1 and 6-2, respectively.

Tasks Single-Doc QA Multi Sum Few-shot Code Syntax
Models 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3 5-1 5-2 6-1 6-2

Llama 18.7 19.2 36.8 25.4 32.8 9.4 27.3 20.8 25.8 61.5 77.8 40.7 52.4 43.8 2.1 9.8

yarn 12.4 12.8 27.0 9.9 9.8 5.0 26.8 21.5 13.9 71.5 89.7 42.5 64.8 60.8 2.9 5.5

Our 17.9 24.3 39.6 32.0 33.4 16.0 28.3 21.7 26.3 60.5 80.8 40.3 52.7 51.5 1.0 9.5

Table 4: The results of our(prompt) are based on prompting LLM as a summarized model. The results of our
are based on the Facebook bart-large-cnn. We assign the labels 1-1, 1-2, and 1-3 to NarrativeQA, Qasper, and
MultiFieldQA-en, respectively. We designate HotpotQA, 2WikiMultihopQA, and MuSiQue as 2-1, 2-2, and 2-3,
respectively. Similarly, we assign the labels 3-1, 3-2, and 3-3 to GovReport, QMSum, and MutiNews, respectively.
TREC, TriviaQA, and SAMSum are labeled as 4-1, 4-2, and 4-3, respectively.

Tasks Single-Doc QA Multi Sum Few-shot
Models 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3

Llama 18.7 19.2 36.8 25.4 32.8 9.4 27.3 20.8 25.8 61.5 77.8 40.7

yarn 12.4 12.8 27.0 9.9 9.8 5.0 26.8 21.5 13.9 71.5 89.7 42.5

Our 17.9 24.3 39.6 32.0 33.4 16.0 28.3 21.7 26.3 60.5 80.8 40.3

Our(prompt) 15.7 19.4 36.7 31.2 33.6 14.9 27.7 20.8 26.6 52.0 78.3 38.4

Few-Shot Learning To construct few-shot learning
with long text, (Bai et al., 2023) select a range of training
examples in the following datasets to concatenate the context
in LongBench.

• TREC (Li and Roth, 2002) is a classification dataset
with fine-grained class label.

• TriviaQA (Zhong et al., 2021) is a classification dataset
and involves messenger-like conversations with human-
written summaries.

• SAMSum (Fabbri et al., 2019) reading comprehension
dataset and consists of question-answer pairs annotated
with evidence passages.

Passkey The randomly generated prompts of the passkey
retrieval task are in the format of Fig. 5.

The datasets we discussed are openly available for aca-
demic purposes and are licensed under CC-BY 4.0. Our pro-
posed method is also licensed under CC-BY 4.0 and can be
used for academic purposes. However, it is important to note
that derivatives of data accessed for research purposes should
not be deployed in the real world as anything other than a
research prototype, especially for commercial purposes.

C Implementation Details
In this section, we provide details of our algorithm implemen-
tation. Our experiments can be conducted on a single V100
GPU with 32GB of memory. Each task on LongBench takes
approximately one hour to complete.

C.1 Open-source Models
Our algorithm utilizes several mature open-source mod-
els. For graph representation, we make use of the
sentence similarity models all-MiniLM-L6-v2 provided
by the Sentence Transformer platform, which can be
found at the following link: https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2. For seman-
tic compression, we employ the pre-trained model bart-cnn-12-
64. In most of our experiments, we utilize Llama2-7B-chat-4k
as the base large language model (Touvron et al., 2023).

C.2 Clustering Algorithms
In our clustering implementation, we utilize Spectral Cluster-
ing as a standard method for graph clustering. For example,
when there are two clusters, Spectral Clustering solves a con-
vex relaxation of the normalized cuts problem on the similarity
graph. It achieves this by dividing the graph into two parts in
such a way that the weight of the cut edges is minimized rela-
tive to the weights of the edges within each cluster. You can
refer to https://scikit-learn.org/stable/modules/
clustering.html#spectral-clustering for more details.
This approach aligns closely with our objective of identifying
topic structures. Furthermore, this method is both simple and
effective, as it only requires one parameter: the cluster number.
This parameter allows us to control the length of topic-based
chunks.

D Running Time
We present the running time analysis of three datasets in Multi-
Doc QA in Table 5. The average word lengths of 2wikimqa,

4Available at: https://huggingface.co/facebook/
bart-large-cnn
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There is an important info hidden inside a lot of irrelevant 
text. Find it and memorize them. I will quiz you about the 
important information there. The grass is green. The sky is 
blue. The sun is yellow. Here we go. There and back again. 
(Repeat X Times) The grass is green. The sky is blue. The 
sun is yellow. Here we go. There and back again. The pass 
key is 0000 Remember it. 0000 is the pass key. The sun is 
yellow. Here we go. There and back again (Repeat X Times) 
The grass is green. The sky is blue. The sun is yellow. Here 
we go. What is the pass key? The pass key is

Figure 5: The query prompt contains task descriptions, redundant information, passkey information, redundant information, and
query information. The passkey information is randomly placed within the text, while the remaining space up to a specified
length is filled with redundant information.

hotpotqa, and musique are 4,887, 9,151, and 11,214, respec-
tively. These lengths represent word counts, not token counts,
and are sourced from LongBench. However, it is important
to note that due to the limitation of a single GPU, we can
only process sequences up to 8k in length, which makes direct
inference with yarn more advantageous. The results in the
table indicate that our proposed approach has a longer infer-
ence time compared to direct inference, with the main time
consumption occurring during the compression process. Nev-
ertheless, the compression step can be parallelized, leaving
room for engineering optimizations. It can be observed that
the runtime of the clustering algorithm is relatively minimal
compared to other modules, thus we did not delve into detailed
discussions on it.

Time (s) 2wikimqa hotpotqa musique

AVG.(cluster) 0.02 0.04 0.10
AVG.(compress) 4.73 8.53 15.00
AVG.(our) 6.95 12.39 21.75
AVG.(yarn) 5.85 7.05 7.35

Table 5: The average running time for different datasets.
AVG.(yarn) represents the running time for the yarn
method on 8k examples. AVG.(our) denotes the running
time for our method across all examples. AVG.(cluster)
and AVG.(compress) indicate the average time for the
clustering and compression components of our method,
respectively.

E Fluency
We evaluate the fluency of our semantic compression method
using the perplexity score, which is defined as the exponential
of the average negative log-likelihood of the probabilistic
model P on the distribution D, i.e.,

PPL(D,P ) := exp(−Ex∈D logP (x)).

A smaller perplexity score indicates more fluent sequences
that are consistent with the model. We utilize the Llama2
model as our baseline to evaluate the fluency of generated
texts by calculating the perplexity (PPL) score. Samples from
the GovReport dataset are selected at varying lengths, and
the reference texts are compared to the generated texts during

0 2000 4000 6000 8000 10000 12000
Length

e2
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e10
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Figure 6: Perplexity on the GovReport dataset was evalu-
ated at different sequence lengths. The perplexity curves of
Llama2 (green) and our method (purple) exhibit similar trends
for sequences up to 4k in length. However, as the sequence
length exceeds the training length of 4k, our method effec-
tively flattens the perplexity curve, indicating that fluency is
preserved for longer sequences.

the computation. In cases where the length of the input text
exceeds the context window of Llama2, our semantic compres-
sion module shortens the input, thereby allowing the model to
continue generating new content fluently. The resulting scores
are depicted in Fig. 6. The plots indicate that the perplexity of
Llama2 initially decreases, but once it surpasses the window
length, it rapidly increases. However, when our semantic com-
pression method is employed, the PPL remains consistently
low. This suggests that our approach successfully extends the
context window up to three times without compromising the
generation quality of the language model.

(Peng et al., 2023), which measures the model’s ability to
predict the text and serves as an indicator of the fluency of the
generated output. This analysis allows us to assess not only
the effectiveness but also the quality of the generated output.
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